HW1, due to 10/17/2021

Exercise 1. Given a metric space (X, d) we define a relation \sim on X by

$$x \sim y \iff d(x, y) < \infty$$

Then \sim is an equivalence relation on *X*, and the equivalence class [x] of *x* can be endowed with a natural metric (still denoted by *d*). For any $x \in X$, show that ([x], d) is a finite metric space.

Exercise 2. Given a semi-metric space (X, d) we define a relation \sim on X by

$$x \sim y \iff d(x, y) = 0$$

Show that \sim is an equivalence relation on X. Define

$$X := X / \sim = \{ [x] : x \in X \}, \quad d([x], [y]) := d(x, y).$$

Show that $(X/d, d) := (\hat{X}, \hat{d})$ is a metric space.

Exercise 3. Let $X = \mathbf{R}^2$ and define

$$d((x,y),(x',y')) := |(x-x') + (y-y')|.$$

Show that *d* is a semi-metric on *X*. Define $f : \mathbf{R}^2/d \to \mathbf{R}$ by f([(x,y)]) := x + y. Show that *f* is an isometry.

Exercise 4. Consider the set X of all continuous real-valued functions on [0, 1]. Show that

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx$$

defines a metric on *X*. Is this still the case if continuity is weakened to integrability?

Exercise 5. Let (X, d_X) and (Y, d_Y) be two metric spaces. We define

$$d_{X \times Y}((x_1, y_1), (x_2, y_2)) := \sqrt{d_X(x_1, x_2) + d_Y(y_1, y_2)}.$$

Show that $(X \times Y, d_{X \times Y})$ is a metric space.

Exercise 6 (Bonus). As a subspace of \mathbb{R}^2 , the unit circle \mathbb{S}^1 carries the restricted Euclidean metric from \mathbb{R}^2 . We can define another (intrinsic) metric d_{int} by

 $d_{int}(x, y) :=$ the length of the shorter arc between them.

Note that $d_{int}(x, y) \in [0, \pi]$ for any points $x, y \in S^1$.

- (a) Show that any circle arc of length less than or equal to π , equipped with the intrinsic metric, is isometric to a straight line segment.
- (b) The whole circle with the intrinsic metric is not isometric to any subset of \mathbf{R}^2 .