学术报告:2018.6.16,代数Workshop

发布时间:2018-06-14浏览次数:13

1.
报告人:谭绍滨教授(厦门大学)
题目:Integrable representations of toroidal EALAs
时间:6月16日8:30-9:15
地点:第一报告厅
摘要:In this talk we will discuss the classifacation of irreducible integrable representations with finite dimensional weight spaces for the rank 2 toroidal extended affine Lie algebras. This is based on joint work with Prof. Fulin Chen and Dr. Zhiqiang Li.
报告人简介:谭绍滨教授,厦门大学特聘教授、博士生导师,现任厦门大学校长助理、数学科学学院院长。第六、七届国务院学位委员会数学学科评议组成员,教育部高等学校教学指导委员会委员。曾获国防科工委科技进步奖一等奖、宝钢优秀教师奖、福建省自然科学奖二等奖。先后主持国家自然科学基金委重点项目1项、面上项目4项。
2.
报告人:彭联刚教授(四川大学)
题目:On modified Ringel-Hall algebras of complexes
时间:6月16日9:15-10:00
地点:第一报告厅
摘要:In this talk I shall introduce my work jointed with  LU Ming or LIN Ji on the modified Ringel-Hall algebra of period or bounded complexes of a hereditary abelian category. This is a kind of Ringel-Hall algebras which has a nice structure and is related directly to the Drinfeld double, Green’s formula on Ringel-Hall numbers, the derived Hall algebras and etc.
报告人简介:彭联刚,四川大学教授,国家杰出青年基金获得者。主要研究方向:代数表示论与李代数及量子群。
3.
报告人:胡乃红教授(华东师范大学)
题目:A whole construction for multi-parameter quantum groups via quantum quasi-symmetric algebras
时间:6月16日10:30-11:15
地点:第一报告厅
摘要:It is proved that the entire multi-parameter (small-)quantum groups of symmetrizable Kac-Moody algebras can be realized as certain subquotients of the cotensor Hopf algebras. This is an axiomatic construction. Hopf 2-cocycle deformations variation for the construction machinery is described, moreover, the integrable irreducible modules can be constructed using this setting, even available for those in the fundamental alcove at root of unity case. This is a joint work with Yunnan Li and Marc Rosso.
报告人简介:胡乃红,华东师范大学数学科学学院教授/博导,曾为德国洪堡学者,曾获教育部第三届优秀青年教师教学科研奖励计划暨青年教师奖、霍英东教育基金会研究类二等奖,曾任原数学系副主任和数学学位分委会主席及数学博士后流动站长。于2015年底筹建华东师范大学中法基础数学联合实验室LIA, 任执行主任。从事李理论、量子群、Hopf代数及表示论研究,发表SCI论文50余篇,培养了40余名硕士和14名博士及两名博士后。
4.
报告人:苏育才教授(同济大学)
题目:2-dimensional Jacobian Conjecture
时间:6月16日14:00-14:45
地点:第一报告厅
摘要:In this talk, the speaker will present his attempts to give a proof of 2-dimensional Jacobian conjecture, based on several results established by him mainly using the local bijectivity of Keller maps. The main contents in this talk can be found in the paper recently posted to arxiv:1603.01867.
报告人简介:苏育才,国家杰出青年基金获得者,同济大学数学系特聘教授、数学研究所所长,享受国务院“政府特殊津贴”,中国科学院“百人计划”、教育部“跨世纪优秀人才”、上海市优秀学术带头人。在Adv. Math.、Proc. Lond. Math. Soc.、Comm. Math. Phys.、Math. Z. 等杂志发表100余篇论文。担任《Algebra Colloquium》、《数学学报》、《Journal of Mathematical Study》等杂志的编委。先后获教育部自然科学、上海市自然科学和安徽省自然科学二等奖。主持国家自然科学基金重点项目和国家面上项目多项。
5.
报告人:李忠善教授(美国佐治亚州立大学)
题目:Convex polytopes and minimum ranks of nonnegative sign pattern matrices
时间:6月16日14:45-15:30
地点:第一报告厅
摘要:A sign pattern matrix (resp., nonnegative sign pattern matrix) is a matrix whose entries are from the set {+, , 0} (resp., {+, 0}). The minimum rank (resp., rational minimum rank) of a sign pattern matrix A is the minimum of the ranks of the  matrices (resp., rational matrices) whose entries have signs equal to the corresponding entries of A. It is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every d-polytope determines a nonnegative sign pattern with minimum rank d+1 that has a (d+1)(d+1) triangular submatrix with all diagonal entries positive. It is also shown that there are at most min{3m, 3n} zero entries in any condensed nonnegative mn sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.
报告人简介:李忠善教授,美国佐治亚州立大学数学系终身正教授。研究兴趣包括组合矩阵理论、代数图论、矩阵理论应用等。在《Amer. Math. Monthly》,《Linear Algebra Appl.》,《SIAM J. on Discrete Math.》,《Linear Multilinear Algebra》,《J. Combin. Theory Ser. B》,《IEEE Trans. Neural Networks and Learning Systems》等重要国际学术期刊上发表论文60余篇,近五年发表20余篇学术论文,并出版学术专著《Handbook of Linear Algebra》中的一章,主持或参与多项科研项目。目前还担任美国《Mathematical Reviews》特约评论员,《JP Journal of Algebra,Number Theory and Applications》杂志编委,美国数学会会员,国际线性代数学会会员等职务。08-09年和15-16任加拿大国家科学和工程研究委员会项目评审专家。
6.
报告人:陈惠香教授(扬州大学)
题目:Generalized Hopf-Ore extensions
时间:6月16日15:50-16:35
地点:第一报告厅
摘要:We investigate some Hopf algebra structures over an Ore extension of a Hopf algebra. Necessary and sufficient conditions for an Ore extension of a Hopf algebra to have a Hopf algebra structure of a certain type are given. This construction, called a generalized Hopf-Ore extension, generalizes Hopf-Ore extensions. We describe the generalized Hopf-Ore extensions of the enveloping algebras of Lie algebras. For some Lie algebras g, the generalized Hopf-Ore extensions of U(g) are classified.
报告人简介:陈惠香,扬州大学数学科学学院教授、博士生导师。研究兴趣:Hopf代数的构造分类、表示、Green环,张量范畴。
7.
报告人:李立斌教授(扬州大学)
题目:From NIM equations to modules over fusion rings
时间:6月16日16:35-17:20
地点:第一报告厅
摘要:In this talk, we shall prove that the rank of the irreducible NIM-modules over a near-group fusion ring is no more than the rank of the near-group ring. As an application, we show that the irreducible NIM-modules over the fusion ring of rank 2 correspond to an equivalence class of some non-negative integer matrices of order 2.
报告人简介:李立斌,扬州大学数学科学学院教授、博士生导师;2000年获中国科学技术大学理学博士学位.近年来,先后应邀到德国Bielefeld大学、Aachen工业大学、科隆大学、英国Leicester大学、Oxford大学、Lodon City大学、Warwick大学、台湾大学、南洋理工大学、筑波大学、悉尼大学等大学和研究机构进行学术交流。主持和参与多项国家自然科学基金项目.在Journal of Algebra等国内外刊物上发表论文60余篇.