●文章目录●
https://mathscinet.ams.org/mathscinet/author?authorId=343224
Chen, Miaochao; Lu, Shengqi; Liu, Qilin, A blow-up criterion to a Keller-Segel system coupled with the Euler fluid, Math. Methods Appl. Sci. 46 (2023), no. 6, 6359-6367.
Chen, Miaochao; Chen, Fangqi; Lu, Shengqi; Liu, Qilin, Blow-up criteria for a Keller-Segel-Navier-Stokes system in a bounded domain, Appl. Math. Lett. 139 (2023), Paper No. 108536, 8 pp.
Chen, Miaochao; Lu, Shengqi; Liu, Qilin, Uniqueness of weak solutions to a Keller-Segel-Navier-Stokes model with a logistic source, Appl. Math. 67 (2022), no. 1, 93-101.
Lu, Shengqi; Chen, Miaochao; Liu, Qilin, Global well-posedness of axially symmetric weak solutions to the Ginzburg-Landau model in superconductivity, Appl. Anal. 100 (2021), no. 10, 2163-2169.
Chen, Miaochao; Lu, Shengqi; Liu, Qilin, Uniqueness of weak solutions to a Keller-Segel-Navier-Stokes system, Appl. Math. Lett. 121 (2021), Paper No. 107417, 7 pp.
Lu, Sheng Qi; Chen, Miao Chao; Liu, Qi Lin, lobal existence of weak solutions to a 3D Keller-Segel-Navier-Stokes system, Acta Math. Sinica (Chinese Ser.) 63 (2020), no. 5, 495-504.
Chen, Miaochao; Lu, Shengqi; Liu, Qilin, niform regularity for a Keller-Segel-Navier-Stokes system, Appl. Math. Lett. 107 (2020), 106476, 7 pp.
Lu, Shengqi; Chen, Miaochao; Liu, Qilin, A nonlinear inverse problem of the Korteweg–de Vries equation, Bull. Math. Sci. 9 (2019), no. 3, 1950014, 11 pp.
Lu, Shengqi; Chen, Miaochao; Liu, Qilin, n regularity for an Ericksen-Leslie's parabolic-hyperbolic liquid crystals model, ZAMM Z. Angew. Math. Mech. 98 (2018), no. 9, 1574-1584.
Chen, Miao-chao; Lu, Sheng-qi; Liu, Qi-lin, Global regularity for a 2D model of electro-kinetic fluid in a bounded domain, Acta Math. Appl. Sin. Engl. Ser. 34 (2018), no. 2, 398-403.
Chen, Miaochao; Liu, Qilin, Blow-up criteria of smooth solutions to a 3D model of electro-kinetic fluids in a bounded domain, Electron. J. Differential Equations 2016, Paper No. 128, 8 pp.
Liang, Fei; Liu, Qi Lin; Li, Yu Xiang, On a nonlocal problem modelling Ohmic heating in planar domains, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 3, 523-534.
Zeng, Weili; Lu, Xiaobo; Liu, Qilin, Uniform blow-up rate for a porous medium equation with a weighted localized source, Bound. Value Probl. 2011, 2011:57, 10 pp.
Liu, Qilin; Chen, Yichao; Lu, Shengqi, Uniform blow-up profiles for nonlinear and nonlocal reaction-diffusion equations, Nonlinear Anal. 71 (2009), no. 5-6, 1572-1583.
Qilin, Liu; Fei, Liang; Li, Yuxiang, Asymptotic behaviour for a non-local parabolic problem, European J. Appl. Math. 20 (2009), no. 3, 247-267.
Chen, Youpeng; Liu, Qilin; Gao, Hongjun, Boundedness of global positive solutions of a porous medium equation with a moving localized source, J. Math. Anal. Appl. 333 (2007), no. 2, 1008-1023.
Liu, Qilin; Li, Yuxiang; Gao, Hongjun, Uniform blow-up rate for diffusion equations with nonlocal nonlinear source, Nonlinear Anal. 67 (2007), no. 6, 1947-1957.
Liu, Qilin; Li, Yuxiang; Gao, Hongjun, Uniform blow-up rate for a nonlocal degenerate parabolic equations, Nonlinear Anal. 66 (2007), no. 4, 881-889.
Liu, Qi Lin; Li, Yu Xiang; Gao, Hong Jun, Blow-up property for a reaction-diffusion system with nonlocal sources, Acta Math. Sinica (Chinese Ser.) 49 (2006), no. 4, 869-882.
Liu, Qi Lin, Uniform blow-up rates for diffusion equations with nonlocal source, Acta Math. Sci. Ser. A (Chinese Ed.) 26 (2006), no. 3, 440-448.
Liu, Qilin; Li, Yuxiang; Gao, Hongjun, Uniform blow-up rate for diffusion equations with localized nonlinear source, J. Math. Anal. Appl. 320 (2006), no. 2, 771-778.
Chen, Youpeng; Liu, Qilin; Gao, Hongjun, Boundedness of global solutions of a porous medium equation with a localized source, Nonlinear Anal. 64 (2006), no. 10, 2168-2182.
Liu, Qilin; Xie, Chunhong; Chen, Songlin, Global blowup and blowup rate estimates of solutions for a class of nonlinear non-local reaction-diffusion problems, Acta Math. Sci. Ser. B (Engl. Ed.) 24 (2004), no. 2, 259-264.
Chen, Youpeng; Liu, Qilin; Xie, Chunhong, Blow-up for degenerate parabolic equations with nonlocal source, Proc. Amer. Math. Soc. 132 (2004), no. 1, 135-145.
Liu, Qilin; Xin, Yening, The blow up property of solution to some Cauchy problem, Nanjing Daxue Xuebao Shuxue Bannian Kan 20 (2003), no. 2, 169-175.
Liu, Qi Lin; Li, Yu Xiang; Xie, Chun Hong, Blow-up of solutions to a degenerate parabolic equation with localized nonlinear reactions, Acta Math. Sinica (Chinese Ser.) 46 (2003), no. 6, 1135–1142.
Deng, Wei Bing; Liu, Qi Lin; Xie, Chun Hong, Blowup properties for a class of nonlinear degenerate diffusion equation with nonlocal source, Appl. Math. Mech. 24 (2003), no. 11, 1204-1210; Appl. Math. Mech. (English Ed.) 24 (2003), no. 11, 1362-1368.
Liu, Qi Lin; Deng, Wei Bing; Xie, Chun Hong, Existence, uniqueness and blow-up rate of solutions for degenerate parabolic equations, Acta Math. Sinica (Chinese Ser.) 46 (2003), no. 4, 775-784.
Liu, Qilin; Chen, Youpeng; Xie, Chunhong, Blow-up for a degenerate parabolic equation with a nonlocal source, J. Math. Anal. Appl. 285 (2003), no. 2, 487-505.
Li, Fu Cai; Liu, Qi Lin; Xie, Chun Hong, Blow-up for degenerate semilinear parabolic equations with a nonlocal source, Acta Math. Sinica (Chinese Ser.) 46 (2003), no. 2, 391-396.
Li, Yuxiang; Liu, Qilin; Xie, Chunhong, Semilinear reaction-diffusion systems of several components, J. Differential Equations 187 (2003), no. 2, 510-519.
Chen, Youpeng; Liu, Qilin; Xie, Chunhong, The blow-up properties for a degenerate semilinear parabolic equation with nonlocal source, Appl. Math. J. Chinese Univ. Ser. B 17 (2002), no. 4, 413-424.
Liu, Qi Lin; Mo, Jia Qi, The asymptotic behavior of solution for the singularly perturbed initial boundary value problems of the reaction diffusion equations in a part of domain, Appl. Math. Mech. 22 (2001), no. 10, 1075-1080; Appl. Math. Mech. (English Ed.) 22 (2001), no. 10, 1192-1197.
Mo, Jia Qi; Liu, Qi Lin, Singularly perturbed reaction-diffusion systems with nonlocal boundary conditions, J. Math. Res. Exposition 17 (1997), no. 3, 451-454.
Liu, Qi Lin, Asymptotic expansions of solutions to a class of second-order nonlinear singularly perturbed boundary value problems, Gaoxiao Yingyong Shuxue Xuebao Ser. A 8 (1993), no. 3, 231-238.