HW1

1. Page 83, Exercise 1, 3, 8.

2 (Bonus). A **(commutative)** ring *A* is a set with two binary operations $(+, \cdot)$ such that

- 1) (A, +) is an Abelian group (so that *A* has an 0 element, and for any $x \in A$ there is a unique (additive) inverse $-x \in A$).
- 2) $x \cdot (y+z) = x \cdot y + x \cdot z$, $(y+z) \cdot x = y \cdot x + z \cdot x$, and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, for any $x, y, z \in A$.
- 3) $x \cdot y = y \cdot x$ for any $x, y \in A$.
- 4) There exists a unique element $1 \in A$ such that $x \cdot 1 = 1 \cdot x = x$ for all $x \in A$.

A map $f : A \rightarrow B$ between two rings is said to be a **ring homomorphism** if it satisfies

- 1) f(x+y) = f(x) + f(y), for all $x, y \in A$.
- 2) $f(x \cdot y) = f(x) \cdot f(y)$, for all $x, y \in A$.
- 3) f(1) = 1.

Assume that *A* is a ring.

- (1) An **ideal** \mathfrak{a} of A is a subset of A which is an additive subgroup and is such that $A\mathfrak{a} \subseteq \mathfrak{a}$ (i.e., $xy \in \mathfrak{a}$ for all $x \in A$ and $y \in \mathfrak{a}$). Then A/\mathfrak{a} is a ring and $\phi : A \to A/\mathfrak{a}, x \mapsto x + \mathfrak{a}$, is a ring homomorphism.
- (2) An ideal \mathfrak{p} in A is **prime** if $\mathfrak{p} \neq A$ and if $(xy \in \mathfrak{p} \Rightarrow x \in \mathfrak{p} \text{ or } y \in \mathfrak{p})$. If $f : A \rightarrow B$ is a ring homomorphism and \mathfrak{q} is a prime ideal in B,

If $f : A \to B$ is a ring nomomorphism and \mathfrak{q} is a prime ideal in B, then $f^{-1}(\mathfrak{q})$ is a prime ideal in A.

Let

$$X := \{ \text{primes ideals of } A \}, \quad V(\mathfrak{a}) := \{ \mathfrak{p} \in X | \mathfrak{a} \subseteq \mathfrak{p} \}$$

where a is an ideal.

(a) Prove that

- $V(0) = X, V(A) = \emptyset.$
- $\mathfrak{a} \subseteq \mathfrak{b} \Rightarrow V(\mathfrak{a}) \supseteq V(\mathfrak{b}).$
- *V*($\sum_{i \in I} a_i$) = ∩_{*i*∈*I*}*V*(a_i) for any family of ideals a_i , *i* ∈ *I*, of *A*.
- $V(\mathfrak{a}) \cup V(\mathfrak{a}) = V(\mathfrak{ab}) = V(\mathfrak{a} \cap \mathfrak{b}).$

Here \mathfrak{ab} is the ideal generated by all products $x \in \mathfrak{a}$ and $y \in \mathfrak{y}$, that is, $\mathfrak{ab} = \{\sum_{1 \le i \le n} x_i y_i : x_i \in \mathfrak{a}, y_i \in \mathfrak{b}\}.$

We then obtain the **Zariski topology** $(X, \mathcal{T}) =: \text{Spec}(A)$ on *X*, where $\mathcal{T} := \{U \in X : X \setminus U = V(\mathfrak{a}) \text{ for some ideal } \mathfrak{a} \text{ of } A\}.$

- (b) We have $X = \emptyset$ if and only if 0 = 1 in A.
- (c) For any ideal a of *A*, define the **nilpotent radical** of a to be the ideal

 $\sqrt{\mathfrak{a}} := \{a \in A : a^n \in \mathfrak{a} \text{ for some positive integer } n\}.$

Then we have $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$.

- (d) $\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p}.$
- (e) For any ideals a and b of *A*, we have $V(\mathfrak{a}) \subseteq V(\mathfrak{b})$ if and only if $\sqrt{\mathfrak{a}} \subseteq V(\mathfrak{b})$.