头像
YAN Liang
Professor
Department of Mathematics
Computational Mathematics Department
Tel:
Email:
yanliang@seu.edu.cn
Address:
Post:
  • 2011/6-, School of Mathematics, Southeast University
    2006/9 – 2011/6, Master and PhD combined program in Applied Mathematics, School of Mathematics and Statistics, Lanzhou Universality 2002/9 – 2006/7 B.S. in School of Mathematics and Statistics Lanzhou Universality
  • Research InterestsResearchID,Google scholar

    Bayesian modeling and computation

    -Stochastic computations and uncertainty quantification

    -Inverse and ill-posed problems

    Scientific machine learning


    Submitted:


    4. Y.Y. Wang, L.Yan,T. Zhou,Deep learning-enhanced reduced-order ensemble Kalman filter for efficient Bayesian data assimilation of parametric PDEs, 2024.

    3. Y. W.Yin, L. Yan, A novel direct imaging method for passive inverse obstacle scattering problem, 2024.

    2Y.W. Yin, L. Yan, Physics-aware deep learning framework for the limited aperture inverse obstacle scattering problem,2024.

    1.  Y.Y. Wang, L.Yan, Data-driven operator inference for parameter estimation in nonlinear partial differential equation,  2024.  

    Journal Papers:

    40.   Z.W. Gao, L. Yan, T. Zhou, Adaptive operator learning for infinite-dimensional Bayesian inverse problems, to appear in SIAM/ASA Journal on Uncertainty Quantification, 2024.

    39.   Y.W. Yin (尹运文), L. Yan, Bayesian model error method for the passive inverse scattering problemInverse Problem, 40:065005,2024.

    38.   H. Gu(顾昊), X. Xu, L. Yan, Inverse elastic scattering by random periodic structuresJournal of Computational Physics501:112785,2024.

    37.   W.B. Liu, L. Yan, T. Zhou, Y.C. Zhou, Failure-informed adaptive sampling for PINNs, Part III: applications to inverse  problems, CSIAM Transactions on Applied Mathematics,5(3):636-670, 2024.

    36.   Z.W. Gao, T. Tang, L. Yan, T. Zhou, Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation, Communications on Applied Mathematics and Computation6: 1720-1741, 2024 (Invited contribution to a special issue for Prof. Remi Abgrall 's 61th birthday).

    35.   Z.W. Gao(高志伟), L. Yan, T. Zhou, Failure-informed adaptive sampling for PINNs,  SIAM J. Sci. Comput., 45(4): A1971-A1994, 2023.

    34.   Y. Y. Wang(王艳艳), Q. Li(李倩), L.Yan, Adaptive ensemble Kalman inversion with statistical linearization,  Communications in Computational Physics33:1357-1380,2023.

    33.   Y.C. Li(李勇超),Y. Y. Wang(王艳艳), L.Yan, Surrogate modeling for Bayesian inverse problems based on physics-informed neural networks, Journal of Computational Physics475:111841,2023.

    32.   L. Yan, T. Zhou, Stein variational gradient descent with local approximations, Computer Methods in Applied Mechanics and Engineering, 386:114087,2021.

    31.   L. Yan, X.L. Zou(邹熙灵),  Gradient-free Stein variational gradient descent with kernel approximationApplied Mathematics Letters, 121: 107465, 2021.

    30.   L. Yan, T. Zhou, An acceleration strategy for randomize-then-optimize sampling via deep neural networks,  Journal of Computational Mathematics39(6):848-864, 2021.

    29.   A. Narayan, L. Yan, T. Zhou. Optimal design for the kernel interpolation: applications to uncertainty quantification,  Journal of Computational Physics430:110094,2021.

    28.   L. Yan, T. Zhou, An adaptive surrogate modeling based on deep neural networks  for large-scale Bayesian inverse problemsCommunications in Computational Physics, 28:2180-2205,2020. (A special issue on Machine Learning for Scientific Computing)

    27.   F.L. Yang, L. Yan, A non-intrusive reduced basis EKI for time-fractional diffusion inverse problems,  Acta Math. Appl.Sinica-English Serier, 36(1):183-202, 2020.(A special issue for IP)

    26.   L. Yan, T. Zhou. Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems,  Journal of Computational Physics, 2019, 381: 110-128.

    25.   L.Yan, T. Zhou.  An adaptive multi-fidelity PC-based ensemble Kalman inversion for inverse problems,  International Journal for Uncertainty Quantification2019, 9(3):205-220.

    24.   Y.X. Zhang, J.X. Jian, L. Yan, Bayesian approach to a nonlinear inverse problem for time-space fractional diffusion equation, Inverse Problems, 2018, 34:125002(19pp).

    23.   F.L. Yang,  L. Yan, L. Ling. Doubly stochastic radial basis function methodsJournal of Computational Physics2018, 363: 87-97.

    22.   L. Guo, A. Narayan, L. Yan, T. Zhou.Weighted approximate Fekete points: sampling for least-squares polynomial approximation, SIAM J.  Sci. Comput., 2018, 40 (1), A366-A387.

    21.   L. Yan, Y. X. Zhang. Convergence analysis of surrogate-based methods for Bayesian inverse problems, Inverse Problems, 2017, 33:125001(20pp).

    20.  L. Guo, Y. Liu, L. Yan,Sparse recovery via lq-minimization for polynomial chaos expansionsNumer. Math. Theor.  Meth. Appl., 2017,10(4):775-797.

    19.   L. Yan, Y. Shin, D. Xiu. Sparse approximation using L1-L2 minimization and its application to stochastic collocation SIAM J.  Sci. Comput., 2017, 39 (1): A229–A254.

    18.   Y.X.Zhang, L. Yan. The general a posteriori truncation method and its application to radiogenic source identification for the Helium production-diffusion equationAppl. Math. Model.,2017, 43 :126-138.

    17.   J.J. Liu, M. Yamamoto, L. Yan. On the reconstruction of unknown boundary sources for time fractional diffusion process by nonlocal measurement. Inverse Problems, 2016,32(1): 015009.

    16.   L. Yan, L. Guo. Stochastic collocation algorithms using l1-minimization for Bayesian solution of inverse problems,  SIAM J.  Sci. Comput., 2015,37(3), A1410–A1435.

    15.   L. Yan, F. L. Yang. The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition, Comput.  Math. Appl., 2015,70:254-264.

    14.   J.J.Liu, M. Yamamoto, L. Yan. On the uniqueness and reconstruction for an inverse problem of the fractional diffusion processAppl. Numer.  Math., 2015, 87:1-19.

    13.   L. Yan, F.L Yang. Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems, Comput.  Math. Appl.,2014, 67:1507-1520.

    12.   L. YanF.L. Yang. A Kansa-type MFS scheme for two-dimensional time fractional diffusion equationsEng. Anal. Bound.  Eleme.,2013, 37 (11): 1426–1435.

    11.   H. F. Zhao, L. Yan, J. J. Liu. On the interface identification of free boundary problem by method of fundamental solution. Numer.  Linear Algebra  Appl., 2013, 20(2)385-396.

    10.   L. Yan, L. Guo, D.Xiu. Stochastic collocation algorithms using L1-minimization,Int. J. Uncertainty Quantification,  2012, 2(3): 279–293.

    9.     L. Yan, F. L. Yang, C. L. Fu. A new numerical method for the inverse source problems from a Bayesian statistical perspective. Int. J. Numer. Meth. Eng., 2011, 85:1460-1474 

    8.     Y.X. Zhang, C. L. Fu, L. Yan. Approximate inverse method for stable analytic continuation in a strip domain. J.  Comput. Appl.  Math., 2011, 235: 1979-1992 

    7.     L. YanC. L. Fu, F. F. Dou. A computational method for identifying a spacewise-dependent heat source. Int.  J. Numer.  Meth. Biomedical Eng., 2010,26: 597-608

    6.     L. Yan, F. L.Yang, C.L.Fu. A meshless method for solving an inverse spacewise-dependent heat source problem. Journal of Computational Physics,2009, 228(1):123-136

    5.     F. L. Yang, L. Yan, T. Wei. The identification of a Robin coefficient by a conjugate gradient method. Int. J.  Numer. Meth. Eng.,2009,78:800-816

    4.     L. Yan, F. L. Yang, C. L. Fu. A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems. J.  Comput. Appl.  Math., 2009, 231(2):840-850

    3.     F. L. Yang, L. Yan, T. Wei. Reconstruction of part of a boundary for the Laplace equation by using a regularized method of fundamental solution. Inverse Problems  Sci. Eng.,2009,17(8):1113-1128.

    2.     F. L. Yang, L. Yan, T. Wei. Reconstruction of the corrosion boundary for the Laplace equation by using a boundary collocation method. Math. Comput. Simu., 2009,79(7):2148-2156 

    1.     L. Yan, C. L. Fu, F. L. Yang. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem., 2008, 32(3) :216-222. 



  • Grants:


    1. Deep Bayesian inversion: Algorithms and applications, NSFC, No. 12171085, PI, 2022.1-2025.12

    2. Uncertainty quantification in inverse problems for PDEs with random inputs,NSFC, No. 11771081, PI,2018.1-           2021.12 





  • Reviewer for:


    Journal of Computational Physics, Inverse Problems, Computer Methods in Applied Mechanics and Engineering,

    Communications in Computational Physics, International Journal for Uncertainty Quantification, Applied Mathematical Modelling, Computers and Mathematics with Applications, Inverse Problems in Science and Engineering, Journal of Inverse and Ill-posed problems, Applied Mathematics Letters, International Journal of Heat and Mass Transfer, Engineering Analysis with Boundary Elements, IEEE Systems, Man and Cybernetics: Systems, IEEE Signal Processing Letters, Communications in Nonlinear Science and Numerical Simulations 

    International Journal of Nonlinear Sciences and Numerical Simulation.......

    Conferences:

    • Invited Mini-symposia Speaker: SIAMUQ20, Mar. 23-27,  2020, TUM, Germany.

    • Invited  Speaker: Workshop on Computational Fluid Dynamics and UQ, Mar. 13-15, 2020, Shanghai

    • Invited  Speaker: 应用反问题理论与数值方法研讨会, Feb. 21-24, 2020, 上海财经大学

    • 主题报告: 第八届模型V&V专题研讨会, Dec. 13-14,  2019,中国工程物理研究院, 成都.

    • Invited  Speaker: 复杂物理问题的计算方法研讨会,  Aug. 28-30,  2019, 南京航空航天大学.

    • Invited  Speaker:UQ热点问题研讨会,  Aug. 23-25,  2019, 天元东北中心, 吉林长春.

    • Invited  Mini-symposia Speaker: 全国计算数学年会,July 31-Aug. 4, 2019,哈尔滨工业大学

    • Invited  Mini-symposia Speaker:  AIP, July 7-12, Grenoble, France

    • Invited  Speaker: 实验设计与UQ2019年学术研讨会, July 3-4,2019, 中科院数学与系统研究院,北京

    • Plenary Speaker:  第十一届反问题,成像及其应用会议,Jun. 22-24, 2019, 兰州大学

    • Invited  Speaker: 微分方程反问题与图像处理研讨会,May 24-26,2019, 中国民航大学,天津

    • Invited  Speaker: 反问题与偏微分方程计算研讨会,April 12-14, 2019,天元西北中心,陕西西安