HW1, due to 10/17/2021

Exercise 1. Given a metric space (X, d) we define a relation \sim on X by

$$
x \sim y \Longleftrightarrow d(x, y)<\infty
$$

Then \sim is an equivalence relation on X, and the equivalence class $[x]$ of x can be endowed with a natural metric (still denoted by d). For any $x \in X$, show that $([x], d)$ is a finite metric space.

Exercise 2. Given a semi-metric space (X, d) we define a relation \sim on X by

$$
x \sim y \Longleftrightarrow d(x, y)=0
$$

Show that \sim is an equivalence relation on X. Define

$$
\hat{X}:=X / \sim=\{[x]: x \in X\}, \quad \hat{d}([x],[y]):=d(x, y)
$$

Show that $(X / d, d):=(\hat{X}, \hat{d})$ is a metric space.
Exercise 3. Let $X=\mathbf{R}^{2}$ and define

$$
d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=\left|\left(x-x^{\prime}\right)+\left(y-y^{\prime}\right)\right|
$$

Show that d is a semi-metric on X. Define $f: \mathbf{R}^{2} / d \rightarrow \mathbf{R}$ by $f([(x, y)]):=x+y$. Show that f is an isometry.

Exercise 4. Consider the set X of all continuous real-valued functions on $[0,1]$. Show that

$$
d(f, g):=\int_{0}^{1}|f(x)-g(x)| d x
$$

defines a metric on X. Is this still the case if continuity is weakened to integrability?

Exercise 5. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. We define

$$
d_{X \times Y}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\sqrt{d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)}
$$

Show that $\left(X \times Y, d_{X \times Y}\right)$ is a metric space.
Exercise 6 (Bonus). As a subspace of \mathbf{R}^{2}, the unit circle \mathbf{S}^{1} carries the restricted Euclidean metric from \mathbf{R}^{2}. We can define another (intrinsic) metric $d_{\text {int }}$ by

$$
d_{\mathrm{int}}(x, y):=\text { the length of the shorter arc between them. }
$$

Note that $d_{\mathrm{int}}(\boldsymbol{x}, \boldsymbol{y}) \in[0, \pi]$ for any points $\boldsymbol{x}, \boldsymbol{y} \in \mathbf{S}^{1}$.
(a) Show that any circle arc of length less than or equal to π, equipped with the intrinsic metric, is isometric to a straight line segment.
(b) The whole circle with the intrinsic metric is not isometric to any subset of \mathbf{R}^{2}.

