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Chapter 1 Differential manifolds

oz

Introduction

[ Manifolds [ Integration on manifolds

1 Tensors and forms

1.1 Manifolds

Introduction

[ Differential manifolds a

The function 7’ : R™ — R defined by
ri(x) == 2,
where = (z!,--- ,2™) € R™, is called the i-th canonical coordinate function on R™. The

canonical coordinate function on R will be denoted by r. If f : X — R is a function on some

set X, then we let

fr=riof,

where f? is called the i-th component function of f. If f : R — R and = € R, then we denote

the derivative of f at by

d df . fla+h) - f(z)
_ = 2| =1 .
ar| V=g = h
Iff:R™ - R,1<i<m,andx = (z!,---,2™) € R™, then we denote the partial

derivative of f with respect to r* at x by

i (f)_g f(xl,--- 7xi—l,xz’_i_h,xzﬂrljn_ ,:Um)—f(w)
ort| " Ort],  hs0 h ’
If « = (a1, -+, auy) is @ m-tuple of nonnegative integers, then we set

o™ olel
_ ol — X -
|a| Z Qi Q H Qi afra 8(7~1)a1 e a(rm)am ’

1<i<m 1<i<m
If z € R™, then B]"(x) = B™(«, ) will denote the open ball of radius  about x. Write
B! := B™(0,r). C, will denote the open cube with sides of length 2r about the origin in R™.
That is
C,:={(z',-,2™) e R™: |2'| <rforall 1 <i<m}.
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1.1.1 Differential manifolds

Let U C R™ be open and let f : U — R. We say that f is differentiable of class C* on
U, where k € N U {0, 00} U {w},
(i) (k € N U {0}) if the partial derivatives 0% f/Jr® exist and are continuous on U for
o] < K
(ii) (k = oo)if fis C¥ forall k > 0;
(iii) (k = w)if f is locally given by convergent power series.
If f: U — R™, then f is differentiable of class C* if each of the component functions
fi=rio fisCF.

Definition 1.1. (Topological manifolds)

A topological manifold M of dimension m is a Hausdorff space for which each point
has a neighborhood homeomorphic to an open subset of R™. If ¢ is a homeomorphism
of a connected open set U C M onto an open subset U := p(U) C R™, ¢ is called a
coordinate map, the functions x' := r' o © are called the coordinate functions, and the
pair (U, ) or (U, zt,--- | x™) is called a coordinate system.
(a) A coordinate system (U, ¢) is called a cubic coordinate system if p(U{) is an open
cube about the origin in R™.

(b) If p € U and ¢(p) = 0, then the coordinate system is said to be centered at p.

)
A differentiable structure .Z of class C*, where k € NU{oo}, on a topological manifold
M of dimension m, is a collection of coordinate systems (Uy, Po)ac A satisfying
(a) M = Uaeallo;
(b) pq o0 @El is C* forall o, B € A;
(c) the collection F is maximal with respect to (b), that is, if (U, ) is a coordinate
system such that p o o' and o, 0 o' are CF forall a € A, then (U, ) € .Z. Iy

If %y := {(Ua, pa) : @ € A} is any collection of coordinate systems satisfying properties
(a) and (b), then there is a unique differentiable structure .% containing .%;. Namely, let
F = {(Z/{, @) : oyt and p, 0 Lare C* forall ¢, € 9’0} . (1.1.1)
Hence, to find a differentiable structure on M™, we need only to find such a .%;. Without loss of
generality, we may say a differentiable structure is a collection of coordinate systems satisfying
(a) and (b).
Replacing C* by C¥ in Definition 1.2, we can define a differentiable structure of class
C*“. For a complex analytic structure on a 2n-dimensional topological manifold, one requires

that the coordinate systems have range in C” and overlap holomorphically.
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Definition 1.3. (Differentiable manifolds)

A m-dimensional differentiable manifold of class C* is a pair (M, .F) consisting of an
m-dimensional, second countable, topological manifold M together with a differentiable

structure F of class C". &

Unless we indicate otherwise, all manifolds are smooth manifolds or differentiable manifold
of class C*°. If X is a set, by a manifold structure on X we shall mean a choice of both a
second countable topological manifold for A" and a differentiable structure.
(a) R™. The standard differentiable structure on R™ is (R™, 1), where 1 : R™ — R™
is the identity map.

(b) Finite dimensional real vector spaces. Let V be a finite dimensional real vector space.
Then V' has a nature manifold structure. If € := (e;)1<i<m is a basis of V, the dual basis

e* := (e!)1<i<m gives a global coordinate system on 'V :

pe: V—R™, @e(v):=(e](v), - ,en(v)), veEV.

’m
If € := (&;)1<i<m is another basis of V with
&= Y ayel, a:=(a;)icij<m € GL(m,R),
1<j<m
we have g = awe. Consequently, this differentiable structure is independent of the
choice of basis.
(c) C™. As a real 2n-dimensional vector space, C"™ has a natural manifold structure. If

(€i)1<i<n is the canonical complex basis, then
€1, ,€En,V _1615”' )V _16n

is a real basis for C™, and its dual basis is the canonical global coordinate system on C™.

(d) The m-sphere is the set

S™ .= a=(a1,-~ ,amH)eRmH: Z (ai)2=1
1<i<m+1
Let N := (0,---,0,1) and S := (0,---,0,—1). Then the standard differentiable

structure on S™ is
(S™\ N,pn), (8™\S,ps),

where py and pg are stereographic projections from N and S respectively.
(e) (Open submanifolds) An open subset U of a differentiable manifold (M, F) is itself
a differentiable manifold with differentiable structure

97/ = {(ua muv (Poz|l/{aﬂlxl) : (UOM()OO&) € 9}

(f) (Product manifolds) Ler (M, %) and (Maz, %) be differentiable manifolds of

——————— O (D) O
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dimensions my and my respectively. Define

Vo X g i Uy x Vg — R™ x R™, (z,y) — (0a(z),¥s(y)),

where 71 = (Un, Pa)aca and Fo = (V3,v3)ep. Then

F = Ua X V8, 0a X V8)(a,8)cAxB
is a differentiable structure of My x Ms. amd dim(M; x M) = mq + mao.
(9) Let T™ = St x - -+ x St (m times). It is called the m-dimensional torus.

(h) The general linear group GL(m, R) is the set of all m x m nonsingular real matrices.
Define

2
GL(m,R) — R™, A= (aij)i<ij<m — (@11, ,@n, s Qm1, "  Gmm)-

. . o 2
Then the determinant can be considered as a function of R™ :

2
det : R™ — R, (@11, " ,Qins " ,Gml, " Gmm) —> det
am1 - Omm
. . . . . 2
It is clear that det is a continuous function and Ker(det) is a closed subset of R™".

Consequently,

GL(m,R) = R™ \ Ker(det)

is an open subset and then a differentiable manifold.
(1) Let T'(m, n) be the space of all m x n real matrices. Then T (m,n) can be regarded as
R™ and therefore is a real analytic (C*) manifold. Let T'(m,n; k) denote the space of
all m x n real matrices of rank k (where 0 < k < min(m, n)) with the induced topology
of T(m,n). Then T'(m,n; k) is a real analytic manifold of dimension k(m +n — k). In
fact, let Xy € T(m,n). If rank Xo > k, there are permutation matrices P and Q) such
that

Ao By

Co Dy

PXoQ =

where Ag is a nonsingular k x k matrix. There is an € > 0 ( depending on Ay) such that

if |[|A — Ao||marrix < € then A is nonsingular.

[ )
Let U be an open subset of a manifold M of dimension m. We say that f : U — R isa
C°-function on U (denoted f € C>®(U)) if f o ¢! is smooth for each coordinate map
@ on M™.
A continuous map 1 : M — N between two manifolds of dimensions m and n respec-
tively, is said to be of class C°°, denoted ) € C°(M,N), if g o ¢ is a smooth function
on Y~Y(domain of g) for all smooth functions g defined on open sets in N. &
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Note that the continuous map 1 : M — A is smooth if and only if o 1) o 77! is smooth

for each coordinate map7 on M and ¢ on N, dim M = m and dim N = n.
M L N

| K
R — R"
popor—1
Clearly that the composition of two smooth maps is again smooth. Observe that a mapping

1 : M — N is smooth if and only if for each 2 € M there exists an open neighborhood U of x

such that 1y, is smooth.

1.1.2 Partition of unity

A collection {Uy }aea of subsets of a topological space X is a cover of a set W C X if
W C Ugealdy.
(i) Itis an open cover if each U/, is open.
(ii) A subcollection of the cover {U, } nc4 Which stills covers is called a subcover.
(iii) A refinement {Vg}scp of the cover {U, }aca is a cover such that for each 3 there is an
a = o) such that Vg C Uy,
A collection {Uy }oca of subsets of X is locally finite if whenever z € X there exists a
neighborhood U, of x such that U, N U, # () for only finitely many c.

A topological space is paracompact if every open cover has an open locally finite refinement.

Definition 1.5. (Partition of unity)

A partition of unity on X is a collection {p; }ic1 of smooth functions on X such that

(a) The collection of supports {supp(p;) }ier is locally finite,

(b) 0 < p; <lon X foralli € I, and

(c) Djerpi=1lonX.
A partition of unity {¢; }ic1 is subordinate to the cover {Uy } ac 4 if for each i there exists
an o such that supp(p;) C U,. We say that it is subordinate to the cover {U; };c; with
the same index set as the partition of unity if supp(¢;) C U, for each i € I.

&

Let X be a topological space which is locally compact (each point has at least one compact
neighborhood), Hausdorff, and second countable. Then X is paracompact. In fact, each
open cover of X has a countable, locally finite refinement consisting of open sets with

compact closures.

Proof. (1) There exists a sequence {G; };en of open sets such that

G, is compact, G; C Gip1, X = U Gi.
iEN
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Lindelof’s theorem! says that any open cover of a second countable topological space has a
countable subcover. Since open sets with compact closure consists of an open cover of X, it
follows that there is a countable basis {U; };en of the topology of X, where U; is an open set
with compact closure. Let G1 := U7. Assume that G, = U1 U---UU;, . Let ji11 be the smallest

positive integer greater then j; such that

@C U Z/{z
1<i<jg41
Define
Gn= |J u
1<i<jg11

Then we get a countable sequence {G; };eN satisfying that G; is compact, G; C G; 11, and
xclJucl|JGclGca.
iEN iEN i€EN
Therefore X = U;enG;.

(2) Let {U,}aca be an arbitrary open cover. The set G; \ G;_1 is compact and contained
in the open set G;11 \ G;_o. For each i > 3, we choose a finite subcover of the open cover
{UsN(Gi+1\Gi—2) }aeca of G;\ Gi_1 and choose a finite subcover of the open cover {U,NG3}aeca
of the Go. This collection of open sets is countable, locally finite refinement of the open cover
{Un}aea. In fact, let W; := @\ Gi—1. Since X is locally compact, it follows that there exists a

finite subcover (U;;)1<j<m, of the open cover {Un N (Git1 \ Gi—2) }aca of W;. Set
Vij i=Uij N (Gig1\ Gi—2), 1<j<m,.
Similarly, we can define V;; for i = 1,2. Hence (V;j)1<j<m, is an open subcover of W; and
U U w=Uw=x
ieN 1<j<m; ieN

If ¥ := {Ua}aca and Xg := {V; }ieN,1<j<m,, then X is a refinement of ¥; moreover,

W; N H ij:@

1<j<m;
fork #1¢— 2,41 —1,4,7+ 1,4 + 2, which implies that 3}, is a locally finite. O
Consider the function
e‘l/t, t >0,
flt) = (1.1.2)
0, t<0

which is nonnegative, smooth, and positive for £ > 0. Then the function

f(t)

g(t) = ———-—— (1.1.3)
R RS
is nonnegative, smooth and takes the value 1 for ¢ > 1 and the value 0 for ¢ < 0. Set

h(t) :==g(t+2)g(2 —t) (1.1.4)

1See: Li, Yi. Topology I, Theorem 1.17.
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which is a nonnegative smooth function on R which is 1 on [—1, 1] and zero outside of (—2,2).
Finally, define
@ :=(horl)---(horm). (1.1.5)

In general, we can show that there exists a nonnegative smooth function ¢ on R™ which equals

1 on the closed cube C; and zero on the complement of the open cube Cs.

Let M be a manifold of dimension m and {Uy, } o.c A an open cover of M. Then there exists
a countable partition of unity {@; };cN subordinate to the cover {Uy } o A with supp(y;)
compact for each i. If one does not require compact supports, then there is a partition of
unity {pq taca subordinate to the cover {Uy }aca ( that is, supp(pa) C Uy, with at most

countably many of the @, not identically zero).

Proof. Let the sequence {G;};cn cover M as in Proposition 1.1 and set Gy = (). For x € M
let i, be the largest integer such that x € M\ G;,. Choose an a; € A such that z € U,,, and let

(V, T) be a coordinate system centered at = such that
V CUp, N (Gip+2\ Gi,), T(V) C Co.

Define
por, onV,

Yy =

0, otherwise

where ¢ is the function given by (1.1.5). Then ), is a smooth function on M which has the
value 1 on some open neighborhood W, of x, and has compact support lying in V. Since
{Gi}ien is locally finite, for each ¢ > 1, we can choose a finite set of points x in M whose
corresponding W, -neighborhoods cover G; \ G;_1. Order the corresponding v, functions in
a sequence {v;};en. The supports of the ¢); form a locally finite family of subsets of M.
Therefore the function
Vo=
JEN

is a well-defined strictly positive smooth function on M. For each ¢ € N define
_¥

(G

Then the functions {¢; }ien form a partition of unity subordinate to the cover {Uy }oca With

Pi -

supp(p;) compact.

Let ¢, be identically zero if no ¢; has support in U/, and be the sum of the ¢; with support
in U,. Then {p,}aca is a partition of unity subordinate to the cover {Uy }oeca With at most
countably many of the ¢, not identically zero. Note that the support of (, lies in I/, and observe

that the support of ¢,, is not necessarily compact. [J O
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Let U be open in a manifold M of dimension m and let € be closed in M with £ C U.
Then there exists a smooth function ¢ : M — R such that

(a) 0<p<lonM,

(b) p=1oné&, and

(c) supp(p) C U.

Proof. Consider an open cover (4, M\ £). By Theorem 1.1, we have a partition of unity (¢, 1)
subordinate to (U, M \ &) with supp(p) C U and supp(¢p) C M \ €. Since

po+1Y=1 onM,

it follows that ¢ = 1 on &. O

1.1.3 Tangent vectors

IfV = (V! ---,V™)isa vector at a point p and f is differential on a neighborhood of p,

we define

Vi)=Y vi(‘;{i

1<i<m

= (V,0)|p (1.1.6)

p

called the directional derivative of f in the direction V at p.

Definition 1.6. (Germs)

Let x be a point of a manifold M. Smooth functions f and g defined on open subsets

containing x are said to have the same germ at x if they agree on some neighborhood of

If Uy denotes an open subset of a smooth function f containing x, we set
F = {(f,Uy) : x € Uy}. (1.1.7)
Definition 1.6 introduces an equivalence relation on .%#:
(f,Up) ~(9,Uy) <= [f=g on UCUrNU, (1.1.8)
for some open subset U/ containing z. The set of equivalence classes is denoted by
Fo = F | ~={{f]: (f,Uy) € F}. (1.1.9)
The equivalence class [f] is also written as f. Define
Ty — R, fr— f(z):= f(a). (1.1.10)

It is clear that the mapping (1.1.10) is well-defined.
Let
Ty ={f € Fy: f(z)=0} (1.1.11)

and .ZF be the k-th power of .%,.
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Proposition 1.2

F,isanideal in F,, and FF is an ideal of F,, consisting of all finite linear combinations

of k-fold products of elements of #,. These form a descending sequence of ideals
FyD T D FECFED -

Definition 1.7. (Tangent vectors)

A tangent vector V' at the point x € M is a linear derivation of the algebra % That
is, for f,g € %and)\ € R,

V(f+XAg) = V(f)+AV(g),
V(f-9) = f@)V(g)+g@)V(f).

T M denotes the set of tangent vectors to M at x and is called the tangent space to M

at . s

Let M be an m-dimensional manifold. For V. W € T, M and A € R, we define
(V+W)(F) = V(F) + AW (F), AV(F) := AV(f). (1.1.12)
In this way, 7 M becomes a real vector space. We will show in Theorem 1.2 that
dim T, M = dim M = m.

If ¢ is the germ of a function with the constant value ¢ on a neighborhood of x. For

V e T, M, we have

Consequently,
V(e) =0. (1.1.13)

T, M is naturally isomorphic to (%) F2)*. 0

Proof. Define

¢ (Fu) F2) — TueM, LV,

where

Vi(f) = Ulf = [f(@)]]), feFu

This is well-defined, since f — [f(z)] € F,.
For any f,g € :?; and A € R, compute

Vi(f +2g) = Villf +29]) = L[S +Ag] = [(f + Ag)(2)]])
= Uf+rAg—[f@)] = Alg@)]]) = Vie(f) + AVilg)

——————— O (D) O
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and
Vilf-9) = Villfgl) = llfgl - 1(fo)@)])
= L(f = [f(@)])(g - g(=)])
+ [f(@))(g = [g()]) + lg(@)](f = [f())])
= [f(@)]Vi(g) + [g(2)Ve(f) + A
where

because of (f — [f(2)])(g — [9(x)]) € 2.

Conversely, define

Y TeM — (Fy | FH*, U — (U),

where
YUN[f]) =U(f + [f(@)]), fE€Fu
Compute
(o(UN(f) = e@U)f) = »U)[f - Lf(@)])
= Uf - [f@]+[f(@)]) = Uf)
Wop@)f]) = v(eO)f]) = O +[f(z)])
= Uf+If@]-[f@]) = €(fD.
Thus 4 is the inverse of ¢, and hence T, M is isomorphic to (.7, /.Z2)*. 0

dim %, /. Z2 = dim M.

Proof. The proof is based on the following

If g is of class C* (k > 2) on a convex open set U about p in R™, then for each q € U,

99 i i
g@) = gl)+ Y 5| (@) —r'(p)) (1.1.14)
1<i<m 7" Ip
Z . . , . . 92%g
+ (@)~ r' @) (@) - rie) [ (-t .
1<i,j<m 0 Ortor p+t(g—p)
Let (U, ¢) be a coordinate system about x with coordinate functions x!,--- 2™, For any

f € F#,, we have, for any g € p(U),

o -1
(oo @ = (Fop e+ Y o)

1<i<m

+ Y () = (e@))(r (@) = (p(x))h(q)

1<i,j<m

(r'(q) — r'(¢(x)))

o(x)
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by (1.1.14), where

dt

tq+(1—t)p(x)

1 2 o —1
a) = [ -0y e

is a smooth function near ¢ (z). Composing with ¢ yields

EROES> Ww(@((rio@(q)—<riw><m>>
LY ((Fee)a) — (e )@ o 9)) — (0 L)@ o )(a).
Thus e
p= Y Mo iy Y @) - @) o)
Consequenty, " o
p= > Wl @ i) moa 72
1<i<m o(x)

and hence ([z! — [2%(2)]])1<i<m spans %, /.Z2. Suppose now that
Y i@ (@) e 7
1<i<m
for a; € R.. Since
Y e —a'(@)op T = Y ai(r’ —ri(p(x)
1<i<m 1<i<m
it follows that

> ailr’ = [ (e@)) € F2,

1<i<m

which implies

9 i i ,
0= ori ! ai(r' —r'(p(z))) | = Z a;0;; = aj, 1<j7<m.
@D(Z‘) 1<i<m 1<i<m
Thus dim .%, /. F2 = =

For any x € M, we have dim T, M = dim M.

If f is smooth function defined on a neighborhood of z € M and V' € T, M, we define

V(f) = V(f). (1.1.15)
Thus V(f) = V(g) whenever f and g agree on a neighborhood of z, and

V(f+Xg) =V(f)+AV(g), V(fg)=f(x)V(g)+ g(x)V(f).

This shows that we can treat tangent vectors as operating on functions rather than on their germs.

Z, —Y 4R
C>®(z) —— R
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Definition 1.8. (Natural tangent vectors)
1

Let (U, @) be a coordinate system with coordinate functions x*,--- ,x™ and let x € U.

Foreachi € {1,--- ,m}, we define a tangent vector (9/0x")|, € TyM by
9 _Of| _9(fee™)
(8xi x) ()= oxt|, '

N ort
for each function f which is smooth near x.

((80/0x%)|2)(f) depends only on the germ of f at x, and (0/0z"), is a tangent vector at

(1.1.16)

»(z)

&

X

(a) ((8/0%;)|x)1<i<m is a basis of Ty M and dual to [x* — [z*(z)]]1<i<m. Indeed,
9 j j _ 8(7°j - Tj(@(ﬂf)))
(3] ) &7 -2 -

or?
(b) If V € T, M, then

= 5.

T o(x)

15)
ozt

V=Y V()

1<i<m

T

Indeed, witting V =3, _;,, a'(0/0x")| we get

V(ah) = V(@i —ai(@) = Y o ( - ) (@ —al@) = 3 a'dy =aj.
1<i<m L 1<i<m
(c) Suppose that (U, ) and (V,v) are coordinate systems about x with coordinate
functions z',- - x™ and y', - - - ,y™ respectively. Then
0 0 0 oz'| 0
wl,= 2 (o) o] = T 5il.ow
Y la 1<i<m Yla x 1<i<m Y e T
In particular, if x* were equal to y', then
0 0 oz'| 0 0
oyl = o).t 2 oy aw, 7 9
a3 T 2<i<m ) a3 T
(d) When M = R™ with the canonical coordinate system (R™, 1,71 - r™), we
obtain
91 Yool o
ort|, N ort 1(z) oo,

Thus the tangent vectors defined above are the ordinary partial derivative operators
(0/0rY). In particular, T,R™ = R™,

(e) We defined F, and FY in the C™ case and shows that it is finite. However, .| F2
is always infinite dimensional in the C* case for 1 < k < oo. There are lots of
ways to define tangent vectors in the C* case so that diim Ty M = dim M (all of

which work in the C'*° case too).

&

Let F : M — N be a smooth map between two manifolds of dimensions m and n

respectively, and x € M. The differential of F' at x is the linear map

Fog: TeM — TpN, Vi F (V) (1.1.17)
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defined as follows: for any smooth function g defined on a neighborhood of ¢ (x), we define
Fio(V)(g) :==V(goF). (1.1.18)
Clearly that F}  is a linear map of 7, M into T’ F(x)/\/ . The map F is called nonsingular at =
if F , is nonsingular, that is, ker(F ;) = 0. The dual map
Fp i TN = (TpyN)" — TyM = (M), w— 1y (w) (1.1.19)

defined by
PE(W)(V) = w@hes(V)), VT M. (1.1.20)

T

If f is a smooth function on M, and if V' € T, M and f(x) = ro, then
grad, (f) := feap : TxM — TinpR=ER, Vi grad,,(f)(V).

we have
rad, ()(V) = (grad, (V) 5| =Veons| =ving| . 12
&80 — BTG drl,, dr,, drl,, o
Hence grad,,(f) can be viewed as an element of 7 M. More precisely, define
dfy : TyM — R, V — V(f). (1.1.22)

The natural isomorphism 0y, : Ty(,)R — R given by 9, (ad% lro) = a implies

d

(0ry 0 grad, (1))(V) = Oy, <V<f>dr

If wy, is the basis of the one-dimensional space 7 R dual to di |ro» We arrive at
T

: ) = V(fon, (;i

dr
dfz :f;(wf(a:)) (1.1.23)

J2(wrg) (V) = wry (fr2(V)) = wrq <V(f) ) =V(f) = dfz(V).

Thus

(a) Consider a smooth map F : M — N between two manifolds of dimensions m and n
respectively, and x € M. Let (U, p,zt,--- ™) and (V,,y*,--- ,y™) be coordinate

systems about x and F(x) respectively. Then

0 0 .0
Fiz ( ) = Fix < ) (Y') 5
0, lggn 0z |o) 0¥ |p(ay
) > D oy o F)| 8
= X lag| WPzl = 3 =55 55
1<i<n <ax] z 0Y" | p(a) S2n 9% O F@

by Note 1.1 (c). The matrix (9(y" o F)/@xj)lg,;gn,lgjgm is called the Jacobian of F'.

(b) If U, zt,--- | x™) is a coordinate system on M and x € U, then {dz"|; }1<i<m is the
basis of T M dual to {0/0x|; }1<i<m by (1.1.23). If f is a smooth function, then
of -
dfy, = Z o dz’|,. (1.1.24)
1<i<m T
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(0] 0
e (53].) = o2

Since df, € T M, we can write df, = 1 <;<,, a;dz"|,;. Then

0 0 0
J (f) = dfa (8aﬂ x) = Y aidij =aj;

ox?|, O .
(c) Chain rule. Let F : M — N and G : N' — P be smooth maps. Then

In fact,

T

xT

(F oGz =Fy ) o Gra- (1.1.25)
For any smooth function g near F(G(z)) and V' € T, M, we have
(FoG)a(V)(g) = VigopoG) = V((goF)oG) = Gua(V)(goF)
= F.g@)(Wc:(V))(9) = (Fiaw@) °Gxe)(V)(9)-
(d)IfF: M — N and f : N™ — R are smooth, then
d(f o F)y = FX(dfy(a))- (1.1.26)
Forany V € T, M, we obtain
(E2(dfro))(V) = dfp(e) (Fea(V)) = Fea(VY(F) = V(f 0 F) = d(f 0 F)u (V).

(e) A smooth mapping o : (a,b) — M is called a smooth curve in M. Lett € (a,b).

Then the tangent vector to o at t is the vector

. d
O'(t) = Oxt (d’[“ t) & To—(t)M (1127)
If V is any nonzero element of T, M, then
0
=¢ 0| =— 1.1.2
v Px.0 <87'1 0> ( 2

for some coordinate system (U, ) centered at x. Hence V is the tangent vector at 0 to
the curve o (t) == ¢~ 1(¢,0,--- ,0).
Two smooth curves o and T in M™ for which o(tg) = 7(t9) = x have the same tangent

vector at tg if and only if

d(foo)| _d(for)
dr to dr to
for all functions f which are smooth on a neighborhood of x. &
If o : (a,b) — R™ is acurve in R™, then
) d d of do’
t - * — = -/ = s —_—
s = (5 ) = f| oo 3 L F

do?| 0O
D R !
(1<j<m dr |, 0r U(t)>
thus )
do?| 0
0= 2 Gl
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If we identify this tangent vector with the element

| aon
dr |, 7 dr|,
of R™, then we arrive at
SN o(t+h)—o(t)
R e

Consequently, with this identification out notion of tangent vector coincides with the geometric

notion of a tangent to a curve in Euclidean space.

Let F : M — N be a smooth mapping and M be connected. If F, , = 0 for every

x € M, then ) is a constant map.

Proof. Lety € F(M) and x € F~1(y) (notice that 1»~1(y) is closed). Choose coordinate
systems (U, !, ,2™) and (V,y!, - ,y™) about z and y respectively so that F(i{) C V. For

zelu, .
OZF*I,<5 >: 3 wer)
’ o oxJ

OxJ .
1<i<n

0
x/ 8yl

, 1<j<m
Fa')
by Note 1.1 (a), implying that

Oy’ o F)
Oz

Thus y* o F' are constant on U/ and hence ) (U{) is constant. Since F'(z) = y, it follows that
F(U) =y and F~'(y) = U that is open.

Because F'~!(y) is open and closed in a connected manifold M, we must have 1)~ (y) = M.
Thus F(M) = y. O

=0, 1<t1<n,1<53<m.

Let M be a smooth manifold with differentiable structure .%. Let

TM:= | oM, T"M:= ] TiM. (1.1.29)
reEM reEM
There are natural projections:
T™M —— M

[
T M
where

a(V)==z itV eT,M, m*(V)=z ifV e TIM. (1.1.30)

Let (U,p) € F with coordinate functions x!,--- 2™, Define ¢ : 7~1(U) — R?*™ and
¢ () 7HU) — R*™ by
(V) = (a'(@(V)),--a™(m(V)),da (V), -~ dz™(V)),
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forall V € 71 (U) and 7 € (7*) 1 (U).
We now construct a topology and a differentiable structure on 7' M.
(a) If (U, ), (V, 1)) € .Z, then ¢ o g~ is smooth.
(b) The collection
{7 (W) : WopeninR*™, (U,p) € 7}

forms a basis for a topology on 7'M which makes 7'M into a 2m-dimensional, second

countable topology manifold.

(c) Let.Z be the maximal collection containing
{7 U),2) U, 0) € 7}
Then .Z is a differentiable structure on TM™. Note that 7~ (1) = U x R™ C R*™.
The construction for 7% M goes similarly. 7'M and 1™ M with these differentiable struc-

tures are called respectively the tangent bundle and the cotangent bundle of M. Note that ¢

and ($* are both one-to-one maps onto open subsets of R?™. We prove here only for .

U —2 UxR™

o(U) x R™ o) x R (@ (@ (V). a™(@(V)), dz' (V), -, da™(V))
Define ¢ : U x R™ — 7~ (U) by

- 9
Y(x,v) = Z 0]@
1<j<m
and i
UxR™ —Y 1 ly) (,v)
oU) x R™ o) xR (@'(@), 2™ (2),v)
Compute
- 0 .0
Goiww) = o X vl | = (7| ¥ vy )
Isjsm 1<j<m @
w X | e | S k] )
1<j<m 1<j<m
= (.T7’Ul, 7vm) = (ZII,’U),
TN 7 1 m j 0
@o@)(V) = d(r(V),da'(V),-,da™(V)) = D dz’ (V)5
1<j<m x
0
= Z Via)os| =V
1<j<m z

since dz’ (V) = V (27).
It will sometimes be convenient to write the points of 7'M as pairs (x, V') where z € M

and V € T, M ( and similarly for 7% M).
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If F: M — N is a smooth map, then the differential of F' defines a mapping of the tangent
bundles
Fo:TM — TN (1.1.31)

where
F(z,V):=(F(z), Fi . (V)), (x,V)eTM. (1.1.32)

Note that F is a smooth map.

1.1.4 Submanifolds

Let F' : M — N be smooth.
(a) F'is an immersion if F} , is nonsingular for each x € M (that is, F} ; is one-to-one).
(b) The pair (M, F') is a submanifold of A if F' is a one-to-one immersion.
(c) F is an imbedding if F' is a one-to-one immersion which is also a homeomorphism into;
that is, 7' is open as a map into F'(M) with the relative topology.
(d) F is a diffeomorphism if F' maps M one-to-one onto N and F'~! is smooth.

Clearly that

Example 1.2

(a) Consider F : R — R? given by

F(t):= (2008 (t — g) ,sin 2 (t— g)) .

Then F' is an immersion. Note that

Fiy ((jr t) = d};it) = <—2sin (t = g) ,2c082 (t— g)) .
(b) Consider G : R — R? given by

G(t) == (2 Ccos (2 tan~ 1t — g) ,sin 2 (2 tan~1t — g)) .

imbedding C submanifold C immersion.

Then G is a submanifold but not an imbedding. Since limy_,, G(t) = (0,0) and
G(0) = (0,0), it follows that a neighborhood of (0,0) on G(R) is of the form (—a,b) U
(A, +00) U (=00, —B) for some a,b, A, B > 0.
(c) Consider H : R — R? given by

H(t) := (t,1).

Then H is an imbedding. o

The composition of diffeomorphisms is again a diffeomorphism. Let
A := {smooth manifolds}.

We write M ~ N in . if there exists a diffeomorphism F : M — N. It is clear that ~ is an

equivalence relation on ./ .
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(1) Consider the real line R and take ¥ to be the maximal collection containing the

identity map 1. Let ¢ : R — R given by t — t3, and F' be the maximal collection
containing . Hence (R, .7 ) and (R, F') both are smooth manifolds. Since

1oy (t) = 1(¢"/3) = ¢1/3,
it follows that 1 o ¢! is not smooth at t = 0 and then .F # F'. Define
f:(R,Z)— (R,.F), t—t'/3
Since

pofol () =1, 1of oy l(t)=1,

the map f must be diffeomorphic.
(2) Milnor (1956) showed that ST possesses non-diffeomorphic differentiable structures,

and Kervaire (1961) found a topology manifold that possesses no differentiable structures. &

If FF: M — N is a diffeomorphism, then F, , is an isomorphism. Conversely, whenever

F ;. 1s an isomorphism, we can show that F' is a diffeomorphism on a neighborhood of x.

Definition 1.9

A set { f;}1<j<i of smooth functions defined on some neighborhood of x in a manifold M
is called an independent set at x if the differentials df1 ., - - - , dfy, , form an independent

setin Ty M. &

Let U C R™ be open and let f : U — R™ be smooth. If the Jacobian matrix

(3(7“" éf))
or 1<i,j<m

is nonsingular at o € U, then there exists an open set V withro € V. C U such that fy,

maps V one-to-one onto the open set f(V'), and fﬁ/l is smooth.

Assume that F : M — N is smooth, that © € M, and that F , : T, M — TF(I)N is
an isomorphism. Then there is a neighborhood U of x such that F : U — F(U) is a
diffeomorphism onto the open set F(U) in N.

Proof. Since F, , is isomorphic, it follows that m = dimM = dimT, M = dimT, N =
dim N = n. Choose coordinate systems (V, ¢) about z and (W, 1) about F'(z) with F'(V) C W.
Let p(x) = p and (F(z)) = q. Consider the map f := o Fop 1 :V = p(V) = W :=
1(W). Observe that V, W C R™ and

d(fiv)p = AW © Fiy)p1(p) © A9} )p = d(W1p)) Fog—1(p) © A(Fv) 1 () © (03 )p-
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Hence f}y, is nonsingular at p and, by Theorem 1.4, there is a diffeomorphism « : U— a(U)
on a neighborhood Uofpwithtd C V = ©(V). Thena = o Foyp ! on U; in particular,
F=¢yloaoponld = 1 (U). O

If fi,--, fm is an independent set of functions at xo € M, then {f;}1<i<m forms a

coordinate system on a neighborhood of x.

Proof. Supposethat f; : U — Rforl < i < m,andxg € U. Defineasmoothmap : i/ — R™
by
@b(af) = (fl(‘r)7 7fm(x))) reU.

Consider
w;o . TIZ(Q:())Rm — T;OZ/{

and observe that
@0 (drfp(xo)) = d(ri 0Y)gy = df i,z

Because df1,z,* ,dfmxo 18 @ basis of T; U, we conclude that 1 is an isomorphism on
TJ(IO)Rm and then its dual 9 , is also an isomorphism. By Corollary 1.3, 1) is a diffeomor-
phism on a neighborhood V C U of xy.

Now (V, 9, yt, -+ ,y™) is a coordinate system of xo, where ' := f;. O

If fi,---, fx, k < 'm, is an independent set of functions at x € M, then they form part of

a coordinate system on a neighborhood of x.

Proof. Choose a coordinate system (U, ¢, zt, -+ ,2™) about z. Then (dzl)1<;<m, is a basis of
TM™. Since f1,--- , fi is an independent set of functions at -, we can choose m — k of the

sothatdfi z, -, dfi . deit, .- dxixm"“ is basis of 1 M™. Then apply Corollary 1.4. I [

Let F : M — N be smooth and assume that Fi ; : TyM — TN is surjective. If

xl, .. x" form a coordinate system on some neighborhood of F (z), then x'oF, - -- | x™o

F' form part of a coordinate system on some neighborhood of x.

Proof. Consider
Frp: ToM — TN, Fj : Ti N — TiM.
If F¥(w1) = Ff(we) for wy,we € T}(Z,)N, then, for any V' € T, M, we have
(w1 —w2)Fy 2 (V) =0.
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The surjectivity of F , implies that F, (V) # 0 for some Vj € T, M and then w; = wy. Thus
F is injective.
We now can prove that the functions {xl o F'}1<i<y, are independent of x. Indeed, let
Z ai(x' o F)yp =0, a; € R.
1<i<n

Since (% 0 F)yp = Fx*(dm%(z)), it follows that

FE; Z aidx%(x) =0.

1<i<m
The injectivity of F) implies Zlgigm a;dzt, = 0 and then a; = --- = a,, = 0. Finally, the

result follows from Corollary 1.5. O

If f1,- -+, fr is a set of smooth functions on a neighborhood of x € M such that T M

is spanned by dfy,--- ,dfy, then a subset of the f; forms a coordinate system on a
neighborhood of x.
Proof. Observe that £ > m. Then there exist f;,,--- , f;,, so that there form a basis of T); M.
Now the result follows from Corollary 1.4. [] O

Let F : M — N be smooth and assume that Fy , : TyM — Tp)N is injective. If
xl .- 2" form a coordinate system on a neighborhood of F(x), then a subset of the

functions {x' o F}1<;<,, forms a coordinate system on a neighborhood of .

Proof. Consider
If U = F,.(V), we define F, }(U) := V. Since F,, is injective, it follows that F,} is
well-defined. For w € T; M, define
Ti=wo (Fiy) ' € TpN-

Hence F;(7)(V) = 7(Fs »(V)) = w(v); thus, F; is surjective.

Since T;,(I)N is spanned by {dz|,}1<i<n, the surjectivity of F¥ implies that T* M is
spanned by {F(dz'|;)}1<i<n = {d(z' o F);}1<i<n. Now the result follows from Corollary
1.7. O

Suppose one has a smooth mapping F' : M — N factoring through a submanifold (P, G)
of M. Thatis, F(N) C G(P), whence there is a uniquely defined mapping F of A into P
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such that G o Fy = F.
N LM
é”FQ TG

Q

P

The problem is: When is Fjy smooth? This is certainly not always the case. Let (R, F') and
(R, G) both be figure-8 submanifolds with precisely the same image sets, but with the difference
that as ¢ — +oo, F(t) approaches the intersection along the horizontal direction, but G(t)
approaches along the vertical. Suppose also that F'(0) = G(0) = (0,0). Then Fjp is not even

continuous since
F()_l(_la 1) = Fﬁl(G(_L 1)) = (—OO, —Oé) U (Oé, OO) U {0}

for some o > 0.

Suppose that F : N' — M is smooth, that (P,G) is a submanifold of M, and that F
factors through (P, G), that is, F(N') C G(P). Since G is injective, there is a unique
mapping Fy of N into P such that G o Fy = F.

(a) Fy is smooth if it is continuous.

(b) Fy is continuous if G is an embedding.

Proof. (b) is obvious, since Fy = G~ o F. So we may assume that Fj is continuous. It suffices
to show that PP can be covered by coordinate systems (I, ¢) such that the map ¢ o Fj restricted
to the open set Fy, * (/) is smooth.

Let x € P and let (V, ) be a coordinate system on a neighborhood of G(z) in M. Since
(P, Q) is a submanifold, it follows that G ; is injective. By Corollary 1.8, there is a projection
7 : R™ — RP such that the map ¢ := 7 0 o GG is a coordinate system on a neighborhood &/ of
z. Then

© FO\FO’l(L{) =mopolGo Fo\Fofl(u) =mogo F|F0*1(u)
is smooth. 0

Submanifolds (N7, F1) and (N2, F») of M will be called equivalent if there exists a
diffeomorphism G : N' — N such that F; = F5 o G.

Ny~ M

3G TFQ
RN
Ny
Observe that dim N7 = dimN;. This is an equivalence relation on the collection of all
submanifolds of M.

(i) Eachequivalence class £ has a unique representative of the form (A, 7) where A is a subset

of M with a manifold structure such that the inclusion 7 : A — M is a smooth immersion.
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(ii)

(iii)

Proof. For any (N, F) € &, let (4,i) := (F(N),i), where the manifold structure on A
is induced from the diffeomorphism F' : N' — F(N) and i : F(N) < M is the natural
inclusion. Clearly that (A, 4) is equivalent to (N, F).

If (B, j) is another representative of £, then j = 7o H for some diffeomorphism H : B — A.
Hence B admits a manifold structure such that the inclusion j : B — M is a smooth

immersion. [] O

The conclusion of some theorems in the following sections state that there exist unique
(uniqueness means up to equivalence. In particular, if the submanifolds of M are viewed
as subsets A C M'™ with manifolds structures for which the inclusion maps are smooth
immersions, then uniqueness means unique subset with unique second countable locally
Euclidean topology and unique differentiable structure) submanifolds satisfying certain
conditions.

In the case of a submanifold (A, 7) of M where 7 is the inclusion map, we shall often drop
the ¢ and simply speak of the submanifold A C M.

Let A be a subset of M. Then generally there is not a unique manifold structure on A such
that (A, 7) is a submanifold of M, if there is one at all. However we have the following
two uniqueness theorems which involve conditions on the topology on A.

(a) Let M be a differentiable manifold and A a subset of M. Fix a topology on .A. Then
there is at most one differentiable structure on A such that (.4, 7) is a submanifold of
M, where i is the inclusion map.

(b) Let M be a differentiable manifold and .A a subset of M. If in the relative topology,
A has a differentiable structure such that (\A, ) is a submanifold of M, then A has a
unique manifold structure (that is, unique second countable locally Euclidean topol-
ogy together with a unique differentiable structure) such that (A, 7) is a submanifold

of M.

1.1.5 Implicit function theorem

Recall the following implicit function theorem in calculus.

LetU C R™™" x R" be open, and let f : U — R"™ be smooth. We denote the canonical

1

coordinate system on R™™" x R™ by (rl,--- ,v™= " sl ... s"). Suppose that at the

point (1o, s0) € U, f(ro, s0) = 0, and that the matrix

0sJ (ro.80) ) 1<ijn

is nonsingular. Then there exists an open neighborhood V' of ro in R~ and an open

neighborhood W of sg in R"™ such that V- x W C U, and there exists a smooth map
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g : V. — W such that for each (p,q) € V x W

f(p,q) =0 <= q=g(p) (1.1.33)

Assume that F : M — N is smooth, that y is a point of N, that P := F~1(y) is nonempty,
andthat F  : T, M — Tp(x)/\f is surjective for all x € P. Then P has a unique manifold
structure such that (P, 1) is a submanifold of M, where i is the inclusion map. Moreover,

1 : P — M is actually an imbedding and the dimension of P is dim M — dim N.

By Corollary 1.6, m = dim M > n = dim N.

Proof. By above remarks, it suffices to prove that in the relative topology, P has a differentiable
structure such that (P, ) is a submanifold of M of dimension p := m — n. It is sufficient to
prove that if € P, then there exists a coordinate system on a neighborhood U of x in M for
which P N is a coordinate system of the correct dimension. Let y',--- , 7" be a coordinate
system centered at y in N. Since F, , : T, M — T, N is surjective, it follows from Corollary

1.6 that the collection of functions (ch =190 F')1<i<y forms part of a coordinate system about

x € M. Complete to a coordinate system ', - - - , 2, 2" *! ... 2™ on a neighborhood I/ of x.
Then P NU = {x! = ... = 2™ = 0}. By Theorem 1.6, P N/ is a submanifold of dimension
p=m—n. O

Assume that F : M — N is smooth and that (O, G) is a submanifold of N'. Suppose that
whenever x € F~Y(G(0)), then

TN = FupToM + Gy g1 () To-1(5(2)) O (1.1.34)

(not necessarily a direct sum). Then if P := F~Y(G(O)) is nonempty, P can be given a

manifold structure so that (P, ) is a submanifold of M, where i is the inclusion map with
dimP = dim M — (dim N — dim O). (1.1.35)

Moreover, if (O, G) is an imbedded submanifold, then so is (P, i), and in this case there

is a unique manifold structure on P such that (P, 1) is a submanifold of M.

Example 1.3

(a) Define the function f : R™T1 — R by
fp):= Y [F(p)’, peR™.

1<i<m+1

Then f~'(1) has a unique manifold structure for which it is a submanifold of R™ " under
the inclusion map. This is nothing but the unit m-sphere.

(b) We define a map F from the general linear group GL(m, R) to the vector space of all
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real symmetric m X m matrices by
F:GL(m,R) — Sym(m,R), A+r— AAT,

where A" stands for the transpose of A. For the m x m identity matrix I,,,, let O(m, R) :=
F~Y(I,). O(m,R) is a subgroup of GL(m, R) under matrix multiplication called the
orthogonal group. We shall check that O(m,R) has a unique manifold structure such
that (O(m,R), 1) is a submanifold of GL(m, R) and that in this manifold structure i is

an embedding and O(m, R) has dimension
dim O(m, R) = m? — m(m + 1) _ m(m — 1)
’ 2 2 ’

By Theorem 1.7, we suffice to show that Fi, : T,GL(m,R) = Tp,Sym(m,R)
is surjective for all o € O(m,R). Define the right translation R, : GL(m,R) —

GL(m,R) by R,(7) := 10’. Observe that R, is a diffeomorphism. For any o €
O(m,R), we have
FoRy(1) = F(rol) = 10T (r6T)T = 70T 01T = F(7).
Thus F o R, = F and then
Fio = (FoRs)xe=Faro(Rs)so
Hence we need only to check that F, 1 : TiGL(m,R) — T/Sym(m, R) is surjective.
Since GL(m, R) and Sym(m,R) can be viewed as submanifolds of a large Euclidean

space, it suffices to check that F' is surjective. For a symmetric m X m real matrix A with

rank r, we have

T
I, 0 I, 0 I, 0 I,

0 0 0 0 0 0

for some matrix B € GL(m,R).

1.1.6 Vector fields

A mapping o : [a,b] — M is a smooth curve in M if o can be extends to be a smooth
mapping of (a — €,b + €) into M for some ¢ > 0. The curve o : [a,b] — M is said to be
piecewise smooth if there exists a partition

a=qp<---<ap=hb

such that o4, o, ] is smooth for i = 0,--- ,k — 1.
(a) Piecewise smooth curves are necessarily continuous.

(b) If o : [a,b] — M is a smooth curve in M, then its tangent vector

. d
o(t) == 0y (dr ) € TynpM

t
is well-defined.
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Definition 1.10. (Vector fields)

A vector field X along a (smooth) curve o : [a,b] — M is a mapping X : [a,b] —
T M which lifts o, that is,

moX = o, (1.1.36)

where w : TM — M is the natural projection. A vector field X is called a smooth
vector field along o if the mapping X : [a,b] — T M is smooth. A vector field X on an
open set U in M is a lifting of U into T M, that is, X : U — T M such that

mo X = 1y = identity map onU. (1.1.37)

A vector field X is called a smooth vector field on an open set U if the mapping
X : U — T M is smooth (written as X € C*(U,TM)).

&

The set C*°(U, T M) of smooth vector fields over ¢ forms a vector space over R and a
module over the ring C°°(U/) of smooth functions on /.

If X is a vector field on i/ and = € U, then X, := X (z) € T, M. If f is a smooth function
on U, we define

X(f): U —R, 22— X(f)x):=X(f). (1.1.38)

Thus X (f) is a function on /.

Let X be a vector field on M. Then the following are equivalent:
(a) X is smooth.
(b) If U,z",--- ,2™) is a coordinate system on M, and if (a*)1<;<m, is the collection

of functions on U defined by

then a* € C°°(U).
(c) WheneverV is open in M and f € C*(V), then X(f) € C>*(V).

Proof. (a) = (b): If X is smooth, then X, is also smooth. Since dz’ : 7~ '(U) — R is

smooth, it follows that
) D )
dx’oXW: Z ajdx’omz Z a’di; = a;

- X -
1<j<m 1<j<m

which is smooth on /.
(b) = (c): Let (U,x',--- ,2™) be a coordinate system on M with i/ C V. By (b), we

arrive at

X(f)|u = Z a’ 8f‘

: or?
1<i<m

and a’ are all smooth on /. Hence X (f) is smooth on U/.
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(¢) = (a): It suffices to prove that Xy, is smooth where (4, x',--- ,z™) is an arbitrary
coordinate system on M. To prove that X, is smooth, we need only to check that X ;, composed

with the canonical coordinate functions on 7~ !(U/) (for T.M) are smooth functions. Because
o o Xy = z', drto Xy = X (29,

we conclude that X, is smooth. O

If X, Y are smooth vector fields on M, we define the Lie bracket of X and Y by
(X, Y](f) = Xo(Yf) = Yo (X ) (1.1.39)

where x € M and f is any smooth function near x.

Suppose X, Y, Z are smooth vector fields on M.
(a) [X,Y] is a smooth vector field on M.
(b) If f, g € C®(M), then
[£X,gY] = fglX, Y] + F(Xg)Y — g(Y )X, (1.1.40)
(c) (Jacobi identity) [[X,Y], Z] + [[Y, Z], X| + [[Z, X],Y] = 0.
(d) [X,Y] = -], X].

A vector space V' with a bilinear operation [, -] satisfying (c) and (d) is called a Lie algebra.
Consequently, C°°(M, T'M)) together with the Lie bracket is a Lie algebra. In part (b), fX is
a smooth vector field on M defined by

(fX)z = f(x)X,, €M™ (1.1.41)
Proof. (a) By Proposition 1.3, [ X, Y] is smooth.
(b)If f,g € C°°(M), then
[FX,9Y]e(h) = (fX)((9Y)(h) = (9Y)=((FX)(R)), = €M,
for any smooth function A near . Using the fact that
(gY)(h)(p) = (9Y)p(h) = g(p)Yp(h) = g(p)(Y (h))(p) = (g - Y (h))(p),

we arrive at

[fX,9Y]a(h) = (f(@)X2)(g-Y(h) = (9(2)Ya)(f - X(h))
= [(2) (9(2)Xz(Y(h)) + Y (h)(x)Xz(9))
( (2)Yz(f))

D ——— S L —]
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Thus [fX, Y] = fg[X, Y]+ f(Xg)Y —g(Y /)X
(c) It follows from part (b).

(d) For any x € M and any function f smooth near x, we have
(X Y]+ Y, X)) (f) = (Xe(Y]) = Yo (X)) + (Yo (X[) = Xo(YS)) =
Thus [X,Y] = —[Y, X]. O

Definition 1.11. (Integral curves)

Let X be a smooth vector field on M. A smooth curve o in M is an integral curve of X

if

o(t) = X (1.1.42)

for each t in the domain of o. &

Let X be a smooth vector field on M and € M. A smooth curve v : (a,b) — M"™ is an

integral curve of X if and only if

d
Tt dr

Suppose that 0 € (a,b) and 7(0) = z. Choose a coordinate system (I/, ) with coordinate

functions z, - - -

> :X'y(t)v a<t<hb. (1.1.43)
t

,x™ about z. By Proposition 1.3,

-0
Xy = — 1.1.44
u Z f'os (1.1.44)
1<i<m
where the f? are smooth functions on I/. Moreover, for each ¢ such that y(t) € U, we get
d d(z' o 0
Vet (d > > (dV) = - (1.1.45)
"l 1<i<m " t 9T (1)
Thus, from (1.1.45) and (1.1.44), the equation (1.1.43) becomes
>, —a fily : (1.1.46)
1<i<m dr 8962 1<i<m 8‘751 ¥(t)
Hence, + is an integral curve of X on y~! (L{ ) if and only if
d(z* ;
(”Tdow = fi(y(t), 1<i<m,tey ). (1.1.47)
Tl

If we define 7* := 2 oy = r? 0 p 0, then ¥(t) = 1 (y(¢),--- ,+™(t)) and the equation
(1.1.47) becomes
dv’
dr |,
Observe that equation (1.1.48) is a system of first order ordinary differential equations.

= flop (Y ), - ,4™(t), 1<i<m,tecry  U). (1.1.48)

Let X be a smooth vector field on a manifold M. For eachx € M there exists a(z),b(z) €
R U {£o0} and a smooth curve

vz ¢ (a(z),b(x)) — M (1.1.49)

such that
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(a) 0 € (a(x),b(x)) and v;(0) = x.

(b) vz is an integral curve of X.

(c) If p : (e,d) — M is a smooth curve satisfying conditions (a) and (b), then
(c,d) C (a(w), b(a)) and j1 = 7|(e.

For each t € R, we define a transformation X; with domain
Dy ={reM:te(a(x),blx))} (1.1.50)

by
Xi(x) := vz (t). (1.1.51)

Let X be a smooth vector field on a manifold M and ~,, be obtained from Theorem 1.9.

(d) Foreach x € M, there exists an open neighborhood V of x and an € > 0 such that
the map

(t,p) — Xi(p) (1.1.52)

is defined and is smooth from (—e, €) x V into M.

(e) Yy is open for each t.

(f) U>0%; = M.

(g) Xi: Dy — Dy is a diffeomorphism with inverse X _;.

(h) Let s and t be real numbers. Then the domain of Xs o Xy is contained in but
generally not equal to Dsqy. However, the domain of X5 o X is D4y in the case
in which s and t both have the same sign. Moreover, on the domain of X o Xy we
have

Xs0X; = Xops. (1.1.53)

Proof. Let (a(x),b(x)) be the union of all the open intervals which contain 0 and which are
domains of integral curves of X satisfying the initial condition that the origin maps to x.

(f) Since (a(x),b(x)) # 0, it follows that U;>0Z; = M.

(d) By the differentiability of the solutions of (1.1.48).

(h) Let t € (a(z),b(x)). Then s — ~,(t + s) is an integral curve of X with the initial
condition 0 — ~v,(t) and with maximal domain (a(x) — ¢,b(z) — t). By the uniqueness, we

obtain
(a(e) — t,b(@) 1) = (a7 (1)), b(xa(1))). (1.1.54)
and for s in the interval (1.1.54)
() (8) = Va(t + ). (1.1.55)

If 2 belong to the domain of X o X3, then t € (a(z),b(z)) and s € (a(v(t)), b(7=(t))), so by
(1.1.54), s+t € (a(x),b(z)). Thus & € Dyy4.
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The following example shows that the domain of X, o X is generally not equal to Zs.
Consider the vector field 9/9r* on M := R?\ {0} with s = —1 and t = 1.

If s and ¢ both have the same sign and if z € sy, thatis, s + ¢ € (a(x),b(z)), then
t € (a(x),b(x)) (in fact, if s,¢ > 0, thent < s+t < b(z); if t < a(x), we must have ¢ < 0,
a contradiction. Hence t € (a(z),b(z)). Similarly, we can prove the same conclusion when
s,t < 0)and, by (1.1.54), s € (a(vx(t)), b(7=(t))). Hence z is in the domain of X o X;.

Part (e) and (g) are trivial if ¢ = 0, so we may assume that¢ > 0 and that x € Z;. By part (d)
and the compactness of [0, ], there exists a neighborhood W of 7,,([0, ¢]) and an € > 0 such that
the map (1.1.52) is defined and is smooth from (—¢, €) x W into M. Choose a positive integer
ksothat t/k € (—¢,¢). Let ay := Xy /gy and let Wy := a7 (W). Then fori =2,--- ,k we
define

i = Xypw,_ys Wii= a;l(Wifl).
Observe that «; is a smooth map on the open set W;_1 C W (where Wy := W). It follows that
W\ is an open subset of W, that Wy, contains z, and that by part (h),
a1 oo oayy, = Xyw,- (1.1.56)

Consequently, W), C %;; hence %, is open.
(g) Since 0 € (a(z), b(x)), it follows that

—t € (a(z) — t,b(z) — t) = (a(72(1)), b(12(1)))
by (1.1.54). Thus X; is a map of Z; to Z_;. Using (1.1.53), we see that the inverse of X; is

X_;. The smoothness of X; follows from (1.1.56). Hence X; is a diffeomorphism from %; to
D_y. O

Definition 1.12. (Complete vector fields)

A smooth vector field X on M is complete if 2, = M for all t (that is, the domain of 7, is
R for each x € M). In this case, the transformations X; form a group of transformations

of M parametrized by the real numbers called the 1-parameter group of X. &

In the case that M is compact, any smooth vector field on M is complete. If X is not
complete, the transformations X; do not form a group since their domains depend on ¢. In this

case, we shall refer to the collection of transformations X as the local 1-parameter group of X.

Example 1.4

An example of non-complete vector field is the vector field 0/0r' on R? \ {0}. Ifa > 0,

the domain of the maximal integral curve through (a,0) is (—a, 00).

Definition 1.13. (Local smooth extensions)

Let F : M — N be smooth. A smooth vector field X along F (that is, X € C*°(M,TN)

and m o X = F) has local smooth extension in N if given x € M there exist a

o
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neighborhood U of x and a neighborhood V of F(x) such that F(U) C V, and there also

exists a smooth vector field X onV such that

X o Fiy = Xy (1.1.57)*

(1) If I : M — N is an immersion, then any smooth vector field along F has local
smooth extension in N.
(2) If F' is not immersion, such extensions may not exist. Let

a:R—R, t—t3

and let
d

L)

Since a is a homeomorphism, there is a vector field X on R so that the following diagram

commutes.

TR! —%2. TR!

d X A~
dr (X
«

R R

Now, X is a smooth vector field along o, but X is not a smooth vector field on R.. Indeed,

=iz
t dr a(t)

Thus X (t) = 3t%/ 3% |; and the function t*/3 is not differentiable at the origin.

letting u := t3 yields
d

= ?)UQ/?’i
Ldr

d
— 3422
dr

- - d
Xu = Xa(t) = X(t) = Ot < dr

dr

u u

Let x € M and let X be a smooth vector field on M such that X (x) # 0. Then there exists

a coordinate system (U, @) with coordinate functions z*,--- | 2™ on a neighborhood of
x such that
0 (1.1.58)
oz,

Proof. Since X, = X (x) # 0, we can choose a coordinate system (,)) centered at x with

coordinate functions ¢!, - - - , 4™ such that

Xy =

ay
From Theorem 1.10 (d), there exists an ¢ > 0 and a neighborhood W of the origin in R™~!

T

such that the map
o(t,a® - ,a™) = X; (wfl(O,az, e ,am))
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is defined and is smooth for (t,a?,--- ,a™) € (—¢,e) x W C R™. Since
0 0 0 0
0‘*’0 (87"1 O> X 8y1 ma g 70 <6’]"Z 0> ayl . - =
it follows that o is nonsingular and that ¢ := ¢~ is a coordinate map on some neighborhood
U of x. Letz!,--- , 2™ denote the coordinate functions of the coordinate system (I, ). Then
since
0
* —ea™ a1 =X e a™) s
T (t,02,am) <arl (t7a27._7am)> o(t,a®am)
we have X, = %m. In fact, for any p € U, we write p(p) = o~ 1(p) = (t,a?,--- ,a™) and
hence
0 0 ;0 0 0
v ()= £ &2 - 5w -
or »(p) 1<i<m or ©(p) Oz P 1<i<m 0! P Oz P

Since p were arbitrary, we obtain the desired result. O
Definition 1.14. (F'-related vector fields))
Let F' : M — N be smooth. Smooth vector fields X on M and Y on N are called
F-related if F,o X =Y o F.

M L5 N
Xl ly
TM—;*—»T/\/'

If v € M, then
YF(z) = F*’x(Xx)

Let F': M — N be smooth. Let X1 and X5 be smooth vector fields on M and let Y1 and
Y5 be smooth vector fields on N. If X is F-related to Y1 and if X5 is F-related to Y5,
then [ X1, Xs] is F-related to [Y1,Ya).

Proof. Forany z € M and f € C*(N), we have
Froo([X1, Xole)(f) = [X1, Xo]o(fo F)
(X1)2(X2(f 0 F)) = (X2)2(X1(f 0 F))
(X1)2((Fy 0 X2)(f)) — (X2)o((Fi 0 X1)(f))
= (X1)e((Yao F)(f)) — (X2)a((Y1 0 F)(f))
(X1)2(Y2(f) 0 F) = (X2)o(Yi(f) 0 F)
= Fuoa((X1)2)(Y2(f)) — Fea((X2)2)(Y1(f))
= (Yl)Fx)<Y2( ) = (V2)poy(N1(f) = [Y1,Y2]p() (f),
where we used (Y; o F)(f) = Yi(f) o
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1.2 Tensors and forms

Introduction

[ Tensor and exterior algebras (1 Lie derivatives

[ Tensor fields and differential forms

1.2.1 Tensor and exterior algebras

Throughout this subsection, U, V, W are finite dimensional real vector spaces, and V'* stands

for the dual space of V.

Definition 1.15

Let % (V, W) be the free vector space over R whose generators are the points of V- x W.

That is, F(V, W) consists of all finite linear combinations of elements of V- x W. Let
H(V, W) be the subspace of F (V, W) generated by the set of all elements of F(V, W)
of the following forms:

(v1 +v2,w) — (v1, w) — (v2,w), (v, w1+ w2) — (v1,w1) — (v1, w2)
and

(av,w) — a(v,w), (v,aw)— a(v,w)

whenever v,v1,v9 € V, w,wi,ws € W, and a € R.

The quotient space

VoW .=2%V.W)/%ZV,W) (1.2.1)
is called the tensor product of V and W. The coset of V ® W containing (v, w) is denoted by
v @ w. Clearly that

(M+v)Qw = 11w+ uv®w,
VR (wy +wz) = vOw +vws,

av®w) = ww = v aw.

Proposition 1.7. (Universal mapping property)
Let p : V. x W — V ® W denote the bilinear map (v,w) — v @ w. Then whenever U

is a vector space and ¢ : 'V x W — U is a bilinear map, there exists a unique linear map

(:V ®W — U such that the following diagram commutes:

VoW

T o
®

V><Wz—>U

The pair (V @ W, p) is said to solve the universal mapping problem for bilinear maps

——————— O (D) O
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with domain V- x W. Moreover, (V @ W, p) is unique with this property in the sense
that if X is a vector space and p : V. x W — X a bilinear map with the above universal

mapping property, then there exists an isomorphisma : VW — X such that cop = @.

Proof. Define
(C:VOW —U, vow— l(v,w).

Since /¢ is bilinear, the above mapping is well-defined and lo @ = {£. On the other hand,
there exists a unique bilinear map ¢ : .#(V,W) — U, because .Z(V,W) is a free mod-
ule. Hence Z(V,W) C ker(f) and then there exists a unique bilinear map £ : V @ W =
FV,W)/Z(V,W) = U.

If X and ¢ are above, consider

VoW X
Tam ~Taw
® @ e
¢ 2 e D
VoW —X VxW—VeW
where
aocp=p, Bop=q.
Since

aoffop=aop=¢, Boaop=LFop=yp,

it follows from the uniqueness that v o 5 = 1x, f o & = Llygw. So « is an isomorphism. [

(a) V @ W is canonically isomorphic to W @ V.

Proof. Consider
VeWw

T o f
%)

VXW—WxV

the bilinear map f (v, w) := w ® v. By Proposition 1.7, there exists a unique linear map
f: V®W—>W®Vsuchthatfog0:f(andthenf(v@w) =w.
Similarly, there exists a linearmap g : W ® V — V ® V with g(w ® v) = v ® w. Then

gofwew) = jwev) = vwW
fogwev) = foew) = wev.
Thusgof: ]—V®W andfogz 1W®V~ O

(b) V@ (W @ U) is canonically isomorphic to (V @ W) @ U.

Proof. We first claim that there exists a bilinearmap ¢ : (VW)U — Ve (WaU).
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For any u € U, define
fu: VW —=VeWeU), vw)r—1eweu).

Then f, is a bilinear map and, by Proposition 1.7, we have a unique bilinear map

fu: VW =V ® (W ®U) such that

fuv@w) =v® (wu).
On the other hand, define
g:(VW)xUr—VeWeU), (Zvi@)wi,u) — fu (Zvi®wi) 3
i€l icl
Then g is a bilinear map and there exists a bilinearmap ® : (VW)U — V(W U)
such that
) ((Zw®“> ®”> = > w (o)
i€l i€l
Similarly, we have a bilinear map

T VeWRU)— (VeaWw)eU

satisfying
i€l i€l
Clearly that ® o ¥ = 1y g wgu) and Vo © = Lygw)gu- O

(c) V@ W = Hom(V,W). Consider
V*eWw

" AN
V* x W —— Hom(V, W)

where

Y(f,w)(v) = flw)w, veV,weW, feV*”

Observe that 1 is a bilinear map. From Proposition 1.7, there exists a linear map

a:V*®@ W — Hom(V, W) such that

a(f @ w)(v) = f(v)w.
Leta(f@w) = 0. Then f(v)w = 0forallv € V. Ifw # 0, then f(v) = 0. Consequently,
f ®w = 0. Thus ker « = 0. To prove the surjectivity, choose any F' € Hom(V, W). If
€1, ,en is a basis of V, where n = dim V, then
o Z ri @ F(e;) | (v) = Z ri(v)F(e;) = Z v'F(e;) = F(v)
1<i<n 1<i<n 1<i<n

where r; : V. — R is the map given by r;(v) = v* forv = >, .., v'e;. Thus o is
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surjective. Finally,

dim(V* @ W) = dim Hom(V, W)

and in particular

dim(V@ W) =dimV - dim W. (1.2.2)

(d) Let (e;)i<i<dimv and (fj)i<j<dimw be bases for V and W respectively. Then

(€i ® fj)i<i<dim V,1<j<dim W is a basis of VQ W.

Definition 1.16. (Tensors)

The tensor space .7 "°V of type (r, s) associated with V' is the vector space

&

V®...®V®y*®...®vi'
T S

The direct sum

TV = @ Ty (1.2.3)

r,5>0

where 790V := R, is called the tensor algebra of V. Elements of 7V are finite linear

combinations over R of elements of the various T "*V and are called tensors.

&

ZV is a non-commutative, associative, graded algebra under ® multiplication: if
U= WD Uy QUL R Qul € T,
Vo= ® U, QU ®- - Quy, € TRV
their product © ® v is defined by
UKV = U Q- QUp ®v1®..-®yr2®u>{®...®u:1 ®UT®”'®U:2 c gritrasitsay

Tensors in .7"° are called homogeneous of degree (r,s). A homogeneous tensor of degree

(r, s) is called decomposable it if can be written as
VR QU QU ®- - QU

whereviEV,lgigr,andv;‘EV*,lSjgs.

Definition 1.17. (Exterior algebras)

Denote

CV = @ Tk (1.2.4)

k>0
the subalgebra of TV. Let IV be the two-sided ideal in €V generated by the set of

elements of the form v @ v for v € V and set

IRV = 2(V)n TV (1.2.5)

——————— O (D) O
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Observe that

IV = QB gky (1.2.6)
E>0

and is a graded ideal in €'V . The exterior algebra AV of V is the graded algebra

AV :=€V/.IV. (1.2.7)
If we set
ANV = TRV 7R V) (k>2), M(V):=V, Ao(V):=R, (1.2.8)
then
ANV =Pk (1.2.9)
k>0 &

The multiplication in the algebra AV is denoted by A and is called the wedge or exterior

product. In particular, the coset containing v1 ® - -+ @ vg IS vy A -+ A V.

Definition 1.18. (Alternative maps)

A multi-linear map

h:Vx. ... xV —W
N———

T

is called alternative if
h’(“ﬂ'(l)? T 7”71'(7’)) = Sgn(ﬂ-)h(vl? T 7UT)> v, €V
for all permutations 7 in the permutations group S,. The vector space of all alternative

multi-linear functions

Vx...xV—R
~———

T

will be denoted by <7,,(V') and for convenience we set /p(V') := R.

(a) Ifu € AFV and v € AV, then u Av € NV and

uAv=(—1)yAu. (1.2.10)

Proof. without loss of generality, we may assume that v := u; A --- A ug and v =

vl A -+ Avp. Suppose that 1 < ¢ < j < k. Then
0=wug A+ A(u+uj) A A (w4 uj) A Aug

where the first u; + u; is in the i-th position while the second one in the j-th position.

Direct computation shows that

UL A ANUGAN - ANUGAN AU = —UL A AUG AN AU N A U,

——————— O (D) O



1.2 Tensors and forms —_37—

Then
UuNv = Ul AN---ANupg ANvi ANy
= —UL AN ANU_1 ANVI AU ANV AN\ --- Ny
= (_1)kU1/\u1/\'--/\uk/\v2/\---/\w

= (=DM A Ay Au A A = (D)0 A

(b) If (e;)1<i<dim v is a basis of V, then
(er)r, IcC{l,---,dimV}, er:=ejy A---Nej, withiy < -+ < iy,
is a basis of NV (If [ =), we require e; = 1). In particular,
AV Yy =R AV = {0} for j > dim V. (1.2.11)

Moreover,
dimV

dim(AV) = 2dimV dim(/\kV):< L

>for0 <k <dimV. (1.2.12)

&

Let

@:Vx-oxV—AV, (v1, o) — 01 A Ay,
—_————
k

be the natural alternative multi-linear map. To each alternative multi-linear map
h:Vx---xV—W
—_——

k
there corresponds uniquely a linear map h: NEV — W such that h o w=h.

4%

=13
@

VxxV—>W
k
The pair (\FV, ©) is said to solve the universal mapping problem for alternative multi-
linear maps with domain' V- x --- x V (k copies); and this is the unique solution in the
sense that if X is a vector space and ¢ :'V x --- x V. — X an alternative multi-linear
map also possessing the universal mapping property for alternative multi-linear maps with

domains V x - -- x V, then there is an isomorphism o : NV — X such that oo p = §.

Proof. Define

h(’l)l/\‘--/\’l)k) = h(vy, -, vg).
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Foru; ® - @ uy € I*V, there exist i, j € {1,---,k} with i # j such that u; = u;. Then

h’(uw(l)"" 7u7r(j)a”' 7u7r(i)7'” auk) :Sgn(ﬂ-) 'h(Ul,"' ,Uj,"' s Ugy s ot auk)

wherer : (1,--- ,4,---,j-- k) — (1,---,4,--- ,4,--- k) withsgn(m) = 2(j —i) — 1. Hence

h(’LL1,"',Ui,"',Uj,"',Uk):—h(U]_,"',Uj,"',Ui,"',Uk);
thus A(uq,- -+, w4, -+ ,uj, -+ ,u,) = 0 and then h is well-defined.
The reminder proof is similar to that in Proposition 1.7. [ g

In the special case W := R, we can prove from Propeosition 1.8 that

(ARV)* = e, (V). (1.2.13)

Define

O (ANV) — V), fr— @(f)
by

O(f)(vr,- -+ ,vk) = flor A+ Awvg),
and

U at(V) — (AFV)*, h— W(h)
by

U(h) :=h: A"V — R.
We first check that ®(f) € 7, (V'): for any permutation 7 € Sk,
() (vr@y, s Vry) = flopay A Avgey)
= f(sgn(m)vr A---Awvg) = sgn(m)P(f)(vr A+ Awvg).
Compute
(I)O\II(h’)(’Ula"' 7Uk) = Q(ﬁ)(vla 7Uk')
e il(i)l/\/\’l}k) — h(vl)"'7vk)7
\I/O(I)(f)(’l)l AR /\Q}k) = <I>(f)(v1 /\---/\’Uk)

= O(f)(v1, - ,v) = for A+ Awg).

Thus @ is isomorphic.
We shall now consider various dualities between the spaces .77*V, AV, AV and the cor-

responding spaces TSV *, ARV AV,

Definition 1.19. (Nonsingular pairings)

Let V and W be finite dimensional real vector spaces. A pairing of V and W is a
bilinear map

(,):VxW—R.
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A pairing is called nonsingular if whenever w # 0 in W, there exists an element v € V

such that (v, w) # 0, and whenever v # 0 in 'V, there exists an element w € W such that

(v,w) # 0. Iy

Let V and W be nonsingularly paired by (, ) and define

o:V—W ¢ (w):=@vw), veV,weW (1.2.14)

If p(v1) = ¢(vy) for v1,ve € V, then
(v —v2,w) =0, forallw e W.

Consequently, v1 — v2 = 0 by nonsingularity. Thus ¢ is injective. Similarly, defining

YW — V" YPw)(v) = (v,w), veV,weW, (1.2.15)
implies that 1 is injective and therefore

dmV <dmW*=dimW <dimV* = dim V.

Thus ¢ and 1) are both isomorphisms.

A non-singular pairing of 7"*V* with 7"*V is defined as follows:

TV x TV — R, (v, u) — (v, u)

where

V=0 ®@ QU QU1 Q- RUpps € TV
and

U=U® QU @U@ Qur €TV
yields
(v, u) ==y (uy) - vp (Urgs).

Clearly that this is a non-singular pairing. Indeed, if u # 0, then uy, - -+ ,u, and v}, 1, - -+ , v,
are all nonzero. Choose elements w11, ,urs € V such that v (upq1), -+, vy (Urgs)
are nonzero. Setting v = --- = v} =nonzero constant yields (v*,u) # 0. The above remark

gives us an isomorphism

TSV 2 (T (1.2.16)

Let ., s(V') be the vector space of all multi-linear functions

Vx - xVxV*x...xV*—R.

By the universal mapping property, Proposition 1.7, we obtain

(TTV)* = (V). (1.2.17)
If b € (F7°V)*, then the corresponding multi-linear function h € ., (V) satisfies

h('l)l,"' 71)7,’1)3:... ’v:):h(v1®...®fvr®vit®...®v:)'

D ——— S L —]
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Finally, from (1.2.16) and (1.2.17) we obtain an isomorphism

TSV 2 (T V) = M, (V). (1.2.18)

A non-singular pairing of A¥V* with A*V is defined as follows:
ANV ARV S R, (0, u) — (v, u)
where v* = v} A Avp € ANV and u = ug A -+ Auy € ARV yields
(v*,u) = det (v} (u)) .

Clearly that this is a non-singular pairing. Suppose that det(v; (u;)) = 0 forall v* = v A--- A
vy, € V*. Then the system

0 = vf(ul)ml + -+ vi‘(uk)xk

0 = v,’;(ul)xl + -+ v};(uk)xk

1

has no zero solution (x!,--- ,2*) € R*. Consequently,

0:u1x1+--~+ukxk
where z!,--- | ¥ are not all equal to zero. Without loss of generality, we may assume that
x! # 0; hence
x? zk
Uy = ———=uUg — — —U
x! gl "
and
2 k i
x x x
U = <—xluQ—---—$luk> Nug A+ Nup = — Z ;uﬂ\uz/\-"/\uk:Q
2<i<k

Thus the pairing is non-singular and we have an isomorphism

AFV* = (NRV) 2 a7, (V) (1.2.19)
by (1.2.13). Finally, we have
AN = PNV = PNV = (AV) (1.2.20)
k>0 E>0
AN = PNV = Pap(V) = F(V). (1.2.21)
k>0 k>0

(a) If (e;)1<i<dim v is a basis of V with dual basis (e )1<i<dimv in V*, then the bases
(er)r and (€3)r are dual bases of NV and NV* under the isomorphism (1.2.20).
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(b) Define o, B : NFV* x A\FV — R, where

a(v*,u) = det(vi(yj)), (1.2.22)
1 1
Bv*,u) = o det (v (uj)) = Ha(v*, u) (1.2.23)

forany v* = vi A--- AUf € AV and uw = uyg A -+~ Ny, € APV, These two different
isomorphisms induce different algebra structures N\, and Ng on o/ (V') via (1.2.21). If
fe€d,(V)and g € @y(V), then

f Na g(vla T ’Uerq) = Z Sgn(ﬂ-)f(vw(l)a to 7U7r(p))g(v7r(p+1)a co 7v7r(p—|—q))

TENp,q

(1.2.24)
where ™ € N\, g means that w(1) < --- < w(p)andm(p+1) < --- < w(p+ q), and

sgn ()
f /\ﬂ g(vly T 7Up+q) = Z (p + q)!f(vﬂ(l)v t 7U7r(p))g(v7r(p+l)v t avﬂ(p—‘,-q))-

TESptq

(1.2.25)
We now claim that

+9q)!
fhag= { p,q?) frsg. (1.2.26)

We suffice to prove

> sen(m) f(0r)s 5 Vn() I Onprt)s s Vn(pta))

TE€Sp+q

= plg! Z Sgn(”)f(vw(l)a T 7v7r(p))g(vﬂ(p+l)7 T 7v7r(p+q))'

TENp,q
The left-hand side is equal to

> s8(m)f a1y, Un ()9 Vnipr1)s 5 Vnpta)

TENp,q

+ Z Sgn(ﬂ)f(vﬂ(l)a T 7v7r(p))g(v7r(p+1)v T 7U7r(p+q));
TESp+q\Np.g

there are three cases of m € Spiq \ Npg-
(A) m(p+1) <---<7w(p+q),
(B) (1) < --- < m(p), and
(C) othercase.
Compute
Y sn(m) f(0n)s 5 Vr(p)9Vn(pa1)s s Vnpta))
Te(A)

= (p' - 1) Z SgH(W)SgD(J)f(’UU(W(l)), T 7’00(7r(p))).g(v7r(p+1)7 c >U7r(p+q))

O'E/\W;p

= (p' - 1) Z SgIl(TF © U)f(vd(ﬂ(l))7 T ?Ua(ﬂ(p)))g(va(fr(p+1))7 T 71)0(7r(p+Q)))
TENT;p,0

= (=1 D sgn(m) (V) Vn(p)9IOn(prt)s s Vn(pra))
TENp,q
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where 0 € gy means that o(mw(1)) < --- < o(mw(p)) and 0 € Nrypo means that
o(r(1)) <---<o(n(p)) and o(w(i)) = (i) forp+ 1 < i < p + q. Similarly

> (M) (Vr(ay, 5 Un(p)9(Vn(p1)s s Vn(pa))

w€(B)
= (q' - 1) Z Sgn(ﬂ-)f(vﬂ(l)a o avw(p))g(vw(p—l—l)a to 7U7r(p+q))7
0ENp,q
Z sgn(7) f (V@) s V() )9 (Vn(p41)s - 5 Un(pq))
w(C)
= (p' - 1)((]' - 1) Z Sgn(ﬂ-)f(vﬂ(lb te 7U7r(p))g(v7r(p+1)a te 7v7r(p+q)).
0END,q

Consequently the left-hand is equal to the term

Z Sgn(ﬂ-)f(vﬂ(l)u T )vﬂ(p))g(vﬂ(erl)v T 7U7r(p+q))

TENp,q

multiplied by the constant
P =1+ (@=1)+ @ -1( -1)+1=pl.
For example, for p = q = 1, we have @1 (V) = N'V* =2 (AWWV)* = V* Ify,6 € V* =2
<t (V') and v,w € V, then
Y Aa b € (V)2 (A2V)*, yAgd € (V)= (AV)*

Moreover,
7(0)8(w) — ~(w)d(v)
2 )

Y Aa 0(v,w) = y(v)d(w) — y(w)d(v), vAgd(v,w)=

Let End(AV') denote the vector space of all endomorphisms of AV (i.e., linear transforma-
tions from AV into AV). Letu € AV.
(1) Left multiplication by w is the endomorphism €¢,, = uA € End(AV') defined by

€V i=uNv, veEAV. (1.2.27)
(2) Interior multiplication by v is the endomorphism ¢, € End(AV*) defined by
(L0, w) = (V¥ gw), v* €AV, we AV, (1.2.28)

where 1, 0" € AV* = (AV)*.
(3) Ifu € V = AV, for each k € N, we have

b s ARV ARTLVE A A0 s 1 (0] A A (1.2.29)
where

(VT A Avp)(wa A - Awg) == 0] A== Avp(u Awa A -+ - wy).
When k£ = 1, we get

L V= AV AV =R, 0f 0
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and

L0 = (10", 1) = (v, €,1) = (v™,u) = v™(u).

An endomorphism [ of AV is called
(a) aderivation if

llunv)=1lu) Nv+unl(v), uveAV. (1.2.30)
(b) an anti-derivation if
lunv)=1lu) ANv+ (=1)Punl(v), uwe ANV, veAV. (1.2.31)
(c) of degree k if
L NV — NTFY

for all j, where we assume that A"V = {0} for i < 0.

(a) l € End(AV) is an anti-derivation if and only if

Loy A Avj) = Z (=) oy A Al(o) A Ay, forall 5.
1<i<y
(b) If w € V, then v, is an anti-derivation of degree —1.

Proof. (a) Suppose | € End(AV) is an anti-derivation and the result holds for j — 1. We have
Z(Ul/\'--/\’Uj) = l((vl/\---/\vj,l)/\vj)
= l(vl VANCEWAN ’Ujfl) ANvj + (—1)j_12}1 N ANvj_1 A l(’Uj)

= Z (—1)”11)1/\~-/\l(vi)/\-~/\vj_1/\vj
1<i<j—1
+ (—1)j+1’01 AN ANvj_1 A l(Uj)
= > (DM A Al(w) A Ay
1<i<j
Conversely, choose a basis {¢; }1<i<dimv of V. Any element u € APV can be written as u =
D oi<ircmcip<dimy @1 P A Neq, Mo € MV witho = 300 o5 i caimy PT0e A

-+ N\ €, then
WuAv) = aVp I (e Ao Ney, Aejy A+ Nej,)

- ail"'ipbjl"'jq< S (=)™ e A Alleq, ) A Aei, A A,
1<m<p

+ Z (=1)" e A Ne Aejy A Al(e,) A /\ejq>

1<n<q
= g Z (=)™ ey A Al(ei) A A, Av
1<m<p
+ (—DPu AL N (1) e A Al(eg,) A Aey,

1<n<q
= l(u) Nv+ (=1)PuAl(v).
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(b) By definition, ¢,, is of degree —1. To prove the anti-derivation, we suffice to check part
(a). Forany wa A --- Awj € N7Wand vi A - A v; € AV*, we have
(Lu(vf/\-~-/\v;f),w2/\---/\wj) = (VA AV, uNwa A Awy)
= (=10} (u) det (v (we) (k= {1,-- 3\ {i}, £€ {2, ,j}))

<i<j

,_.
IN

~

(_1)i+1v;‘(u) (Uf/\'--/\Ufk/\--'/\v;f,wg/\---/\wj>

)

(]

1<i<j
= (—1)“‘11}1‘/\~~/\v;"(u)/\---/\v;,wg/\---/\wj
1<i<y
= (—1)”1@{/\--~/\Luv;/\--~/\v;f,w2/\---/\wj
1<i<j
Hence ¢,, is an anti-derivation. ]

Let!: V — W be a linear transformation. Then ! defines an algebra homomorphism
LAV — AW, v A Ao — 1(v1) A= Al(vg) (1.2.32)
and (1) := 1. The transpose [* : W* — V* defines an algebra homomorphism
o AW — AVF wi A Awy — TF(w]) A+ AT (wy). (1.2.33)
For any w* € AW* and v € AV, we have
(" (w*),v) = (w*, l(v)). (1.2.34)
For w* = wj A --- Awj and v = v A - - - A v, we have
(" (w*),v) = (W) A A (wg),v1 A= Avg)
= det (I"(wf)(vy)) = det (w}(I(v))))
= (Wi A Awg, () A Al(vg)) = (w5, 1(v)).

1.2.2 Tensor fields and differential forms

Let M be a differentiable manifold. Define

T™STM = U T T M, (1.2.35)
TEM

NTM = | AFTIM, (1.2.36)
reM

AN*M = | ATEM (1.2.37)
reM

the tensor bundle of type (r, s) over M, exterior k bundle over M, and exterior bundle
over M, respectively. .7"5T M, A*T* M, and AT* M have natural manifold structures such

that the canonical projection maps to M™ are smooth. If (U, ) is a coordinate system on
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M with coordinate functions x!,--- 2™, then the basis? (9/9x%)1<i<m of T M on M and
(dz")1<i<m of T} M on M, for z € U, yield
(a) the basis of T"5T, M:

0 0 A .
( R R ®d1}]1®"'®dl‘]5> :

dzh Ox'r 1<t it s <
(b) the basis of AFT¥ M:

(dx“ A+ A dxlk)l§i1<~~~<ik§m;
(c) the basis of AT M:

(d2')1<i<m, (da" Ada™)i<iy<ipm, -5 (da' A-- A da™).

Definition 1.20. (Tensor fields and differential forms)

A smooth mapping of M into T™*T M, NFT* M, or NT* M whose composition with the
canonical projection is the identity map is called a (smooth) tensor field of type (r, s)

on M, a (differential) k-form on M, or a (differential) form on M, respectively. &

A lifting o : M — 77T M is a smooth tensor field of type (r, s) if and only if for each

coordinate system (U, z!,--- ,2™) on M,
oy =000 L pdh @ o (1.2:38)

where aé-ll‘,',',é-rs € C>®(U). Alifting 3 : M — A*T* M is a differential k-form if and only if for
any coordinate system (U, x!,---,2™) on M,

Bl = biyipda™ A+ A da™® (1.2.39)
where b;,..;, € C™(U).

Let
EF(M) := C®°(M, APT* M) (1.2.40)

denote the space of all smooth k-forms on M, and

EX(M) = C®(MNT*M) = P EFM) (1.2.41)

0<k<m

the space of all smooth forms on M. Y

Since AT* M = Uzepm A® TiM = Uge R = M x R, it follows that
EOM) = C®(M). (1.2.42)

We now consider operations on forms.

(1) Forw,n € £*(M), define w +n € £*(M) by

(W+n)g = wy + Ny.

2We always omit the subscript x.

——————— O (D) O
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(2) Forw € £*(M) and ¢ € R, define cw € £*(M) by

(cw)s = cws.
(3) Forw,n € £*(M), define w An € E¥(M) by

(WA D)z = wz AN
Moreover, if w € EP(M) and nj € E9(M), then w A n € EPTI(M).
(4) Forw € £*(M) and f € E9(M), define dw € £*(M) by
(fw)e = f(@)wa.
Clearly that £*(M) is a module over the ring C°°(M) and (£*(M), A) is a graded algebra

over R.
Let X (M) denote the C*°(M)-module of smooth vector fields on M that is

(M) := C°(M,TM). (1.2.43)
Consider 7, (M) the set of all alternative C°*°(M) multi-linear map

(M) % - x X(M) — C®(M).
k

We have
EM(M) = (M). (1.2.44)

Proof. Letw € EF(M) be a k-form on M. For any X1, -- , X}, € X(M), define
w(Xy, -, Xp) () = we (X (2), -+, Xi(x)), € M. (1.2.45)
Then w can be viewed as an alternative multi-linear map of the module X (M) into C*°(M):
WXy, X1, fX + gY, Xigr, -, Xg)
= fw(Xi, -, Xio, X, Xiga, -, Xg) Fgw( X, -, Xao, Y X, -0, Xk)
whenever f,g € C°(M) and Xy, ,X;-1, X, Y, X;11,--+ , X € X(M). Thus w €

Conversely, choose an element w € . (M). For any vy,---,vp € Ty M, choose
Vi, o+, Vi € 2 (M) such that

Vi(z) =v;, 1<i<k.
Define
Wx(vh"' 7vk) = w(‘/h"' 7Vk)(x)

We shall check that w, (v1, - - - , vy ) is well-defined and independent of the choice of the extensions
V; to v;. Without loss of generality, we may assume that & = 1. Then X : X(M) — C*>°(M).
To any fixed X € X(M), we want to show that w(X)(x) depends only on X (z).
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For this, it suffices to check w(X)(z) = 0 whenever X (z) = 0. Write
9 .
X= > alaxi’ a' € C>®(U)

in a coordinate system (I, z',--- ,2™) about z. Since X (z) = 0, it follows that a’(z) = 0 for
all . By Corollary 1.1, there exist a smooth function ¢ on M and a neighborhood V of x such
that

VCcu, Py = 1, Plmm\U =0.

Define the vector field X; by

o
Xi — SO@J:Z‘ 9 on ua
0, onM\U.
Then X; is a smooth vector field on M. Define the smooth function @’ on M by
G pag, onl,

0, onM™\U.

Hence

8>;

X = Z 802%‘88562-: Z pa; <908x,-

1<i<m 1<i<m
on U, we have
X =) @Xi=X= ) @Xi+(1-¢))X,
1<i<m 1<i<m

while, on M \ U,

Finally, we arrive at

on M. Therefore

If T is a tensor field of type (r, s), then we can consider 7" as a map

T:EY M) x - x EL M) X EM) x - x E(M) — C®(M)

where
T(wla T aw'l’yXla e 7XS)(:E> =1 (CL)1($), e awT(x)?Xl(x)v e 7X8(x)) ’
which is C°°(M) multi-linear with respect to the C°°(M)-modules €1 (M) and X(M).
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Ifw,n € &Y(M)and X,Y € X(M), we have
wANX,Y) =w(X)nY) —w¥)n(X). (1.2.46)

Definition 1.22

If f € C®°(M), then df is a smooth mapping of T M into R which is linear on each

tangent space. Thus df can be considered as a 1-form,

df : M — AT*M, 2 — df (z) == df|, € T:M = N'T*M. (1.2.47)

The 1-form df € £Y(M) is called the exterior derivative of the O-form f. Moreover, we

obtain a map

d:E'(M) — EYM), fr—df. (1248) o

There exists a unique anti-derivation d : £*(M) — £*(M) of degree +1 such that
(1) d*> = 0.
(2) Whenever f € C®(M) = E°(M), df is the differential of f.

d is called the exterior differentiation operator of £*(M).

Proof. (1) Existence. Let z € M and define

Ex(M) = {smooth forms defined on open subsets of M containing x},

ER(M) = {smooth k-forms defined on open subsets of M containing z}.
Observe that £(M) = @y>0EF(M). We fix a coordinate system (U, z!,- -, 2™) about x. If
w € &5(M), then

1
Wdomain(w)ntd = ardz

where a; € C*(domain(w)N), I runs over all subsets of {1, --- ,m},and do! = dz* A--- A
dz’r when I = {i; < --- < i,} or de! =1 when I = (). Define dw € £;(M) by
(dw)y := day|, A da’ |, € NTIM.
We first give the following properties:
(2) w € ET(M) implies dw(x) € A"FLITIM.
(b) dw(x) depends only on the germ of w at x.
(¢) d(aiwy +aswa)(z) = ardwi () + agdwa(z), a; € Rand w; € £ (M), where the domain
of ajw1 + asws is domain(wy )Ndomain(ws).
(d) d(wi Aw2)(z) = dwi(x) A wa(z) + (=1)"wi(z) A dwa(x), wy € EL(M™) and wy €
Ex(M).
(e) If f is smooth on a neighborhood of z, then d(df)(x) = 0.
fw=3 .. Qi dz™ A--- Adx', then

dw(z) = Z Z aﬂg;f

11 < <ipr 1<5<m

dad|y Adx™ |, A - Nda'm|, € NTTITEM.
xX
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Part (b) follows from the chain rule, while part (c) is obvious. From (b) and (c), it suffices to
check (d) for wy = fdax™ A --- Ada’ and wy = gdat A --- A dz?s on some neighborhood of
z. If r =5 =0, then
dwi ANwr)(z) = d(fg)(z) = df(x) g(x)+ f(z)-dg(z)
= dwi(z) ANwa(x) + (—1)"wi(z) A dwa(z).
The second case is 7 = 0 or s = 0. Assume first that » = 0; then

d(wy Aw)(z) = d(fgdax* A--- Ada?*)(z)

Z (fg) d J|:c /\dSUJ1|x '/\dxjs|x
, Oz
1<j<m
_ 8g of . . .
= D (f( ) 50|+ 9@ 57 >d:c]|x/\dxj1|x/\---/\da:] R

1<j<m

= [f(@)dwa(z) + df (z ) A wa ()
= dwi(z) Awa(z) + (—1)"wi(x) A dwa(x).
For the case s = 0, we obtain

d(wy Aw)(z) = d(fgdz™ A--- Ada')(z)

- (f( o] g(@@ )a:p A A i,
1<5<m x
= g(x) Ndw(z Z f(z (=1)"dz" |z A -~ Ada' |, Ada? |,
1<5<m

C o) A den) 1 (1) en(a) A o)
= dwi(x) Awo + (—1)"wi(x) A dwa(x).
The third and last case is r,s > 0. If {i1, -+ i} N {j1, -, Js} # 0, the result id obvious.
Then we may assume that {iq,- - , i} 0 {j1, - ,js} = 0. Write
(fdz™ A--- Adz') A (gda?* A - Ndad*) = efgda™ A - A dabrrs
where /1 < -+ < {45 and € = 1. In particular,
Az A Ada't AdaTt A - Adatt = edat A A datre.
Compute
d(wr Aws)(@) = d(efgda®™ A--- Ada'r)(x)
= e(df(x)g(z) + f(x)dg(z)) Adz" | A - Adatrs|,
= eg(@)df(x) AdzP|p A Adatrs),
+ ef(x)dg(x) Adxb|y A - Adabrrs|,
= (df(x) Nda™|p Ao Ada']e) A (g(@)dal o Ao A da® )
+ (—=1)" (f(ac)d:v“\w AR dw“|x) A (dg(z) A dzit |y A A dz’*|,)
= dwi(z) Awa(z) + (—1)"wi(x) A dwa(z).
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For (e), on domain(f) N/, we have
_ of . i
df = E e dx

1<i<m
so that
of i
@) = S d( ) (@) nde'()
1<i<m
aaiafj do’ |, Ndat|, = — Z aaz‘afj dz'[y A da? |,
1<4,5<m LT g 1<i,5<m Loy

which implies that d(df)(z) = 0.
We now claim that the definition of d at x is independent of the choice of coordinate systems.
If (V, yt, - ,y"™) is another coordinate system about z;, we can define another operator d’ on

Ex (M) satistying the above properties (a) — (e). For w € £X(M), we have
dw(x) = d (ail...irdznil Ao A dx”) (x)
= d'(ay.i,) (@) ANdz |z A A,

+ ) (=D (2)da o A Ad (da) (@) A A da
1<k<r
= d(aiy..; ) (@) Ndz |y A--- ANda' |, = dw(z).

If w € £¥(M), we define dw to be the form which as a lifting of M into AT* M sends x
to dw(z). We now check that d?> = 0 and d is an anti-derivation of £*(M) of degree +1. If
w = aydz! near z € M, then

d(dw)(z) = d (dar A dz") (z) = d(dag)(z) A dz’ |, + (~1)Hdar A d(da’)(z) = 0.
(2) Uniqueness. Let d’ be an anti-derivation of £*(M) of degree +1 satisfying (1) and (2).
() Ifw € E(M) withw|y = 0, where W is a neighborhood of x, then d'w(x) = 0. Choose
a neighborhood I/ of x such that{ C W and U is compact. By Corollary 1.1, there exists

a smooth function ¢ on M such that
elu=0, elraw =1
Then pw = w on M and d'¢(z) = ¢(x) = 0. Hence
dw(z) = d(pw)(z) = do(z) Aw(z) + ¢(z)dw(x) = 0.

(ii) d' is defined only on elements of £*(M), that is, on globally defined forms on M. We
wish to define d’ on £X(M) for each x € M. Ifw € EX(M), we define d'w as follows.
Let V; be the domain of w. By Corollary 1.1, there exist a smooth function ) on M™
and a neighborhood V; of x such that

Vv, =1, Yy, =0, supp(y) C Vi
and Vo C V5 C V; and Vs is compact. Then yw € £*(M) and define
dw(z) = d'(Yw)(@).

We must check that the above definition is independent of the extension. Let (1/;, %) be
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another pair with above properties. Then
('¢w - dzw)hbm% =0;
thus d’(Yw — Yw)(z) = 0 and then d’ (Yw)(z) = d' (Yw)(z).

(iii) d'w(x) is defined for all w € EX(M) and satisfies properties (a) — (e). The properties
(a) — (c) are obvious. For wy,ws € EX(M) we can find a suitable smooth function (see
above) o on M™ such that pwi A pws € E¥(M). Then (w; € EL(M))

d(wi Awa)(x) = d(pwi A pus)(x)
= d(pw1)(@) A (pw2)(@) + (=1)" (pw1) (x) A d'(pw2)(2)
= dwl(z) Aws(z) + (=1) wi(2) A d'ws(z).
For any smooth function f near x, we have
d(d'f)(z) = d'(d(ef))(x) = 0.
Whenever w € £5(M), we have proved
dw(x) = dw(x).

This prove the uniqueness. 0

From the above prove that

dewyyy = d(wpy) (1.2.49)

whenever U is an open subset in M.

Definition 1.23. (Interior multiplication)

Let X € X(M) and w € £*(M). Interior multiplication of w by X is the form .xw
defined by

txw(z) = x, (W), €M™ (1.2.50)

Then vxw is a smooth form and vx : £*(M) — £*(M) is an anti-derivation of degree

1. s

Let F' : M — N be a smooth map and let x € M. Then we have the differential
Fop : TeM — TpN, its transpose I : T;(x)./\/' — T*M, and the induced algebra
homomorphism
If w € E*(N), then we can pull w back to a form on M by setting

F*: E5(N) — E5 (M), wr+— Fw (1.2.51)

where (F*w)y := Fy (Wr(z))-
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Let F : M — N be a smooth map. Then
(a) F*: EX(N) — E(M) and is an algebra homomorphism.

(b) F* commutes with d, that is

d(F*w) = F*(dw), w € E*(N). (1.2.52)

e W) L £5(M)
d ld
(c) Foranyw € E¥(N) and X1, -+ , X3, € X(M), we have
(F*w)(Xl, ce ,Xk)<1') = wF(x)(F*@(Xl(a:)), s ,F*@(Xk(x))) (1253)

Proof. Part (a) is obvious and part (c) follows from (1.2.34). We now consider part (b). If
feC>®WN), then F*f = fo F € C*°(M) and
(F*(df))a = Fi(df p(z)) = d(f 0 F)o = d(F" f)a
by (1.1.21).
Letw € £*(N)andz € M. Consider acoordinate system (V, 3!, --- ,y")abouty := F(x)
and choose a neighborhood U of z such that F'(4) C V. Write
wy = ail...”dyil VANEEIIAN dyi", iy .eiy € COO(V)
Then
F*wly = (aiy...i, o F)d(y"™ o F) A--- Ad(y" o F)
which is a smooth form on V. Hence F*w € £*(M). Moreover

d(F*w), = d<(a2~1...ir o F)d(y™ o F)A--- ANd(y'™ o F)>

T

_ <d(ai1“% o F)Ad(y o FY A~ Ad(y™ oF))

T

= <F* <dai1...ir VAN dyil VAN dy“)) = (F*(dw))x
Therefore, d(F*w) = F*(dw). O

1.2.3 Lie derivatives

Fix a smooth vector field X on a differentiable manifold M. Recall the local 1-parameter
group {X;}+>0 of transformations associated with X. If Y is another smooth vector field on
M, we define the derivative of Y with respect to X at the point z € M as follows: Since
Xt » Dy — P4 is a diffeomorphism, (X_t), x,(2)(Yx, (@) € TeM™. We define the Lie
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derivative of Y with respect to X at x by

(X— )*, x(Y m)_Yx d
)%, X (2) \ 4 Xy (2) == . ((Xft)*,Xt(z)(YXt(x))) (1.2.54)

because (X—0), xy(z)(Yxo(2)) = Yz Similarly, we can define the Lie derivative of a differential

(LxY ) = lim t

form w with respect to X at x by

. (Xt);(th(x)) — Wy d *
(Lxw)y = lim p =, (Xe)p(wx, ) - (1.2.55)

The smoothness of ZxY and £xw is obvious. The Lie derivative .%x can be extended to

arbitrary tensor fields in the obvious way. If T is a tensor field of type (7, s), then (ZxT), is

given by

d
t=0

i Tx,0) =v1®@ - QuRvf® - Qvj.

(ZxT)

Let X be a smooth vector field on M. Then
(a) Lxf = Xf whenever f € C®°(M).
(b) ZxY = [X,Y] for each smooth vector field Y on M.
(c) ZLx : E(M) — E*(M) is a derivation which commutes with d.
(d) (Cartan formula) £x = 1x od+doix on E*(M).
(e) Ifw e EP(M) and Yy, - - ,Y, € X(M), then

Ly (w, -+, Yp)) = (w1, 1))
+ Z W(Yi"" 7}/ifla$YoY;7m+la"' ,Y}))

1<i<p
(f) fwe EP( M) and Yy, --- Y, € X(M), then
0<i<p
+ Z (_1)1+]w([Y'“Y}]7Y'07727’?7”}/;))
0<i<j<p

Proof. (a) Compute

(ng)m _ %g% (Xt);(f(XtE«T)))_f(m) _ jtt_o((Xt);<f(Xt<x))>)
d
= G| GexpE) = Gl 0
_ of | 0%, of | & _
- K;maxi Lot |,y I;m e

: _ i_0
lex = Zlgigma ErE

(b) We need only to show that (ZxY)(f) = [X,Y]f foreach f € C®°(M). Letz € M.
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Then
(LY )alf) = <135 <X—t>*:xt<x>int<x>>—Yx>( f
d d
=l [(X0)ex(0) Vx @) ()] = i Yy (f o X1)] .

Define a real-valued function H on a neighborhood of (0,0) € R? by

H(t,u) := f (X (Yo (X (2))))

Then by (a),
0
YXt T (f OX—t) = 3.9 H(tvu)
(=) o2 ()
and then )
0°“H
Y): = — .
(XX ) (f) Orlor2 0.0)
Set

K(t,u, 8) := f (Xs(Yu(Xi(2))))

near a neighborhood of (0,0, 0) € R3. Then H (t,u) = K(t,u,—t) and the chain rule implies

0’H _ O’K _ PK
orlor?| gy Orlor?|ge0  Or0r* | 00)
Since K (t,u,0) = f(Y,(X¢(x))), it follows that
0K PK
23 =Yxf = YN Xe(2), 5753 = Xo(Y).
|00 (@) artor?| .0
Similarly, using K (0, u,s) = f(Xs(Yu(x))), we arrive at
0K P’K
=3 = Xv.@f = XNNul@), 3553 = Y (X [).
67‘3 (0,u,0) (@) (97“2(97“3 (0,0,0)

Therefore, (Z,Y ). (f) = Xo(Yf) — Yo(Xf) = [X,Y]2(f). By part (b), ZxY is a smooth
vector field.

(c) The derivation is clear. Next we check . commutes with d when applied to functions;

that is
(Zx(df))y = d(Zx [)ay [ €CTMT), € M™.
For Y, € T, M, the right-hand side gives
d
UL 10V0) = Vol )) = Ve (G| (7030)
t=0

where f o X; can be considered as a smooth function on (—¢,¢) x W for some £ > 0 and some
neighborhood W of x in M. The left-hand side gives

e = (5 e = 5| (eomamwm)
- Cftm(d(foxtm) - CitO(Yz(foXt)).

Let Y be an extension of Y, to a smooth vector field on WW. Then d/dt and Y have canonical

extensions to smooth vector fields d/dt and Y respectively on (—¢, £) x W where [df/Et, Y] =0.
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Hence

d d ~/d
a2 = vty e x0 ) = (m Srox0) < ¥ (G070 x0)

t—0

d (= d
= hmﬁ(Y(foXt)) =

t:O(Yx(fOXt)> — (L (df))aYs.

To see that the form .Z’xyw is smooth and to check that .£x commutes with d on all of £*(M),
we simply express w in local coordinates and compute using (Lx (df)).Yz = d(Lx f)z(Yz),
part (a), and the fact that .Zx is a derivation.

The last three results can be verified by direct computations. O

1.2.4 Star transformation
Let (V, (,)) be an m-dimensional real inner product space. For w = wj A -+ A wp,v =
vi A+ Avp € APV, define
<w, U> = det((wi, Uj>1§i’j§p). (1.2.57)

This defines an inner product on APV and then on AV
(a) If (e;)1<i<m is an orthonormal basis of V, then (e;; A - A €;,)1<i;<--<i,<m 1S an
orthonormal basis of AV'.
(b) Since A™V is one-dimensional, A"V \ {0} has two components. An orientation on V'
is a choice of a component of A"V \ {0}.

Let (V, (,)) be an oriented inner product space and dim V' = m. The star transformation
x : AV — AV (1.2.58)
is defined by requiring, for any orthonormal basis {e; }1<i<m of V,
(1) = Ler A ANem, *(e1A---ANey) = =+1,
x(ep A= ANep) = Fepr1 A Nep,

where one takes “+” if e; A --- A ey, lies in the component of A"V \ {0} determined by the

orientation and “—"" otherwise. Observe that

% : NPV — NPV (1.2.59)

(1) On NPV, we have x*> = (—1)P(m~=p),
(2) For any v,w € NPV, we have (v, w) = x(w A *v) = x(v A *w).

Proof. (1) Compute
$2(eg Ao Aep) = x(Fepri A Aem) =% (epr1 A Aem).
Since
et NepNeppi A Neym = (—D)PepriNer A= ANep Aepra A+ Nem

= (1P Pepsr A Aem Aer A Aep
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it follows that #(epi1 A -+ A ep) = H(—1)P"Pley A .. Ae, and then x> = (—1)P(m~P) on
NPV,
(2) For convenience, we may assume that the orientation is “+”. Choose an orthonormal

basis {¢; }1<i<m of V and write

vo= E U“'"“’ez‘l/\-~-/\€ip = E vleh

1<iy <<ip<m [1|=p
_ J1dpe. A L. A E J
w o = E w ej; N\ Nej, = w" ey
1<ji<-<gp<m |Jl=p

where I = {1 <i; <--- <ip, <m}ande;s ==e; N+ Aej,. Then

*(w A *v) = * ZwAvI*(eI) = Z vlw? « (e A x(er)).

[I|=p ], J|=p
Forany I = {1 < i) < --- <4, < m}, define I := {1 < ip4q < -+ < iy, < m} where
ip+1,-- - ,lm are obtained from the ordered set {1 < --- < m} by removing i1, - - - ,ip. Then
x(er) =sgn(I, I%ere.

Consequently,

*(w A *v) = Z viw? * (sgn(I,I%e; Aege) = Z vlw?sgn(I, 1) % (ef A ege).
1,1 J1=p I=J,|I|=p

Because ey A ere = sgn(l, I¢)e; A -+ A e, we arrive at

k(w A xv) = Z vlw! « (1) = Z vlw! = (v, w).
[|=p H|=p
Similarly, we can prove (v A xw) = (v, w). O

Leteg APTLYV — APV denote the adjoint of left exterior multiplication by ¢ € V. That is
(egv,w) = (v, egw) = (v, Aw), v € NPTV w e APV (1.2.60)
We claim that

ev=(-1)""x(EA(w)), vEANTV, eV (1.2.61)

It suffices to prove that
(D)™ 5 (€ A (+0)), w) = (v, € Aw)
for any w € APV The left-hand side is equal to
(1™ s (A (€A ) = (1) (wA (=) E A ()
= ()P wwrg) = (1) (v, (-1)PEAW)
= ()PP Erw) = (,EAw)

by Proposition 1.13.
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1.2.5 Cartan’s lemma

Let M be a differential manifold and p < m.

Theorem 1.12. (Cartan’s lemma)

Let wy,- -+ ,wp be 1-forms on M which are linearly independent pointwise. If 01, -- ,0,
are 1-forms on M with
Z 0; \Nw; =0,
1<i<p

then there exist smooth functions A;; on M with A;; = Aj; such that

91': Z Al-jwj, 1§Z§p
1<j<p

Q

Proof. Choose wyi1, -+ ,wm € EX(M) sothatwy, -+ ,wp, Wp+1, -+ ,wy, form a basis of T M

pointwise. Write

92‘: Z Aij(,c)j, 1§i§p
1<j<m
for some smooth functions A;; on M. Hence
0= Z Z Aijw]' Nw; = Z Aijw]' N w; + Z Z Aijwj N wj.
1<i<p1<j<m 1<i,j<p 1<i<p p+1<j<m
Consequently,
0= Z (AU — Aji)wj N w; — Z Z Aijwi N wy;
1<2,5<p 1<i<pp+1<j<m
then A;; — Aj; =0forall1 < j < j<pand A;;forl <i<pandp+1<j < m. Thus
0; = 1<j<p Aijw; foreachi € {1,--- , p}. O

1.3 Integration on manifolds

Introduction

1 Orientation ([ de Rham cohomology

([ Integration on manifolds

1.3.1 Orientation

Let V be a real space of dimension m. An orientation on V' is a choice of a (connected)

component of A"V \ {0}.

——————— O (D) O
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Definition 1.24. (Orientation)

Let M be a connected manifold of dimension m. Let O be the “0-section” of the exterior

m-bundle N""T* M that is

0:= |J {oenmTiMm}. (1.3.1)
zeM
Since each N™Tx M\ {0} has exactly two components, it follows that N""T* M\ O has at

most two components. We say that M is orientable if N T* M\ O has two components;
and if M™ is orientable, an orientation on M is a choice of one of the two components
of N"T* M\ O.

A non-connected manifold M is said to be orientable if each component of M is orientable,

and an orientation is a choice of orientation on each component.

)
Let M be oriented and let eq, - - - , e, be a basis of T, M with dual basis e], - - - , e);,,. We
say that the ordered basis eq, - - - , e, is oriented if e] A - - - A e}, belongs to the orientation.

Let M and N be orientable m-dimensional manifolds, and let F' : M — A be a smooth

map. We say that F’ preserves orientation if the induced map
F* : N"T*N — NT* M
maps the component of A™T*AN \ O determining the orientation on N into the component of

A™T* M\ O determining the orientation on M. Equivalently, F' is orientation-preserving if

F . sends oriented bases of T, M into oriented bases of TF(Z)N’ .

Let M be a manifold of dimension m. Then the following are equivalent.
(a) M is orientable.
(b) There is a collection V := {(V, 1)} of coordinate systems on M such that

M= |] v, det(ax.>>00nL{ﬂV
oyJ
(V.h)el

whenever (U, zt,--- ™) and (V,y",--- ,y™) belong to V.

(c) There is a nowhere-vanishing m-form on M.

Proof. Without loss of generality, we may assume that M is connected.

(a) = (b). Given (a), choose an orientation on M; that is, we choose one of the two
components, called A, of A™T*M \ O. Let ¥ consist of all of those coordinate system
(V,y',---,y™) on M such that the map of V into A" T"* M defined by

z— (dy' Ao Ady™)(x)

has range in A. If U, z!,--- ,2™) and (V,y!,--- ,y™) are any two coordinate systems on M,
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thenforx e U NV,

1 m )
(dz' A--- A da™)(z) = <gy$jldyj1> ARRRWA <§;Jm dy3m> (x)

ox’
= det ( By

> (dy* A+ A dy™)(z).

xT

Then

foreachx e U N V.
(b) = (c). Let {¢; }ier be a partition of unity subordinate to the cover of M given by the

coordinate neighborhoods in the collection ¥ with ¢; subordinate to (V;, x}, -+ ,2™™). Let
w = Zwidx} A= Ndxg?
icl

be a global m-form on M, where @;dx} A --- A dz™ is defined to be the 0 outside of V;. On

Vi NV, we have
0 0 oz
w(ale”(?x}”> = E p; det (83:@)

il J

which is positive.
(¢) = (a). Let w be a nowhere-vanishing m-form on M™ and let
AT = U {awg :a € R, a >0}, A™ = U {awg :a € R, a > 0}.

reM zeMm
Then

APT*MN\ O = AT A~

is the disjoint union of the above two open subsets AT and A~, so A™T* M \ O is disconnected
and M is orientable. O

Example 1.5

(1) The standard orientation on R™ is the one determined by the m-form dr* A- - - Adr™.

(2) Let M be a manifold of dimension m and suppose that there is an immersion f :

M — R A normal vector field along (M, f) is a smooth map
N:M — TR™!

such that N(z) € Ty R™! for any x € M and is orthogonal 1o fy .(TxM) C
T f(QC)RmH. Such a manifold M is orientable if and only if there is a smooth nowhere-
vanishing normal vector field along (M, f).

(3) S™ is orientable for each m > 1.

(4) RP™ is orientable if and only if m is odd.
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1.3.2 Integration on manifolds

Let F be a diffeomorphism of a bounded open set D in R with a bounded open set F'(D)
and let

- aFZ _ 1 m
jp.—det<arj>, F=(F', - F™).

If f is a bounded continuous function on F'(D) and A is a nice subset of D (A will be polyhedral

/ f:/fonF\. (13.2)
F(A) A

in most of application), then

Integration of m-forms in R™. The standard orientation on R™ is determined by the

m-form dr! A --- A dr™. If w is an m-form on an open set D C R™, then

w=fdr* A---ANdz™, feC®(D).

/Aw::/Af (1.3.3)

provided that the latter exists. Let F' be a diffeomorphism of a bounded open set D in R™ with

For any A C D, define

a bounded open set F'(D) and A be a nice subset of D. If w is an m-form on F'(D), then
F*w=foFd(rtoF)A---ANd(r™oF) = foFdF*A---ANdF™ = (fo F)Jpdrt A--- Adr™.

Hence, by (1.3.2),

/ w=/ f:/foF|jF|:Z|Z/fOFjF::|:/F*w, (1.3.4)
F(A) F(A) A A A

where one uses “+” if I is orientation-preserving and “—”" if F' is orientation-reversing.

Integration over chains. For each p > 1 let
AP = (a',--- ,aP) € RP: Z a; <0, a; >0
1<i<p
AP is called the standard p-simplex in R?. For p = 0, we set A := {0} called the standard
0-simplex.
Let M be a manifold of dimension m. A singular p-simplex ¢ in M is a map
o: AP — M
which extends to be a smooth map of a neighborhood of A? in R? into M. A p-chain ¢ in M
(with real coefficient) is a finite linear combination
c= Zaiai, |I| < oo,
icl
of p-simplices o; in M" where a; € R. For each p > 0 we define a collection of maps
KV i AP — APTL 0 <i<pt1

as follows:



1.3 Integration on manifolds -6l -

(i) For p = 0, define

(i) Forp > 1, define

kb(al,--,aP) = [1— Z a',ay,---,ad’ |,
1<i<p
kf(al)"'vap) = (ala”')ai—lvovaia”')ap)a 1§Z§p+1

If o is a p-simplex in M™ with p > 1, we define its ¢-th face (0 < i < p)

ol i=gokl! (1.3.5)
and define the boundary of o
0o = Y (-1)'c". (1.3.6)
0<i<p

Ife=>" jed a’ 0 is a p-chain, then the boundary of c is given by

Oc := Zajaaj = Z Z (fl)iajaé-.

jeJ jeJ 0<i<p
Clearly that
Kokl =KV o kP, p>0,i<j. (1.3.7)
kP
AP 7 APTF]
o e
Ap+1 —_ AP+2
KPH
j+1
Moreover,
9% =0. (1.3.8)

For any p-simplex (p > 2) ¢ in M, we have

#o — o ¥ (-vo| = ¥ (ver = ¥ (-1ya(son)

0<i<p 0<i<p 0<i<p
_ _1\¢ 1\ p—1 p—2
— E (-1) E (—1)ook] "o k:j
0<i<p 0<j<p—1

= Z + Z (—1)i+jaokf_1ok§_2

0<i<p0<j<p-14<j 0<i<p0<j<p—1,i>j

PV S >

= Z (-1)ego k;:ll o kf_2
0<i<p,0<j<p—1,i<j
+ > (-D)™Hookl okl = 0.

0<i<p,0<j<p—1,>j
Let o be a p-simplex in M and w be a continuous p-form defined on a neighborhood of the

image of 0.
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(1) If p = 0, we define the integral of w over o by

/w = w(0(0)). (1.3.9)

(2) If p > 1, we define the integral of w over o by

/w::/ orw. (1.3.10)
o AP

We now extend these integrals linearly to chains so thatif c =), ; a‘o;, then

/w::Zai/ w. (1.3.11)

iel
The fundamental theorem in calculus now can be stated as

/dF:/ F, (13.12)
o oo

whenever F' € C*°(R) and o is a smooth 1-simplex in R.

Let ¢ be a p-chain (p > 1) in a manifold M of dimension m and let w be a smooth

(p — 1)-form defined on a neighborhood of the image of o. Then

/dw:/ w. (1.3.13)
c dc

Proof. 1t suffices to consider the case
for any p-simplex o. Since

by (1.3.10), and

/ w - / B '
0o Yo<icp(=1)'0? 0<i<p '

= X[ ere = ey w@y @),

0<i<p 0<i<p

&

I
g
=
S
S

Then we need only to prove
diow)= 3 (0 [ @Y (),
ar 0<i<p artt

(1) p=1. Then o is a 1-complex and w is a O-form. Compute

* = iwoar:wa —w(o
ot = [ Sy = we)~wlo).

1 dr

> [ e = [ et - [ arew)

0<i<1 A° A0

= /Ao(kg)*(woa)—/ (k)" (wo o)

AO
= w(o(kG(0) —w(e(k1(0)) = wlo(1)) - w(@(0)).
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(2) p > 2. Write the (p — 1)-form o*w as

ofw = Z ajdrlA"-/\drj/\--'/\drp,
1<j<p
where a; are smooth functions on a neighborhood of A? in R?. Compute

d(c* = Ari A Adri A A drP
/AP (c*w) Z/Ap a;dr r T)

1<5<p
8aj
= Z Z —Ldr® Adrt A CAF A A dr?
1<j<p’ AP 1</€<p
oa; —
- Z/ ]dr]/\dr/\ CAdri A - A drP
1<j<p a» 0
= Jl/ 6a”d LA AdrP.
1<]<p Ap

‘We claim that
Tja 1 S ] S 1 — 17

(K~ =4 o, j=i
Pl i+ 1< <p,
forany 1 < i < p, and

1- Zlgigpq Tiv Jj=1

—1\x 14
(kv = .
0 7']_1, 1<j<p.

In fact, from k7" : AP=1 — AP and (KP71)* : (AP)* — (AP~1)*, we have, for any f =
(fY,---, 1) e APL,

(kf_l)*rj(f) - kp 1 = T'(fla"' ’fi71707fi,‘.' 7fp71)
f]_” 1<j<i—1,
= i—i
=T f), i+1<j<p
(kg_l)*rj(f) = 7l <kp 1 P 1))
Z fi)fl""hfpil
0<i<p-1
(- Seaar) ) =1,
fjl:rj 1(f), 1<y <p.
Consequently,

(kf*l)* ((de’l“l P NN drp)

>

0<i<p artt
= / (kb= (ajdrlA---/\cﬁj/»--Adrp)
Ap-1
+ > (- / k:”*l)*<ajdr1A---/\d/r\j/\---/\drp);
Apr—1
1<i<p
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the first term on the right-hand side is equal to

—

/Apl a; ((kg_l)*(rl)7 e (kg_l)*(rp)) d(rl okg—l) A-- ‘Ad(?‘j ° k?g_l)A' . 'Ad(T‘pOkg_l)

/ aj [ 1— Z rirt P d | - Z Ol A AdriTU A A drPT!
Ar—1

1<i<p—1 1<i<p—-1

—

/ aj [ 1— Z rirt P (—dr Y Adrt A AdrI LA A drP Y
Ar—1

:(—1)1+j2/ a; | 1— Z rirt o P At A AP
Ap—t 1<i<p—2

while the second term to
Z (_1)2/ CLj(’f’l,"' 7ri_1a0aria"' ’Tp—l)
d(TIOk‘ffl)/\---/\d(rjOkffl)/\---/\d(T‘Z’Okffl)

= (—1)/ /Ap—l aj(rl,--' I 0 P At A A drP T

Hence
> (—1)i/ (kP> <ajdr1 Ao Adrd A A drp)
0<i<p Ar—l
(—1)j_1/ a; | 1— Z it o P det A A drPTY
Ap—1 X
1<i<p—1
+ (—l)j/ a;(rt, -0 P A A drP T
Apr—1
Consider
(Tla"' arpil)a jzla
@j(?"l,--- ’Tp—l) = (1 _Zlgiﬁpfl Ti7r27”' 774p71> ) .7 :27
(7’2, T 77']'717 1— Zlgigpfl ’riarja e 774p71> ) 3 S ,] S D

Then ¢;(AP~1) = AP~! and | J,,| = 1. By the change of variables formula, we obtain

(—l)j_l/Ap_laj 1- Z rirt P At A A dr P!
1<i<p—1

= (—1)7! /AP1 a; [ 1— Z rios, o P | drt A A drPTE
1<i<p—1

:(—1)3_1/ aj | vt 71— g rird o P art A A drP T
At 1<i<p—1
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Therefore we need only to show that

/ %drl/\---/\drp
AP 57‘3

:/ aj | vt 71— E rird P drt A A drP T
Ap—1 ;
1<i<p—1

— / 1aj(r1,--- Lo, P A A drP L
AP—

This can be seen as follows:

/%drlA-'-/\drp :/ %drlA-'J\drp
AP >

a'f’] 1<i<p TiSI,T'Z'ZO 87’]

1= 1 cicp1 t’ Oa; .
/ / R X P R
ZlSiSp—ltiSl’tiZO 0 Or?

(aj o = Y e g

1<i<p—1

/Zl<i<p1ti<1,ti>0

_aj(tl’... ,tj_l,(),tj,-" ’tp—1)>dt1 A AdiPl

/1<aj phe T - E i e Pl
AP—

1<i<p—1
— aj(t1’ N N ’tp—l))drl A---AdrPl!

by the fundamental theorem of calculus. 0

Integration on an oriented manifold. Let M be an m-dimensional oriented manifold. A
subset D of M will be called a regular domain if for each point x € M one of the following
holds:

(a) there is an open neighborhood of = which is contained in M \ D;
(b) there is an open neighborhood of x which is contained in D;
(c) there is a centered coordinate system (U, ¢) about x such that (U N D) = o(U) NH™,
where H™ is the half-space of R™ defined by " > 0.
Points of D of type (b) are called interior points (Int(D) or D°). Points of D of type (c) are
called boundary points (0D). 9D is an embedded (m — 1)-dimensional submanifold of M.

Let x € 0D and v € T, M. We call v an outer vector to D if for each smooth curve a(t)
in M™ with &(0) = v, there exists an ¢ > 0 such that a(t) ¢ D for all ¢t € (0,¢). Let v be
an outer to 0D at x, and let v1,--- ,v,,_1 be a basis of T, 0D. Then we define vy, - -+, vm_1

be an oriented basis of T,,0D if and only if v, vy, - - , vy,—1 is an oriented basis of T, M. This
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definition is independent of the choice of the outer vector v and defines a smooth orientation on

oD.

Anm-simplex o in M is called regular if o extends to a diffeomorphism on a neighborhood
of A™. An oriented regular m-simplex is one in which the map o preserves orientation.
(i) Associated with a given regular domain D, we consider only oriented regular m-simplices
of the following two types:

(@) o(A™) C Int(D).

(B) o(A™) C Dand o(A™)NID = o(A™1); that is, precisely the m-th face of o lies
in 0D.
(i) Cover D by open sets U of the following types:

(o) U lies in the interior of an oriented regular m-simplex o of type ().

(8') U is the image under a type (3) oriented regular m-simplex o of an open set V C R™
which is a neighborhood of a point in the m-th face of A™, which intersects the
boundary of A™ only in that m-th face, and whose image under o is contained in
a(A™) U (M\ D).

Let w be a continuous m-form with compact support and let D be a regular domain in

M™. Since supp(w) N D is compact, we can cover supp(w) N D by a finitely many open sets

Uy, -+ Uy of type (o) or (B). Let the associated oriented regular m-simplices be o1, - - , 0.
Write U := M\ (supp(w) N D). Then U, U, - ,Uy is a cover of M and, therefore, there
exists a partition of unity ¢, ¢1, - - - , k subordinate to this cover. Define
/w =) / Piw. (1.3.14)
D 1<i<k 7

The definition (1.3.14) is independent of the cover and the partition of unity chosen.

Proof. LetV, Vy,--- ,Vyand Y, 91, - - -,y be another such cover and another such partition of
unity respectively, with V; associated with the oriented regular m-simplex 7;. Since ¢ = 0 on
supp(w) N D, it follows that 3 ;. ;, ¥ = 1 on supp(w) N D and

> | pw= Z/ > dipw = ), Yjiw.

1<i<k V91 1<i<k V91 1<5<4 1<i<k,1<j<e v 9i

Z ¢jw = Z wjgoiw.

1<j<e” 7 1<i<k,1<j<e”Ti

Similarly,

Since o, Lo 7; is an orientation-preserving diffeomorphism on the open set where it is defined
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and (supp(¢jpiw)) N o;(A™) = (supp(¥jpiw)) N 7;(A™), we arrive at

t/w% = [ otwew) = [ otuew)
m (o7 Tor;)(A™)

- /m<‘7¢_1 o1;)* (o (Vjpiw))

- /mﬁwfrwﬂme>=(Am (5p1) (/¢WJ

by (1.3.2). 0

Using again (1.3.2), we can prove that

/ w= i/ F*w (1.3.15)
F(D) D

whenever F' is a diffeomorphism on M, where “+” if and only if F’ is orientation-preserving.

Let D be a regular domain in an oriented m-dimensional manifold M, and let w be a

smooth (m — 1)-form of compact support. Then

/dw:/ w. (1.3.16)
D oD

Proof. Letpy, -+ ,ppand oy, --- , 0 be chosen as in (1.3.14) relative to (supp(w)) N D. Since
> 1<i<k ¥i = 1 on aneighborhood of (supp(w)) N D we have
Z d(piw) = Z (dpi Nw + @idw) = dw.

1<i<k 1<i<k
If 0; is an m-simplex of type («), then

/ piw=0= / Piw
do; oD

since supp(yiw) C Int(o;(A™)) C Int(D). If o; is an m-simplex of type (), then p;w is zero

on the boundary of o; except possibly at points in the interior of ¢}". Hence

/Bgi piw = (—1)’”/0?1 piw = (_1)m(_1)m/6ﬁi”:/apww

because o[ is an orientation-preserving regular (m — 1)-simplex in 0D if m is even, and is
orientation-revising if m is odd. therefore

foto = fp B e = ¥ ftew = 3 ] e

1<i<k 1<i<k 1<i<k

= Z e B e [

1<i<k 1<i<k
by Theorem 1.13. O

A manifold is called closed if it is both compact and without boundary.
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Let w be a smooth (m — 1)-form on a closed oriented m-dimensional manifold M. Then
/ dw = 0.
M

Integration on a Riemannian manifold. Let M be a Riemannian manifold of dimension
m. That is, M is an m-dimensional manifold with a positive definite inner product g, := (, )
on each tangent space T, M such that x — (X,Y), := (X, Y,), is a smooth function on M
whenever X and Y are smooth vector fields on M.

(1) The existence of Riemannian metrics on manifolds is obvious by using the partition of
unity.

(2) Given a point z € M we can always find®> a neighborhood &/ of x and a collection
e1, -+ ,emn of smooth vector fields on U which are orthonormal in the sense that they form
an orthonormal basis of the tangent space to M at each point of I/. such a collection
{ei}1<i<m is called a local orthonormal frame field.

(3) Since the inner product (, ), is a non-singular pairing of 7,, M with itself, it induces an

isomorphism of 7, M with T M,
o :TyM —Ti M, vi— @, ©y(w): = (v,w)s. (1.3.17)

Consequently, 7% M is also a Riemannian manifold.
(4) Leteq,--- e be alocal orthonormal frame field on &/ and let wy, - - - , w.,, be the dual
1-forms. That is
wi(ej) = d;; on U. (1.3.18)

We call {w; }1<i<m a local orthonormal coframe field on ¢/.
(5) If {wit1<i<m and {w]}1<i<m are two local orthonormal coframe fields on &/ and U’
respectively, then, on U N U/,
WA AWy =FW A Awl.

Let (M, g) be an m-dimensional oriented Riemannian manifold. A local coframe field
{wit1<i<m onU will be called oriented if w; A - - - Awy, belongs to the orientation at each point
of U. Choose a local oriented orthonormal coframe field {w; }1<i<m at each point of M. By (5)
above, we have a globally defined m-form

Wi=wi A Awpy (1.3.19)

nowhere-vanishing on M. This form is called the volume form of the oriented Riemannian

manifold M. The volume of M is

Vol(g) := //vt w= /M W1 A AW, (1.3.20)

3Start with a coordinate system (U, z",---,z™), apply the Gram-Schmidt procedure to orthonormalize 8/0z",
-+-,0/0x™, and do it simultaneously at all points of .
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We define * on AT, M so that get a linear operator
%1 EP(M) — EMTP(M) (1.3.21)

satisfying
%2 — (_1)p(m—p) on EP(M). (1.3.22)

If f is a continuous function with compact support, we define
/ f ::/ *f:/ fw. (1.3.23)
M M M
Note 1.8

We can define | s [ on any Riemannian manifold M. Choosing {Un}aea a cover of

M by interiors of regular m-simplices {04 }qeca and {w}1<i<m a local orthonormal
coframe field defined on a neighborhood of o, (A™), we can find smooth functions {hq, } o
on neighborhoods of A™ such that

TE(WEA A2 = hodr Ao Adr™.
Let {¢a }aca be a partition of unity subordinate to the cover {Uy}aca and let f be a
continuous function with compact support on M. Define

= o0, LAy oo L 3.
/Mf.—Z/M((soaf) o) |haldrt A~ Adr (13.24)

acA
This definition is independent of the cover and partition of unity chosen. In the case of an

oriented Riemannian manifold, (1.3.23) agrees with (1.3.24). &

If f is a smooth function on R, its gradient is defined by

of 0
grad(f) := i 5

1<i<m

fv=>, <i<m v % is a smooth vector field, its divergence is defined by

. ov'
div(V) := Z 5

1<i<m

Let (M, g) be an oriented Riemannian manifold. If v € T, M, we write
v, = ¢(v)
according to (1.3.16). If w € Ty M, we write
wh = o7 (w).

If f is a smooth function on M, its gradient is the vector field

grad(f) == (df)*. (1.3.25)
If V is a smooth vector field, its divergence is the function

div(V) := xd x V. (1.3.26)

observe that div(V) is defined independent of orientability.
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If V is a smooth vector field with compact support on an oriented Riemannian manifold
M, if D is a regular domain in M and if n is the unit outer normal vector field on 0D,

then
/ divV = (V,n). (1.3.27)
D oD

Let M be an oriented Riemannian manifold, let f and g are smooth functions on M, and

let D be a regular domain in M. The Laplacian of g, denoted Ag, is defined by
Ag = *d x dg. (1.3.28)

If n is the unit outer normal vector field along 0D, we let ngl denote n(g). Green’s identities

say that
_ Jg
_ dg  Of
/D (fAg—gAf) = /BD <fan - gan> . (1.3.30)

1.3.3 de Rham cohomology

A p-form on a differentiable manifold M is called closed if dov = 0. It is called exact if
a = df for some smooth (p — 1)-form /3. Write
ZP(M) := {closed p-forms}, BP(M) := {exact p-forms}.

Since BP (M) C ZP(M), we define the p-th de Rham cohomology group of M

ZP(M)
H? = . 1.3.31
Example 1.6
For the unit circle S, we have
R, =0,1,
HP(SY) = P (13.32)
0, p=2.

~

Since St is connected, it follows from Theorem 1.3 that f is constant. Hence H gR(Sl) =
R. The polar coordinate function 6 on S' is not well-defined globally, but d6 is a globally
well-defined nowhere-vanishing 1-form on S' because d6 is the volume form of the induced
Riemannian metric on S from R2.

(a) df is not exact. Otherwise, df = do for some smooth function f on S'. By
Corollary 1.9, we get

0:/ da:/ df =27 — 0 = 2m.
St St

(b) All 1-forms on S* are closed.

(c) If ais a 1-form, then o — cdf is exact for some constant c. Let o = f(0)df and
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define
— L

¢ 2T

0
[ 10, g0):= [ 1) =l

Since

0+4+27mn
g(0 + 27n) /0 [f(T) — c]dT

9 0+2mn
- /0 [F(7) — cJdr + /9 [F(r) - dJdr

0 0+2k
_ /0 ) —ddr+ ¥ /9 [F(r) — ddr

1<k<n +2m(k—1)
6 2
= /[f<7)—c]d7+ Z/ f(r)dr — 2men
0 1<k<n”0

0
= / [f(T) — ¢]dT + n2mc — 2men = ¢(0),
0
the function g(0) is a well-defined smooth function on S*. Moreover
dg = [f(0) — c|df = a — cdb.

Thus o« — cdf is exact.

Now the result follows from (a) — (c).

Let F' : M — N be a smooth map. Since do F* = F*od

E5N) -2 £5(M)

we have an induced homomorphism
F*: HiL (N) — Hig (M) (1.3.33)
for each integer p > 0. For o € ZP(N), d(F*«) = F*(da) = 0 implies F*a € ZP(M).
If « € BP(N), then d = « for some 8 € EP~Y(N) and F*a = F*(dB) = d(F*f); hence
F*a € ZP(M).
(a) If G : N' — P is another smooth map, then
(Go F)" = F*oG™. (1.3.34)
(b) The identity map 1 : M — M induces
1 =1 (1.3.35)

on the de Rham cohomology groups.
For each integer p > 0, we let Csing,p(/\/l; R) denote the real vector space generated by the
singular p-simplices in M. That is, an element of Cging ,(M; R) is a singular p-chain in M

with real coefficients. For p < 0, define Csjng p(M; R) be the zero vector space. The boundary
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operator 0 induces linear transformations
8p : Csingyp(M; R) — Csing,p—l(M; R) (1.3.36)

for each p € Z. Since 0, 0 9,11 = 0, we define the p-th differential singular homology group

of M with real coefficients by

‘ Ry . Ker(@p)
Hsing p(M;R) = T(y 1) (1.3.37)

Elements of ker(d,) are called differentiable p-cycles and elements of Im(0,1) are called

differentiable p-boundaries. Define a linear map
¢ : Hip (M) — Hgngp(M;R)*, o] — ¢([a])([2]) = /a. (1.3.38)
4

We shall prove that (1.3.38) is well-defined. If o/ = a + dj for some 3 € EP~1(M) and if

2" = z + Opw for some w € Cying p+1(M;R), we have
[ = | (aris) = [@ran+ [ (a+ap)
2/ z+0pw z Opw
- /a+/d5+/ a+/ 48
z z Opw Opw
= /a+/ﬂ+/da+/d2ﬂ = /a.
z 0z w w z

If M is compact manifold, then (1.3.38) is an isomorphism.
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2.1 Introduction

A fundamental question in Riemannian geometry is that given a restriction on the curvature
of a Riemannian manifold, what topological conditions follow?

(1) Myers’ theorem: If M is a complete m-dimensional manifold with Ricci curvature
bounded below by a positive constant (m — 1)K, then M has diameter at most 7 /v/K.
Topological consequence is that M is compact and has finite fundamental group.

(2) Cartan-Hadamard theorem: If M is a simply-connected, complete m-dimensional
manifold with nonpositive sectional curvature, then M is diffeomorphic to R and each

exponential map is a diffeomorphism.

2.2 Metrics, connections, curvatures and covariant differentiation

Introduction

[ Metrics and connections [ Covariant differentiation

1 Curvatures (1 Holonomy

Let M be an m-dimensional (smooth) manifold and ®27T* M = T* M ®g T* M denote the
subspace of 7% M @ T M generated by elements of the form X ® Y +Y ® X. We also consider
the subspace @%FT*M, consisting of all positive-definite symmetric covariant 2-tensor fields, of

®2T* M. Then a Riemannian metric g can be viewed as a section of the bundle @iT*M.
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2.2.1 Metrics and connections

If V is a tangent field of M, we denote by V), or (p, V') the tangent vector at the point p. If

we consider the tangent space 7),M, its element is written as v.

Example 2.1

The Euclidean space E™ := (R, gcan ) is the simplest Riemannian manifold. The tangent

bundle TR™ is naturally identified with the product manifold R™ x R via the map
d
(p,V)eR" xR"™ — <p, a’ O(p+tV)> eTR™
=
so that the standard or canonical metric gcay, on R™ is defined by

Gean (0, V), (p, W) :=V - W, P

A Riemannian isometry between Riemannian manifolds (M, gaq) and (N, gyr) is a dif-

feomorphism ¢ : M — A such that p*gxr = g, i.€.,

gn (dp(V), dp(W)) = gm(V, W) (2.2.1)

for all tangent fields V and W. In this case ¢!

is also a Riemannian isometry.
Suppose that we have an immersion (or embedding) ¢ : M — N/, and that (N, gnr) is a
Riemannian manifold. We can then construct a Riemannian manifold on M by pulling back gxr

to gaq = @ gy on M, ie.,
IMm(V, W) = gn(depo(V), dp(W)).
Note that if ga(V, V') = 0, then since ¢ is an immersion, we have V' = 0.
A Riemannian immersion (or Riemannian embedding) is thus an immersion (or embed-
ding) ¢ : (M, grm) — (N, gnr) such that grq = ¢*gpr. Riemannian immersions are also called
isometric immersions, but as we shall see below they are almost never distance preserving.

Example 2.2

Define

S™(r) := {x € R™"!: |x| = r}.

The metric induced from the embedding S™(r) — R™*L is the canonical metric on

S™(r). The unit sphere, or standard sphere, is S™ := S™(1) C R™"! with the induced

metric. P

A Riemannian submersion ¢ : (M, gar() — (N, gnr) is a submersion ¢ : M — N such
that for each p € M, dyp,, : KerJ‘(dnpp) — TN is a linear isometry. In other words, if
(p, V), (p,W) € T,M are perpendicular to the kernel of di), : T,M — T,y N, then

gMm(V, W) = gn(depo(V), dp(W)).
This is also equivalent to saying that the adjoint (dg,)”" : T¢(p)N — T, M preserves inner

products of vectors.
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Example 2.3. (Hopf fibration)

The Hopf fibration S®(1) — S2(1/2) can be written as

2 _ 1,2
(z,w) —> <w,zw> (2.2.2)

if we think of S3(1) C C? and S*(1/2) C R @ C. The fiber containing (z,w) consists
of the points (eﬁez, eﬁew), and hence the tangent vectors that are perpendicular to
those points are of the form \(—w, z), A € C. Calculate
<|w +XzZ? — |z — Mw?
2

This term has length |\| as well as the length of \(—w, Z). Hence the map is a Riemannian

,(z = 2w)(w + )\z)> = (2Re(Azw), =AW + Az?) .

submersion. P

For a Riemannian manifold (M, g), let Iso(M, g) denote the group of Riemannian isome-
tries ¢ : (M, g) = (M, g) and Iso, (M, g) the isometry group at p, i.e., those ¢ € Iso(M, g)
with ¢(p) = p. A Riemannian manifold is said to be homogeneous if its isometry group acts

transitively, i.e., for any points p, ¢ € M, there is an ¢ € Iso(M, g) such that p(p) = q.

Example 2.4

(1) Iso(R™, gcan) = R™ x O(m), i.e.,

Iso(R™, gean) = {¢|R™ = R™ : F(z) =V + Oz, V€ R™ and O € O(m)}.
(2) On the sphere
Iso(S™(r), gean) = O(m + 1) = IsoO(Rm+1,gcan).

Consequently, O(m + 1)/O(m) = S™.

If GG is a Lie group, then the tangent space can be trivialized by
TG =2G xT.G

by using the left (or right) translations on G. If H is a closed subgroup of G, then G/H is
a manifold. If we endow G with a metric such that right translation by elements in H act by
isometries, then there is unique Riemannian metric on G/H making the projection G — G/H
into a Riemannian submersion. If in addition, the metric is also left invariant then G acts by
isometries on G/ H (on the left) thus making G/ H into a homogeneous space.

For any tangent fields X and Y, we define
(X,Y)g = g(X,Y), |X]g = ({X,X)y)*

and the angle of X and Y
o [((XY)
Z4(X,Y) :=cos™! <g .
! [ Xg[Ylg
Letz!,--- 2™ be alocal coordinate system of M. Then dy, - - , O, where 0; := 0/0x",
form a local basis for M and dz', - - - | d2™ form a dual basis for 7* M. The metric may then
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be written in above local coordinates as
g = gijdxi ® d’

where g;; := g(0/0x%,3/027). Here and throughout the note, we follow the Einstein
summation convention of summing over repeated indices. If the repeated indices both
occur in upper line or lower line, we write down the summation symbol.

Given a smooth immersion ¢ : N’ — M and a metric g on M, the pull-back g to a metric
on N is

(@) (V, W) = g(p:V, 0. W),

where ¢, : TN — T M is the tangent map. If (y*)?_, and (2%)™ are local coordinates on N
and M, respectively, then ' '
ey 09 O]
(‘P g)a,@ = gm@w»

where (¢*9)ap = (¢*g)(9/0y%, 0/0y”) and ¢ := 2’ o . Given any covariant p-tensor field
a on M and a smooth map ¢ : N' — M, we can define the pull-back of o to N by

(") (X1, -+, Xp) = a(@u(X1), - 0 (X)) (2.2.3)
forall Xy, -+, X, € C°(TN).

If ¢ is a diffeomorphism, then we do not distinguish between a metric g and its pull-back

©*g. &

Example 2.5

(1) The canonical metric on R™ is

ean = 03;dz’ @ da’ = Z dz' ® dx’.

1<i<m

(2) On R? \ {half line} we also have polar coordinates (r,0). In these polar coordinates
the canonical metric is

Gcan = d7'®d7'+7“2d9®d(9.

Hence
grr =1, ges = 7‘2, gro = gor = 0.
(3) A surface of revolution consist of a curve
Y(t) = (r(8), 2(t)) : I — R?,

where I C R is open and r(t) > 0 for all t. By rotating this curve around the z-axis, we

get a surface that can be represented as

(t,0) — f(t,0) = (r(t) cosO,r(t)sinb, z(t)) .
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Then the metric is

g=(F*+2*) dt®dt + r’df ® df
so that

. LN 1/2
gt = (7“2+22) / sy 900 =7, Gto = gor = 0.

(4) On I x S', we have rotationally symmetric metrics

g =n(t)dt ® dt + ©*(t)df ® df.
Example (3) is a special case of (4).
(5) Let sny(t) denote the unique solution to

Z(t) + kz(t) =0, z(0)=0, #(0)=1.
Then we have a 1-parameter family
dt @ dt + sni(t)df ® df (2.2.4)

and when k < 0, we get the hyperbolic metrics
dt @ dt + 7% sinh? (:) do ® do.
(6) Assume we have
dt ® dt + *(t)df ® db
where ¢ : [0,b) — [0, 00) is smooth, ¢(0) = 0 and ©(t) > 0 for t > 0. Write
p(t) = t(t)
for some smooth function 1 (t) > 0 for t > 0. Introduce Cartesian coordinates
xr=tcosf, y=tsinf

neart = 0. Then

the function

of rotationally symmetric metrics. When k = 0, this is R?; when k > 0, we get S%(1/ \/E),

2 2 2 2
2 2 + ¢ (t)y zy — zyp*(t)
xy — oy (t) P2 (t)2? + ¢
d d d d
2+ 12 y@ar + 2+ 2 y©ay
so that
P2(t) — 1
ga:w = 1+ (t)2 y27
1 —2(t)
Jzy = Gyz = 2 © Y,
P2(t) — 1
Gyy = 1+ (t)2 - x2.

To check for smoothness of the metric at (x,y) = (0,0) (ort = 0), it suffices to check that
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is smooth at t = 0. First, it is clearly necessary that 1)(0) = 1; this is the vertical
tangent condition. Second, if i) is given by a power series we see that it must further
satisfy: 1/1(0) = w(3) = ... = 0. Those conditions are also sufficient when 1 is merely
smooth. Translating back to p, we get that the metric is smooth at t = 0 if and only if
@ever)(0) = 0 and $(0) = 1.

These conditions are all satisfied by the metrics dt @ dt +sn? (t)d0 @ df, where t € [0, o0)
when k < 0 andt € [0,7/Vk) for k > 0. Note that in this case sn(t) is real analytic.

Example 2.6. (Doubly warped products)

(1) (Doubly warped products in general) We can consider metrics on I x S™~' of the type

)

dt @ dt + 2 (t)dsym_1 @ dspm_1

where ds;,—1 ® ds,,—1 is the canonical metric on Sm_l(l) C R™. Even more general

are metrics of the type
dt ® dt + ¢ (t)dsp ® dsp + P2 (t)dsq ® dsq
onl x SP x 84,
(a) If ¢ : (0,b) — (0,00) is smooth and ¢(0) = 0, then we get a smooth metric at
t = 0 if and only if
e (0) =0, $(0)=1,

and

¥(0) > 0, ¥ (0) =o.

The topology near t = 0 in this case is RP*1 x 84,
(b) If p: (0,b) — (0, 00) is smooth and ¢(b) = 0, then we get a smooth metric att = b
if and only if

and

$(d) >0, D) =o0.

The topology near t = b in this case is again RPT" x S4.
By adjusting and possibly changing the roles of these function we can get three different
types of topologies:
o v, :[0,00) — [0,00) are both positive on all of (0,00). Then we have a smooth
metric on RPYL x 89 if ¢, ) satisfy (a).
o v, : [0,b] — [0,00) and both positive on (0, b) and satisfy (a) and (b). Then we
get a smooth metric on SPT1 x S,

o v, :[0,b] — [0, 00) asin the second type but the roles of 1 and p are interchanged

——————— O (D) O
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att = b. Then we get a smooth metric on SPTI+1,
(2) (Spheres as warped products) The sphere metric dt ® dt + sin?(r)ds,;,_1 ® ds,,_1

can be written as a rotationally symmetric metric. Consider the map
F:(0,7)xR" — RxR"™, (r,z)+— (t,x) = (cosr,sinr - z),
which reduces to a map
G:(0,m)x 8™ 1 R xR™, (r,z)+— (cosr,sinr-z).
Thus, G really maps into the unit sphere S™ in R™*1. Calculate
Jean = dt®dt+ i 8ijdz’ ® dx’
ij=1

m
= dcosr ®dcosr + Z 6ijd(z'sinr) ® d(2? sinr)
ij=1
= dr®dr+sin2r(d21 ® dzt —l—-'-—|-dzm®dzm)
which is the canonical metric dt ® dt + sin® rds,,—1 @ dsm_1.

The metric
dt ® dt + sin? tds, ® dsp + cos? tdsq @dsq, t€ [O, g} ,
are also (Sp+q+1, gcan). Namely, we have SP C RPT! and S? C Rt so we have map
(0, g) x 8P x 87 — RP*! x R (¢, 2, y) — (2 - sint,y - cost),

where x € RPYL y € R9M! have |x| = |y| = 1. The map is a Riemannian isometry.

(3) (The Hopf fibration) On S3(1), write the metric as

dt @ dt + sin® tdfy @ db; + cos?tdfs ® dfy, t € [0, g} :

and use complex coordinates
(t, eV 161 , e‘/?wQ) — (sin teV 101 , COS tem92>
to describe the isometric embedding
(0, g) xSt x S 8%(1) ¢ C2.
On S2(1/2) use the metric
sin?(2r)

dr @ dr+——"—d§ @ df, 1€ [o,q,

with coordinates

1 1
(r, eﬁe) — <2 cos(2r), 2sin(2r)e‘ﬁ9> .

The Hopf fibration in these coordinates looks like
(t,eﬁel,e‘/j%) — (t, eﬁ(el_%)) .
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On S3(1) we have an orthogonal framing

2 -2
cos® tdy, — sin” t0y
{801 +892)8t7 ! : 9

costsint
where the first vector is tangent to the Hopf fiber and the two other vectors have unit length.

On S%(1/2)
{* s6?)

is an orthonormal frame. The Hopf map clearly maps

8t — 87«,
cos? t0y, — sin® tdy, cos? rdg + sin? rdy 2 9
costsint cosrsinr ~ sin(2r) o
Hence, it is an isometry on vectors perpendicular to the fiber. o

The Levi-Civita connection V, : C®°(TM) x C*®°(TM) — C*(T M) is the unique

connection on 7'M that is compatible with the metric g and is torsion-free:
XY,Z2)) = g((Ve)xY,Z)+9(Y,(Vg)xZ), (2.2.5)
(Vgo)xY — (VoyX = [X,Y], (2.2.6)
where (Vg)xY = (VYY) (X) := V4(X,Y). The Levi-Civita connection is uniquely deter-

mined by the equation
20((V)xY.2) = X (g(Y.2))+Y(9(X,2)) - Z(g(X,Y)) (22.7)
+ g([Xa Y]7 Z) - g([Xa Z],Y) - g([Y7 Z]aX)

For any ¢ > 0 we have V .y = V. &

Let 2!, --- , 2™ be a local coordinate system. The Christoffel symbols of the Levi-Civita
connection are defined as
(VQ)aii ;2] = (Fg)?j(rka-
Then
Dyt = %gkl (0igej + 059ic — Ovgij) = %gké(l—‘g)ij,é. (2.2.8)

Here and throughout 9; stands for §/9z". We call {T'y};; x the Christoffel symbols of the first
kind, while (I‘g)fj the Christoffel symbols of the second kind. Classically the following notation

has also been used

= (T, lij, klg = Tg)ijn- (2.2.9)

g
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Letz',--- ™ andy',--- ,y™ are two local coordinate systems. Show that
Ly ozt oy ozt 0xd  9%ak
( g)aﬁaiyry - ( g)ij Dy 83/5 + ayaay,@'

If (M, g) is an m-dimensional Riemannian manifold, ¢ : N — M is an immersion, and
yl, -,y and 2t - - 2™ are local coordinates on N and M, respectively, then
Ty Ak ((F & ) 8ot . 82k
Y 9/aB 8y7 - g/ aya 8y6 8y0‘8y5’
where @' := 2% 0 . &

A vector field X along a path vy : [a, b] — M is parallel if
(Vg)sX =0

along +y; the vector field X (y(t)) is called the parallel translation of X (v(a)). We say that a

path v is a geodesic if the unit tangent vector field is parallel along ~:

(1)

A geodesic has constant speed if |}|, is constant along ~; in this case (V4):7 = 0.

If X is a parallel along a path vy, then | X |§ is constant along vy. Since V 4 is the Levi-Civita

Connection, it follows that
(Vg)ﬁ|X|§ = (Vg)y (X, X)g) =2 <(vg)"7XvX>g =0
because of (V4)3X = 0.

&
2.2.2 Curvatures
The Riemannian curvature (3, 1)-tensor field Rm, is defined by
Rmy(X,Y)Z := (Vg)x(Vg)yZ — (Vo)y(Vg)xZ — (Vg)x,y1Z- (2.2.10)
For any function f one has
Rm,(fX,Y)Z = Rmy(X, fY)Z = Rmy(X,Y)(fZ) = fRm,(X,Y)Z. (2.2.11)
If we define
(Vg)%<,YZ = (VQ)X(VQ)YZ - (Vg)(vg)XYZ
so that
Rmy(X,Y)Z = (VoiyZ— (Ve)¥xZ, (22.12)
(VoixyZ = (VokpwZ = [(VoikyZ, (2.2.13)
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and
(Vo)xy(fZ) = [(Ve)xyZ+Y(N)(Vo)xZ+X(f)(Ve)yZ  (22.14)
- ((Ve)xY) ) Z+ X (Y(f)) Z

for any function f.

Note that Rmy, is a tensor field but (Vg)a, is not. Also note that (Vg)%,, # (Vg)e(Vg)e. s

The components of the (3, 1)-tensor field Rm, are defined by

Ry (9;, 0;)0 == R0,
and Rijkg = gﬁprjk'

Rijie == Rmg(9;, 0;, Ok, 0p) := (Rmy(9;, 0;) 0k, Op),,

The quantities

are the components of Rmg as a (4, 0)-tensor field Rm,. Some basic symmetrics of the Riemann
curvature tensor are

Rijre = —Rjire = —Rijor. = Ryeij- (2.2.15)

The metric g introduces the inner product on C*° (M, A2M):

X, V), X, W

GXAYVAW) = det [ 95V 9T
g, V), g(Y, W)

and then extend it by linearity to all of C°°(M, A2M). From the symmetry properties of the

curvature tensor field we see that Rm, actually defines a symmetric bilinear map

Rm) : C®(M, A\’ M) x C®(M, N> M) — C*®(M) (2.2.16)
given by
Rm) (X AY,W AV) := Rmy(X,Y,V,W). (2.2.17)
The relation
g (Rmy(X AY),VAW):=Rm) (X AY,VAW) (2.2.18)

defines a self-adjoint operator
Rm, : C% (M, N’ M) — C®°(M, A2 M). (2.2.19)

This operator is called the Riemann curvature operator.

If IT C T,, M is a 2-plane, then the sectional curvature of 11 is defined by
Secy(II) := (Rmgy(eq, e2)e, €1>g = Rmy(e1,e2,€2,€1) = Rm;\(el A e, e1 A es)

where {e1, e2} is an orthonormal basis of II.
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If v and w are two vectors spanning 11, then

(Rmg (v, w)w,v),

5"
g

II) :=
Seco(ll) = BTl = (o, w)

Since v and 2 span the 2-plane 11, we can write
v=a'el +a’es, w=ble; + b2es.
By symmetric properties of Rmy, it follows that
(Rmg (v, w)w,v), = (a'b? — a2bl)2 (Rmg(e1, e2)ez, e1), -
On the other hand, we have

[lgmlwl — (v, w)g

g(p g

= ((@)*+ (@) ()" + ()7) - (@'0* + )" = (a'? - aB!)".
Hence we prove the identity.
Geometrically, the sectional curvature of a 2-plane 11 C T, M is equal to the Gauss

curvature at p of the surface spanned by the geodesics emanating from p and tangent to

LI (this surface is smooth in a neighborhood of p). &

For any v € T, M let
Rmgy(v) : TyLM — TyM, w +— Rmg(w,v)v (2.2.20)

be the directional curvature operator. This operator is also known as the tidal force operator.
Then

g Rmg(w)v,v) = g(Rmy(v,w)w,v) = Rmgy(v,w,w,v)

= ng(v/\w,v/\w) = g(Rmy(vAw),vAw).

The following properties are equivalent:
(1) Secy(Il) = k for all 2-planes 11 in T, M.
(2) Rmg(v1,v2)v3 = k(v1 A wv2)(vs) for all vi,va,v3 € Ty M.
(3) Rmy(w)(v) =k (v — (v, w)yw) forall v € TyM and |w|y = 1.
(4) Rmy(w) =k - w forallw € N*T,M.

Proof. (2) = (3): Calculate
Rmy(w)(v) = Rmy(v,w)w = k(vAw)w = k({(w,w)v— (v,w)yw)
= k(v—(v,w)w).

(3) = (1): Calculate

k(v —(v,w)qw),v)4
Sec() = LT =
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(1) = (2): We introduce the multilinear maps:
T(v1,v2)vs = k(v1 Av2)(vs),
T(’Ul,'l)z,'l}371}4) = <$<’U1,’l)2)1)3,1)4>g = k<(1)1 /\1)2)’1)3,’1)4>g.

The basic symmetries are

T(v1,v2)v3 + T(v2, v3)v1 + Z(vs, v1)v2 = 0,
(v, v2)v3 = —%(v2,01)v3,
T(vi,v2,v3,v4) = —T(vo,v1,v3,v4) = —T(v1,v2,v4,03)

= T(vs,vs,v1,02),
T(v1,v2,v3,v4) + T(v2,v3,v1,v4) + T(vs,v2,v1,v4) = O.
Now consider the map
S(v1,v2,v3,v4) := Rmg(v1,v2,v3,v4) — T(v1,v2,v3,04)
which also satisfies the same symmetry properties. The assumption that Sec, (II) = k implies
S(v, w,w,v) =0
for all v, w € T, M. Using polarization w = w1 + wo we get
0 = S(v,wi +wo, w1 +w2,v) = S(v,wi,ws,v)+ S(v,ws, w,v)
= 25(v,w1,w2,v) = —2S(v,w1,v,ws).

Using the symmetric properties, S is alternating in all four variables. Hence S = 0, which is
exactly what we wish to prove.

(2) = (4): Choose an orthonormal basis e; for T,M; then e; A ej, i < j, is a basis for
/\2TpM. Using (2) we have

<ng(ei A 6]'), er N\ ek>g(p) = ng(ei, €5, €k, eg)
= k <<€j, €k>g(p)€i — <€Z', €k>g(p)€j, e€>g(p) = k(ei ANej,ep N\ ek>g(p)
that implies

Rmy(e; Nej) = k(e Nej).

(4) = (1): If v,w are orthogonal unit vectors, then £k = (Rmy(v A w), w A v)y =
Secgy (v, w). O

A Riemannian manifold (M, g) has constant sectional curvature if the sectional curvature
of every 2-plane is the same. So for we only know that (R™, gcan) has sectional curvature zero.

Later, we shall prove that dr ® dr + snz (r)dsp—1 ® dsy,—1 has constant sectional curvature k.

Note 2.8

Show that

Ry, = Ol — 0T, + 10, ), = TH T, (2.2.21) .
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The Ricci tensor field Ric, is the trace of the Riemann curvature tensor field:

Rey(Y, Z) = try (X — Rmy(X,Y)Z).

In terms of an orthonormal frame e, - - - , e,,,, we have
Reg(Y,Z2) = > (Rmy(e;,Y)Z,e:),.
1<i<m

Its components, defined by
Rz’j = Ricg(o“’i, 8])

are given by

Rjy= Y Rij.

1<i<m
The Ricci curvature of a line L C T, M is defined by
Reg (L) := Ricgy(er, e1),

where e; € T, M is a unit vector spanning L. The scalar curvature is the trace of the Ricci

tensor field:

R, = Z Reg(ei, €).

1<i<m
Equivalently,
Rg = ginij-

Here (g%) := (g;j) ! is the inverse matrix.
We say a metric has constant Ricci curvature if the Ricci curvature of every line is the

same. We say (M, g) is an Einstein manifold with Einstein constant k, if
Rey = kg.

If (M, g) has constant sectional curvature k, then (M, g) is also Einstein with Einstein constant
(m — 1)k. The converse may not be true; three basic types are

(1) (8™ x 8™, dsy, ® dsy, + dsy, ® dsy,) with Einstein constant m — 1.

(2) The Fubini-Study metric on CP"" with Einstein constant 2m + 2.

(3) The Schwarzschild metric on R? x S?, which is a doubly warped product metric: dr ®

dr + ©%(r)df @ df + ¢?(r)dss @ dso with Einstein constant 0.

Given a metric g and a positive constant C, show that

ng’;) - ngg’l)’ Rm(é;)) = CRmE]ALO)? Recg = Reyg, Reg = C_le.

Note 2.10. (Geometric interpretation of tracing)

The trace of a symmetric 2-tensor field o is given by the following formula:

trg(a) = L /Sml a(v,v)do(v),

Wm

&




2.2 Metrics, connections, curvatures and covariant differentiation - 86 —

where S™~ 1 is the unit (m — 1)-sphere, mwyy, its volume, and do its volume form. For
any unit vector u, ﬁRCQ(u, u) is the average of the sectional curvatures of planes
containing the vector u. Similarly, 1 Ry(p) is the average of Rey(u,u) over all unit
vectors u € S™1 C T,M.

Choose an orthonormal basis ey, --- , e, such that o = Zlgz‘gm Aie; @ ef. Then

trg(a) = X 1<icm Ai and

1 2
o Sm71<v’ ei)gdo(v) = 1.
Therefore
1 1
— a(v,v)do(v) = — Aier @ el (v,v)do(v
— [ a@ode) Wm/smzm ! (0,0) do (o)
1
- ¥ a2 [ doduaem)
B m J§m-1
1
- 3 (/ <v,ei>3da(v)> = 3 N = (o).
1<i<m Wm Jgm-1 1<i<m
Using this formula we can prove the rest facts. &

2.2.3 Covariant differentiation
Acting on (0, s)-tensor fields, we define covariant differentiation by
(vg(],s)) . O (M, ®STM) EENoLS (M, ®STM)
X
where

(Vg‘)vs))x(&@---@&) =Y Z1®-®(V)xZi® - @ Z.

1<i<s

The covariant derivative of an (, s)-tensor field « is defined by

((v5) o) 0hy 1) = (V)R (@i, 1)
= Y ai, (Vy)x YY), (22.22)
1<i<r

Let "M = @"T* M ® ®°T M. The covariant derivative may be considered as
vér,s) : COO(M,®T,SM) SN COO(M, ®T+1,5M)’

where
(Vi) a) (X 21, 2) = ((vg“))x o) (21, 2p),

or equivalently,
Vg"’s)a = Z dx' @ (Vg"’s)>ia.

1<i<m
As an application, we prove

V204 =0, (2.2.23)
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Indeed, by definition,
(ve05) 02 = ((4),0) 122

- (v(OO) (9(Z1,Z2)) — 9 (Vo) x 71, Za) — g (Z1, (V) x Z)
= X (9(Z1,22)) — X (9(Z1,Z2)) = 0.

In general, we say a (r, s)-tensor field « is parallel if Vg’s)a = 0. Thus, g is parallel.

We consider the composition of two covariant derivatives
V§T+1’S) o Vg‘,s) . Coo(M’ ®7‘,SM) N COO(M, ®r+2,sM)
is given by

(V5190 V) ) (X, 21+, Z0) = (Vi) (Via) (v, 2, -, 2)

= (VP ((V9a) (v 21,0, 20)) = (V) (Vo)xY 2, . 20)

_ <V§T’S)Oé) Y, Z1,- (Vo) xZiy -+, Zr)
1<i<r

_ (véo,s))x (((Vér’s))Y05> (Zy,- - 7Zr)> _ ((Vg"’s))(vg)xYa) (Z1,--+, Zy)
- Z ((vérﬂs))ya) (Zy,-+ (V) xZiy- -+ 5 Zr)
=1

= ((V5Nx ((95)va)) (21 20 = (V) wpxve) (21, Z0).
If we write

(V5 x 0 (V) ) @) (Zio-, Z) = (V5T 0 Vo)) a) (XY, 21, Z0),

then

(V59 x 0 (V5)y ) @ = (V) x ((75)yva) = (75w, ve.

rs)

Throughout this note, we write V 4 instead of V 4

Hence
(Vo xye = (Vo) x(Vova = (Vg)(v,)xva

If 5 is an (r, s)-tensor field, then we define the components V; 6;“11 jks of the covariant

derivative V43 by
Vi B, @ @ 0k, = (V)a,B) (0105,
‘We then have

pk1ks ki-ks Z Z 9 k1-ks
vlﬁjl"'jr - ’611 Jr %Jpﬁl Jp—1€iptr1-gr (2.2.24)

1<p<r 1<qg<m

k1-kp—1qkpt1- ks
p P— P
+ D > TigBl

1<p<s1<qg<m
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For any 2-form 3 we have
ViBjr = 0iBjr — Ffjﬁzk — T Bje.
If 3 is a 4-form, then
ViBinep = 0iBjnty — T0iByrty — TiBivty — ToyBitep — U Bikep-
iPjklp 1P jklp ij P pklp ik iplp il jkpp ipljkep

We

VZ-ij = (nggf)(&, 83) = aza]f - Ffjakf
and more generally for a 1-form o = a;da?,

Viaj = 8iaj — Ffjak.
Since V,f = df = 0, fda’, it follows that ¥V ; f can be viewed as a 1-form so that the two

formulas coincide with each other in this case.

&

Let o, ...;, denote the components of an (r, 0)-tensor field «:
Qjyoiy = (O, o0, 0,)
We denote the components of V’g“a by Vj, - -V, ..., that is,
VoV e, = (v’;a) @jrs 1 0js Oiyy e 0h)
For example, if « is a 1-form, then
ViVier = Vi(9j0r ~ Thar)
= 0;0;04 — I’fjagak - I‘fkajozg - Vifgk Sy — I’?k (81-044 - I’Zap) ;
note that
Vil), = 015, — T T — TH TS, + 15,17,
Therefore
ViVja, = 0;0ja — <Ffj8gak + kaajag + ka,@iag)
— (T, — T~ TR, ) ax.

Similarly, we can define the multiple covariant derivatives of an (r, s)-tensor field.

2.2.4 Holonomy

Given a path v : [a, b] — M from p to g, parallel translation along - defines an isometry
by (TpyM, gp) — (TyM, gq) -

Given a point p € M, the set of isometries induced by parallel translation along contractible

loop based at p is a group, called the restricted holonomy group Holg(M, g).
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Show that

Hol(()phm)(/\/lrl’"”1 X M52 g1+ g2) = Holgl( )+ Holg2( 52, 92).

&

If £, C T, M is a subspace invariant under parallel translation, then E, the orthogonal
complement in 7), M, is also invariant. Consequently, the action of Holg(/\/l, g) on T'’M induces
a bundle decomposition

TM=E@-- D&, (2.2.25)

where &; are subbundles invariant under parallel translation such that for each p € M,
M= (51)10 TR (&c)p

is the decomposition of 7, M into its irreducible invariant subspaces with respect to the action

Holg(/\/l, g). We call the splitting (2.2.25) the irreducible holonomy decomposition of 7M.

Theorem 2.1. (De Rham holonomy splitting theorem)

Let (M, g) be a complete, simply-connected, m-dimensional Riemannian manifold. If

TM =& & - @& is the irreducible holonomoy decomposition of T M, then (M, g)

splits as a Riemannian product, where £ = TN,

(M7g) = (Nl X Nkvgl++gk)

@
2.3 Basic formulas and identities
Introduction
[ Bianchi identities (1 Commuting covariant derivatives
(1 Lie derivatives (A The fundamental curvature equations
2.3.1 Bianchi identities
The first and second Bianchi identities are
Rijre + Rjkie + Rrije = 0, (2.3.1)
ViRjkep + VjRiiep + Vi Rijep = 0. (2.3.2)

For any vector fields X,Y’, and Z, we have (where we set V = V)
Rmy(X,Y)Z + Rmy(Y,Z)X + Rmy(Z, X)Y
= VxVyZ -VyVxZ7 — V[X’Y]Z +VyVzX —VzVy X — V[Y,Z]‘X

+VzVxY —VxVzY — V[Z,X]Y

= Vx (VyZ — V2Y) + Vy (VzX — VXZ) +Vy (ny — VyX)

——————— O (D) O
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— (V[ny]Z—l- V[Y,Z}X + V[Z,X}Y)
= Vx|V, Z]+ Vy[Z, X]+ Vz[X,Y] = (Vixy1Z + VX + VizxY)
= [Xa [Y> ZH + [Y7 [ZvXH + [Zv [Xa YH = 0.

Setting X = 0;, Y = 0}, and Z = 0y, yields (2.3.1). For the second Bianchi identity, one can
write down the expression of R;jx; in terms of the metric components, then calculus the right

side of (2.3.2).

The twice contracted second Bianchi identity is

29"V;Rj;. = ViR,. (2.3.3)

In fact, multiplying the second Bianchi identity (2.3.2) by ¢®?¢7¢ implies
0= —g'"V;Rip — ¢"'V; Ry + ViR,
By rearranging the terms, we obtain (2.3.3). Using the convenient notation V7 := ¢“/V,, we can
rewrite (2.3.3) as
V/Rj), = %kag.
If we introduce the Einstein tensor En, = Rey — 3 R,g, then
divy (Eng) = 0.

This is because

| R 1
(divy(Eng)), = ¢”V; <Rjk — Qggjk> =g"ViRj, — kaRg =0.

The (once contracted second Bianchi identity) is
— (divg(Rmy)), ), = VP Rjkep = 9" ViRjrep = VR — Vi Rjp. (2.3.4)
Multiplying (2.3.2) by g7, we get 0 = VPRjrep — ViR + Vi Rjy that implies (2.3.4).

(1) If g is an Einstein metric, i.e., R;j = %Rggij, and m > 3, then R is a constant. Note
that any Riemannian metric on a surface is always Einstein.

(2) If m > 3 and the sectional curvatures at each point are independent of the 2-plane,
that is, if

R
Rijre = m(Tg_l)(giegjk — Gikgje)s

then R is a constant.

Proof. (1) Using (2.3.3) we obtain
1 - 1
§VkRg - V]R]k - EVkRg

If m > 3, it follows that VR, = 0 for any k and hence R, is a constant.
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(2) We use (1) by computing

R

, R
4 g g
Rjk =9 Rz‘jké = m(mgjk - ij) = Egjk'

Therefore R, is a constant. O]

2.3.2 Lie derivatives

A vector field X is complete if there is a 1-parameter group of diffeomorphisms (¢¢)icr
generated by X. If M is closed, then any smooth vector field is complete. Let a be an
(r, s)-tensor field and let X be a complete vector field generating a global 1-parameter group of
diffeomorphisms ;. The Lie derivative of « with respect to X is defined by

o — ()
; .
Here (¢t)sp @ TpM — T M is the differential of ¢ at p € M. It acts on the cotangent

ZLxa :=lim (2.3.5)
t—0

bundle by (¢¢)«p := (cpt_l):;t(p) t TyM = 17 () M. We can then extend the action of ().
to the tensor bundles of M. The definition (2.3.5) extends to the case where X is not complete
and only defines local 1-parameter groups of diffeomorphisms. Some basic properties of the Lie
derivative are

(1) If f is a function, then Zx f = X f.

(2) If Y is a vector field, then ZxY = [X,Y].

(3) If « and g are tensor fields, then Zx (o ® §) = (Lxa) @ B+ a & (LxP).

(4) If a is an (r, 0)-tensor fields, then for any vector fields X, Y7, --- ,Y;,
(gXa)(YVlﬂvy;') = X(a(Yla"' ay;“))

- Z a(Ylv'” 7Y’i—17 [X7}/i]7}/i+17"' 7YT‘)

1<i<m

= (Vxa)(Y1,-- V) (2.3.6)
+ Z OZ(Yl,"‘ 7}/7;*1’vy7;X,}/i+17"' 7}/7')

1<i<m

If o is a 2-form, then
(Zx) (0;,0;) = X ((9;,0;)) — a([X,0:],0;) — (05, [X, 95])
= Xaij — (—aiX‘Z . 85, 8]') — ((%, —8]‘X€ . 8,5)
= XOéij + (92')(Z S0y + (9sz Sy = VonZ-j + VI'XZ CQyy T+ VjXZ s Qg

where we use the formula dpcvj = Vo + I ap; + T i Ctip.

Given a diffeomorphism ¢ : M — M, we have ¢, : T;(p)./\/l — Ty M. The pull-back

acts on the tangent bundle by p, = (90*1)*#,(1,) : TyyM — TpM. These actions

extend to the tensor bundles of M. Show that definition (2.3.5) is equivalent to

. Yla—« d N
Pya=lim —— = — .
. t1_r>1(1) t dt t:O(pta Y




2.3 Basic formulas and identities -92 -

The gradient of a function f with respect to the metric g is defined by

g (gradgf, X) = Xf=df(X).
We shall also use the notation V4 f to denote grad, f. In local coordinates,

df = 9 fda’, gradyf = g9;f9;.

Note 2.15. (Lie derivative of the metric)

The Lie derivative of the metric is given by
(Zx9)(Y1,Y2) = g (Vy; X, Y2) + g (Y1, Vi, X) (2.3.7)
and that in local coordinates this implies
(Zx9)ij = ViX; + V;Xi, X = giX".
In particular, if f is a function, then

(arna19), = 29:9,1. (238)
Actually, (2.3.7) follows from Vgg = 0. Let X = grad,f, by using (2.3.8) we have

X; = 0;f so that we prove (2.3.8).

For any 1-form o = oyda?, we write
of = g0
Then (df)? = grad, f. Also note that (2.3.8) has a short expression
L9 = 2V§f = 2Hessy(f), Hessy(f) = .Z%(df)ug.
Correspondingly, to any vector field X = X'0; we associate a 1-form X" defined by
X’ = g X'da?.

In terms of this notation, (2.3.7) equals (Lx)i; = Vi(X?)j + V;(X°);.

For any diffeomorphism o : M — M, tensor field o, and vector field X,
P (Lxa) = Lox(p ), (2.3.9)
and if f : M — R, then
" (grad, f) = grad,. (" f) (2.3.10)

where ©* f 1= f o . O

Proof. Let i, be a 1-parameter group of diffeomorphisms generated by X. Calculate

* _ * [ 1: ¢ZFOZ — G T 90*(¢Za) — gp*a
) = o (i) = S

* ook —1 kok ok
_ g Wre@lemvla ) (T oviolvla—vta

*
50 t 50 t pra)

——————— O (D) O
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where Y is the vector field generating the 1-parameter group of diffeomorphisms =1 o 1; o .

For any point p € M, we have

Yo) = 4 (e ovion)) = (67

" dt =0
= (¢ )X(e) = (" X))
Forany p € M and X € T, M, we have
(¢"(grad,f), 0+ X) . (p) = (grad,f, X)g(¢(p))
= (X)) = (X)) = (gradg,(¢"f), " X) . (p)-

Thus we prove (2.3.10). ]

If o1 : M — M is the 1-parameter family of diffeomorphisms and « is a tensor field, then

Yt 0 p(p)

O ((p;tka) - D%Xt ((p;tka) 9 (2.3.11)
where
Xio 1= 8t|t:0 (‘Pa)l © @t) = (90;)1)* 8t|t=090t.
Here we have not assumed that @, is a group. &

Definition 2.1

We say that a diffeomorphism v : (M, g) — (N, h) is an isometry if *h = g. If we do

not require 1 to be a diffeomorphism, then ) is called a local isometry. Two Riemannian

manifolds are said to be isometric if there is an isometry from one to the other. &

We say that a vector field X on (M, g) is Killing if Zxg = 0. If X is a complete Killing
vector field, then the 1-parameter group of diffeomorphisms ¢, that it generates is a 1-parameter

group of isometries of (M, g). Indeed,

O (¢i9) = ZLorx(pig) = ¢i (Lxg) = 0.

Note 2.18

(1) Prove the Jacobi identity
(X, [Y, Z]] + [V, [Z, X]]| + [Z,[X, Y]] = 0
for vector fields X,Y, Z as follows: Let o : M — M be the 1-parameter group of

diffeomorphisms generated by X and take the time derivative at t = 0 of the "invariance

of the Lie bracket under diffeomorphism" equation
oilY, Z] = [0}Y, o1 Z].
(2) (Kazdan, 1981) Prove the twice contracted second Bianchi identities by considering

the diffeomorphism invariance of the scalar curvature and Riemannian curvature tensor.

(a) To obtain the twice contracted second Bianchi identity (2.3.3) we use the equation

DRy (Lxg) = LxRy = X'V,R, (2.3.12)
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where D Ry (ZLx g) denotes the linearization of Ry in the direction L g.
(b) To prove the second Bianchi identity (2.3.2), we use

DRmy(Lxg) = LxRm,. (2.3.13) 2

2.3.3 Commuting covariant derivatives

The Ricci identities are

(VN]- - Vjvi)akl...kr = — Z Rfjkrakl“'szlpkqumkr' (2.3.14)
1<e<r

If v is a 1-form, then
(ViVj = V;Vi)ar = —Rijay.

If 3 is a 2-form, then
ViViBre — ViViBre = =Ry Bpe — R Brp-

The vector space of Killing vector fields is a Lie algebra. &
. AArls g el p Lyl
ViVia e = ViVied e = = Y D R ol e

1<k<r1<p<m

Ll L1l _1plpyr-ls
+ Y Y R (2.3.15)
1<h<s1<p<m

&

2.3.4 The fundamental curvature equations in Riemannian geometry
Let (M, g) be an m-dimensional Riemannian manifold. If f : M — R is smooth, we
define a self-adjoint (1, 1)-tensor by
S C®(M,TM) — C°(M,TM), X — (Vg)xV,f. (2.3.16)
Then the Hessian of f can be written as
Hoss, f(X,Y) = g (S7(X),Y).

We say thatamap r : i/ — R, where Y C M is open, is a distance function if |Vgr]g =1

on Y. Distance functions are solutions to the Hamilton-Jacobi equation

|Vgr|§ =1.

(1) On (R™, gean) and a fixed point y € R™, we define

’I”(l’) = ’:E - y|gcan'

——————— O (D) O
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Then r(z) is smooth on R™ \ {y} and has |V 1.
(2) More generally, if M C R™ is a submanifold, then it can be shown that

r(z) = d(z, M) = inf{d(z,y) : y € M}

Jean r‘gcan

is a distance function on some open setUd C R™.
(3) On I x M, where I C R, is an integral we have metrics of the form dr? + g,, where

dr? is the standard metric on I and g, is a metric on {r} x M that depends on r. In this

case the projection I x M — I is a distance function. o

Givenr : U — I C R, then r is a distance function if and only if r is Riemannian

submersion.

Proof. From dr(v) = g(V,r,v), we see that v L Vgr if and only if Dr(v) := dr(v)0;, where
0y is the basis for 7'1. Thus, v is perpendicular to the kernel of Dr if and only if it is proportional

to Vyr. For v = aV4r, we have

Dr(v) = aDr (Vyr) = ag (Vgr,Vgr) 0;.
Since Oy has length 1 in 7, it follows that

[olg = la] [Vgrl,, [Dr(v)| = |al[Vyrl?.

Thus, 7 is a Riemannian submersion if and only if [Vgr| = 1. O

Let us fix a distance function r : &/ — R and an open subset i/ C M of an m-dimensional

Riemannian manifold (M, g). The dual of the gradient V7 will usually be denoted by
Oy = g 0;10;. (2.3.17)
This is a tangent vector field over U{. The level sets for r are denoted
U ={z el :r(z)=r}, (2.3.18)
and the induced metric on U, is g,. Set
Sgr(*) = Vg0,
so that

Hessgr(X,Y) = g (Sy,-(X),Y).

Sy, stands for second derivative or sharp operator or second fundamental form. The last two
terms are more or less synonymous and refer to the shape of (U4, g,) in (U, g) C (M,g). The
idea is that S, = V40, measures how the induced metric on 4, changes by computing how the

unit normal to U, changes.
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Example 2.8

Let M C R™! be an orientable hypersurface, v the unit normal, and S, the sharp

operator defined by
Sy,(V)=Vyv, VeC®M, TM)

where V =V
hence M is an open subset of the hyperplane

If S, = 0 on M then v must be a constant vector field on M, and

Jcan*®

H={z+pcR™  2.1y,=0},
Recall our isometric immersion or embedding (R™, gean) — (R™ L, gean) defined by
(@ 2™ — (), a?, o ™)
where v = (v},7?) : R — R2 is a unit speed curve. In this case,
v = (v(z),0,---,0)
is a unit normal, where v(z") is the unit normal to  in R2. Then
v=(-%*("),3'(z"),0,--- ,0)
in Cartesian coordinates. Calculate
Vv = —d(#)@d+d(3")®0 = —5%dz' ® 01 +5'da' ® 0,
= (=4%01 +4'0s) ® dz'.

Thus, S, = 0 if and only if ¥* = 4% = 0 if and only if vy is a straight line if and only if M

is an open subset of a hyperplane. o

Theorem 2.3. (The radial curvature equation)

IfU C (M, g) is an open set and r : U — R a distance function, then

(vg)arsg,'r‘ =+ S;r = _ng(ar)- (2.3.19) o

Proof. 1If X is a vector field on U/, then
((Vg)o, Sg.r) (X) + S5.,.(X) = (Vg)a, (Sg.r (X)) = Sg.r (Vg)o, X) + S5 - (X)
= (V9)a,(Vg)x0r — (V) (v,)5,x0r + (Vg)(v,)x8.9r = (Vg)a,(Vg)x0r — (Vg)ia,,x10r;
and
_ng(ar)(X) - —ng(X, 87«)870 = _(Vg)X(Vg)r?rar + (Vg)ar(vg)Xar - (Vg)[ar,X]@“

To finish the proof we shall check what happens to the term —(V ) x (Vg)s, Or. By definition of

the distance function, we have

93 ((Vg)s,0r,Y) = g(Sgr(0r),Y) = Hessyr (Y,0,) = Hessyr(Y,0,)

= 908 1).0) = 9(Tov0ndr) = 3(Tovg(0,0,) = S(Vyvl

for any vector field Y on Y. In particular, (V4)5,0, = 0 onU. O

——————— O (D) O
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Each vector v on the level set U, can be decomposed into normal and tangent components:
v=v" +ovt=-g(0a)0)+g(v,d)0,. (2.3.20)
The decomposition is a direct sum since
g —9g(,0)0,g(v,0,)0) = g(v,g(v,0,)0r)—g(g(v,0)0r,g(v,0)0;)
= 9(,9,)* = 9(v,0,)°9(r,0;) = 0.

Theorem 2.4. (Tangent curvature equation)

For tangent vector fields X, Y, Z, W on the level set U,, we have

(Rmg(X,Y)2)T = Rmg, (X,Y)Z — (S4,-(X) A Sgr(Y)) (2),
Rmy(X,Y,Z,W) = Rm, (X,Y,Z,W)—1l, (Y, Z)I, (X, W)
+ 11, (X, Z)IL, (Y, W),

where

Iy, (U, V) := Hessyr(U, V) = g (54, (U), V)

is the classical second fundamental form. v

Proof. If X,Y are vector fields that are tangent to the level set I/, then we claim that
(Vg,)xY = (Vy)xY + 11, (X,Y)0,. (2.3.21)
By definition, we have
(Vg )xY = (Vo)x¥)' = (Vg)xY = g((Vg)xY. ;) 0r.
Since Y L 0,, it follows that
0=(Vg)xg(¥,9:) = g((Vg)xY,0r) + g (Y, 5,(X))
and hence
(Vg )xY = (Vg)xY +g(Sy.(X),Y) 0 = (Vg)xY + 11, (X,Y)0,.
Using (2.3.21) yields
Rmy(X,Y)Z = Rmy, (X,Y)Z = (54+(X) A Sg.r(Y)) (2)
+9(=((Vg)xSgr) (V) + (Vg)y Sgr) (X), Z) - O

This establishes the first part of each formula. The second part follows from the definition. [J

Theorem 2.5. (The normal or mixed curvature equation)

For tangent vector fields X,Y, Z on the level set U,, we have
ng(X7 Ya Za 87“) = g (_ ((VQ)XS!J;T) (Y) + ((vg)YSg,r) (X)a Z)
= —((Vo)xlIly,) (Y, Z2) + (Vg)v1ly,) (X, Z).

Proof. Use the similar method in the proof of previous theorem. O

——————— O (D) O
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If B(-,-) is a symmetric 2-form and %, (-) the corresponding self-adjoint (1, 1)-tensor field

defined via
g (‘@Q(X)vy) = B(Xv Y>7

then the square of 4 is the symmetric bilinear form corresponding to %’3
BY(XY) =g (%5(X).Y) = g(B,(X), Z4(Y)) .

Note that this symmetric bilinear form is always nonnegative, i.e., B%(X, X) > 0 for all X.

For example, if B(-,-) = Hessyr (-, -), then B,(-) = Sgr(-) = V40r.

If we have a smooth distance function r : (U, g) — R and denote grad r = Or, then

féarg = Hessyr,
((Vg)a,Hessyr) (X,Y) + HessZr(X, Y) = —-Rmy(X,0,,0,,Y),
(ZLp Hessyr) (X,Y) — Hessf]r(X, Y) = —-Rmy(X,0,,0,,Y).

Proof. We have proved (V)g, 0, = 0 in the proof of Theorem 2.3. Keep in mind that (V) x 0,
is the self-adjoint operator corresponding to Hess,r. Using the radial curvature equation, we

obtain
((Vg)a Hessyr) (X,Y) = 0OpHessyr(X,Y)—Hessgr ((Vg)o, X,Y)—Hessgr (X, (Vg)a

Y)
= 99 ((Vo)x0r,Y) = 9 (Vo)(,5,x0 Y ) = 9 (V) x0r, (Vg)3,Y)

= 9((Y9)0,(V)x0.Y) = 9 (V)95 x0n, )
+9 ((Vg)XaTa (vg)ary) -9 ((Vg)Xara (vg)ary)
= g (Rmy(9r, X)0:,Y) — g (V) (vy)x0,0r Y)

= —Rmy(X,0,,0,,Y)—g((Vy)yOr,(Vy)x0:) = —Rm, (X,ar,aT,Y)—Hessgr(X,Y).

Similarly, we can prove the third equation. 0

A Jacobi field for a smooth distance function 7 is a smooth vector field J that does not
depend on r, i.e., it satisfies the Jacobi equation

L. J =0. (2.3.22)

This is a first-order linear PDE, which can be solved by the method of characteristics. Locally we
select a coordinate system (r, 22, - - - , ™) where r is the first coordinate. Then J = a" 0, 4 a'0;

and the Jacobi equation becomes

0=%p,J =L ("0, +a'0;) = 9,(a")0; + 0,(a");.
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Thus the coefficients a”, a’ have to be independent of 7. Since
_ng(J’ 8r)ar = ng(8r7 J)ar = (vg)ar (vg)Jar - (VQ)J(vg)araT - (vg)[ar,J]ar

(V9)a.(Vg)s0r = (Vg)ia,n0r = (Vg)a.(Vgla,J = (Vg)o,10r, J] = (Vg)ia,,.00r
it follows that (2.3.22) satisfies a more general second-order equation, also known as the Jacobi
equation:

(Vg)a.(Vg)a,J + Rmy(J,0,)0, =0. (2.3.23)
If J1 and .J5 are Jacobi fields, then
O (9(J1,J2)) = 2Hessgr(Ji, J2),
Oy (Hessgr(Ji, J2)) — Hessgr(Jl, J2) = —Rmy(Ji, 0,0, J2)

according to Proposition 2.2.

A parallel field for a smooth distance function r is a vector field X such that

(Vy)o, X = 0. (2.3.24)

This is a first-order linear PDE and can be solved in a similar manner. However, one crucial
difference is that parallel fields are almost never Jacobi fields.

If X1, X are parallel fields for a smooth distance function r, then
o (9(X1,X2)) = 0,
Or (Hessgr(X1, X2)) + Hessgr(Xl, X2) = —Rmy(Xy1,0,0r, X2).

2.4 Examples

Introduction

Jd Warped products (d Metrics on Lie groups

[ Hyperbolic spaces (1 Riemannian submersions

Let (M, g) be an m-dimensional Riemannian manifold. Recall operators Rm;\ and Rmy:
Rm) : C°(M, N’ M) x C®(M,N°M) — C®(M),
(XAY,VAW) — Rmy(X,Y,W,V),
Rm, : C°(M, A’ M) — C®°(M, A\’ M),
gRmy (X AY),VAW) = Rm)(XAY,VAW)

Let {e;}1<i<m be an orthonormal basis for T,M. If {e; \ e;}1<i j<m diagonalize the

Riemann curvature operator

ng(ei N €j) = /\ijei Aej
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then for any plane 11 in T, M we have Secy(II) € [min; ; \;j, max; j Ajl.

@
Proof. If v, w form an orthonormal basis for II, then we have
Secy(Il) = g (Rmy(v Aw),v Aw).
In this situation, the result is immediate. O

Proposition 2.4

Let {e; }1<i<m be an orthonormal basis for T, M and suppose that Rmg(e;, ej)er, = 0 if

the indices are mutually distinct; then e; \ e diagonalize the Riemann curvature operator.

v

Proof. If we use
g (Rmg(e; Nej),er Aey) = —g(Rmg(e;, ej)er, er) = g (Rmg(e;, ej)er, ex),

then we see this expression is zero when ¢, j, k are mutually distinct, or if ¢, j, £ are mutually

distinct. Thus, the expression can only be nonzero when {k, ¢} = {7, j}. O

Proposition 2.5

Let {e; }1<i<m be an orthonormal basis for T, M and suppose that

g (Rmg(e;i, ej)er, eq) =0

if three of indices are mutually distinct, then e; diagonalize Re,.

Proof. By definition, we have

9 (Reg(es), €5) = Z g (Rmy(e;, ex)ex, €5) -

1<k<m
If i # j, then g (Rmy(e;, e )ex, e;) = O unless k is either ¢ or j. If k = ¢, j, then the expression

is zero from the symmetry properties. Hence, e; must diagonalize Rc,. O

2.4.1 Warped products

In this subsection we consider the rotationally symmetric metrics, doubly warped products,

and the Schwarzschild metric.

Example 2.9. (Spheres)

On (R™, gcan) we have the standard distance function r(x) = |x| and the polar coordi-

nate:

Jcan — dr &® dr + gr = dr X dr + 7”2d8m_1 X dSm_l,

where ds,;,_1 ® dsy,_1 is the canonical metric on Sm_l(l). The level sets are U, =

S™=L(r) with the induced metric g, = r>ds;,_1 @ dsy,_1. The gradient is

1 .
87« = —x’&i.
r

——————— O (D) O
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Since dsy,—1 ® dspy—1 is independent of r we compute the Hessian as follows:
2Hessg.,.71 = Z5,9can = Lo, (dr @dr)+ L, ('r2dsm_1 ® dsm_l)
= O (r)dsy_1 ®@dspm_1 = 2rdsy_1 @dspm_1 = 2%gr.
Hence Hessg,, .7 = % gr. The tangent curvature equation then tells us that

1
Rmy (X,Y)Z = 2 (- (Y, 2)X — g, (X,2)Y).
If particular, if e; is any orthonormal basis, we see that Ry, (e;, e;)er, = 0 when the
indices are mutually distinct. Therefore, (S™ (1), gean ) has constant sectional curvature

7%, provided that m > 3.

Example 2.10. (Product spheres)

Consider the product spheres

1 1 1 1
S, xSyt :=8" (%> x 8™ <%) = (S” x 8™, adsn ® dsp + Bdsm ® dsm) .

Let g = %dsn ®dsy, + %dsm ® dsy. If X, Y are tangent to S™ and U,V tangent to S™,

o

Rm,(XAV)=0, Rmy(XAY)=aXAY, Rmy(UAV)=bUAV.
By Proposition 2.3, all sectional curvatures lie in the interval [0, max{a, b}]. Moreover,
Reg(X) = (n—1)aX, Rey(V)=(m—1)bV, Ry=n(n—1)a+ m(m—1)b.

Therefore, S;; X S} always has constant scalar curvature, is an Einstein manifold exactly

when (n — 1)a = (m — 1)b (which requires n,m > 2 or n = m = 1), and has constant

sectional curvature only whenn = m = 1. o

Example 2.11. (Rotationally symmetric metrics)

Consider the metric of the form

dr @ dr + g02(7“)d5n_1 ®dsp_1 = dr @dr + g,
on (a,b) x S"~L. Then the Hessian of the distance function r is
0,
Hessgr = 71—spgT.
P

If X is tangent to S™~ Y, then

1-¢% ¢
Rey(X) = [(n—2 - = X
a(X) = [( ) 22 -
if X = Oy, then )
Rey () = —(n — 1) 20,
®
For the Riemann curvature operator, we have
. 1 _ .2
Rm, (X A9,) = —gx Ady, Rmy(XAY)= Sof XAY

——————— O (D) O
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for any vector fields X,Y tangent to S"~ . Thus, all sectional curvatures lie between the
two values —% and 1—;35. When n = 2, we have Secy = — %, since there are no tangential
curvatures.

(a) For the metric

dr @ dr + sni(r)dsn_l ® dsp_1

on S" (\/ig) since @(r) = sny(r), we see all sectional curvatures are equal to k.

(b) If the metric g is Ricci flat, then

. 1 _ .2

Lo0=(n-2—F
¥ 2

Ifn > 2, we must have $ = 0 and > = 1. Thus @(r) = a £ . In case n = 2, we

_®
¢

only need p = 0.
(c) If the metric g is scalar flat (n > 3), then
¢ n—2 1—¢?

2(n—1) [-=+ = 0.
o 2 °
Thus, we suffices to solve the equation
L, o n=2 .
—pp+ —5— (1-¢?%) =0.
Introducing the variables
p=G(p)

we find that the above ODE reduces to the first-order equation
-2
GG+ ”Tu —GY =0
Using the separation of variables, we see that G and ¢ are related by

$* =G =1+Cp" ™

[ )
Example 2.12. (Doubly warped products)
Consider the metric
(I x 8P x 8%, dt ® dt + ¢*(r)ds, ® dsp + 1h*(r)dsy ® ds) -
The Hessian is
Hessyr = (0rp) pdsp ® dsp + (0r1) dsq @ dsg.
Let XY be tangent to SP and V, W tangent to S¢. Then
= _ ¢ _ ¥ _ Y
my(0,ANX) = —=0,AX, Rmy(0,AV) =—-=0,AV, Rmy(XAV)=—-—"—XAV
@ Y et
1— ¢2 1— T,Z)Q
Rm,(X ANY) = 2 XAY, Rmy(UAV) = 7 UNAV.
Moreover,
g 9 P 1-¢? ¢
Rey(0r) = (—-p=—q=|0r, Rey(X) = [—=+(p—1 —q— | X,
9(0r) <s01/1> (X) ((p( )cpg "

——————— O (D) O
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Re,(V) = (—f+«q—n

w2 Poy

1—9% o4
7 )V

Example 2.13. (The Schwarzschild metric)

We wish to find a Ricci flat metric on R? x S2. Let p = 1 and q = 2 in the above doubly

warped product case. This means we have to solve the following equstions

_Z_9r —
_EX_ofr _

=, L — X

The first equation yields (Q,[) /) = « for some constant o.. Hence the above system of
equations reduces to
2 — (1= 9?)
. 4 2 . 2
__ 4t

o 1-—a2p?

v o= ap.

|
o

One of solutions is ¥(r) = r and ¢(r) = 1/a. To get more complicated solutions we can
assume % = G(¢). Then G = 1+ Cy~! for some constant C € R. Turning back to

the system of equations, we obtain lots of solutions.

[ )

2.4.2 Hyperbolic space

Example 2.14. (The rotationally symmetric model)

Define g to be the rotationally symmetric metric dr @ dr + sinh? (r)dsm—1 ® dspm—1 on

R™ of constant sectional curvature —1.

Example 2.15. (The upper half plane model)

Let

[ )

H™ = {(z!,--- ,2™) e R™: 2™ > 0}

and let
_ dr'! @del + - + de™ @ dx™
a (am)2

Introducing r := In (z™), we find the metric g can be written as

g=dr®dr+e” (dz' ®da' +--- + da™ @ da™) .

This metric has constant sectional curvature —1. o

——————— O (D) O
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Example 2.16. (The Riemann model)

If (M, g) is an m-dimensional Riemannian manifold and  is positive on M, then we get

a new Riemannian manifold (M, p?g). Such a change in metric is called a conformal
change, and ©? is referred to as the conformal factor. On the upper half plane H™ we
can ask when

cp2-(d:c1®dw1+---+dasm®dwm)

has constant sectional curvature? o

Note 2.21. (The Euler and Navier-Stokes equation on H?)

Recently, Khesin and Misiolek® showed that non-uniqueness of the Leray-Hopf solutions

of the Navier-Stokes equation on the hyperbolic plane H? observed by Chan-Czubak is a
consequence of the Hodge decomposition, and however, this phenomenon does not occur
on H™ whenever m > 3.

Let (M, g) be a complete Riemannian manifold and consider the Lie algebra g,0 =
Vecty 0(M) of (sufficiently smooth) divergence-free vector fields on M with finite T2
norm with respect to g. Its dual space 92,0 has a natural identification to the quotient
space Q}/Q’g (M) \W of the L? 1-forms modulo (the L? closure of) the exact
1-forms on M. The pairing between cosets [a] € 9}1279(/\/1) \ dQOLg’g(M) of L? 1-forms
a € Qi27g(/\/l) and vector fields X € Vecty o(M) is given by

(Lo, w), = /M (exa) dV,

where vx is the contraction of a differential form with a vector field X. Note that this

definition is independent of the choice of representatives. Let

99,0 — g0
denote the inertia operator assigning a vector field X € Vectq o(M) the coset [ X b] of the
corresponding 1-form X" via the Riemannian metric g.

The Euler equations read

1o} .
EXt + Vx, Xy = —grad,p, divgX; =0. 24.1)

Thus, in the Hamiltonian framework (2.4.1) becomes
d
X} = 2, [X]. (24.2)
By Hodge decomposition, the space Q}/Q g(/\/l) of the L? 1-forms decomposes as
Qf2 o (M) = dQ), (M) @ 6,03, (M) @ Hs (M),

where 0, denotes the adjoint operator of d relative to g. Therefore,
990 = 5gQQL27g(M> ) th(M). (2.4.3)

It turns out that the summand of the harmonic forms in (2.4.3) corresponds to steady

solutions of the Euler equation.

——————— O (D) O
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(1) Each harmonic 1-form on a complete Riemannian manifold (M, g) which belongs
to L? N L* defines a steady solution of the Euler equation (2.4.1) or (2.4.2) on M.
Let o be a L? harmonic 1-form on M corresponding to X;. According to Cartan’s

formula yields
d
dt
By the assumption, it follows that

[ /M exyoul2dV = /M ln(X0)[2dV, = [[eul |41 , < oo

thus vx, 0 € Q9 g(/\/l). Consequently, %[at] = 0 € g The latter means that

(] = =Zx,[an] = = [(bxed + dex,) u] = = [d (ex,00)] -

the 1-form o, defines a steady solution of the Euler equation.

(2) (L?-form conjecture of Dodziuk-Singer, 1979) Let (M, g) be a complete simply-
connected Riemannian manifold of sectional curvature Sec, satisfying —a £
Secy < —1,a > 1. Let ’H%’g(/\/l) denote the space of L? harmonic p-forms on
M, i.e., p-forms w on M such that

Aggqw =0, / |w[§dVg < 0.
M

It is clear sz/g’g(M) is naturally isomorphic to szgp(./\/l) and H0L279(M) =
0. Dodziuk and Singer conjectured that Hig’g(/\/l) =0ifp # m/2 and
dim(?-[zz Z (M)) = oo if m is even. By means of the L? index theorem for regular
covers of Atiyah, an affirmative solution of this conjecture implies a positive solu-
tion of the well-known Hopf conjecture: If M>™ is a compact manifold of negative
sectional curvature, then (—1)™x(M?*™) > 0.

Dodziuk has proved the L?-form conjecture for rotationally symmetric metrics — in
particular for the space form H™(—a?) of curvature —a®. However, this conjecture
is in general not true.

(3) (Khesin-Misiolek, 2012) (i) There are no stationary L? harmonic solutions of the
Euler equations on H™ for any m > 2. (ii) There exists an infinite-dimensional
space of stationary L* harmonic solutions of the Euler equations on H?. The
first result (i) follows from Dodziuk’s result. To prove (ii) we note that the space

of L? harmonic 1-forms on H? is infinite-dimensional. Consider the subspace
ScC H1L27g(H2) of 1-forms:

S := {d® : ® is harmonic on H? and d® € L*(H?)}.
We claim that S is infinite-dimensional. Indeed, let us consider the Poincaré model
of H?, i.e., the unit disk D with the hyperbolic metric g, which we denote by D,.

It is conformally equivalent to the standard unit disk with the Euclidean metric e,

denoted by D.. Bounded harmonic functions on D, can be obtained by solving the
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Dirichlet problem on De. First, the 1-form d® is harmonic:

Apyd® = —dd,d® = dA g ,® = 0.

Secondly,
|d®||3., = /(d@d@gdvg = /det(gij)(dCIJ,d@edet(gij)dve
’ D D
= / (d®, dB)dV, = |||,
D b
ldelte, = [ (@@.d0)2av, = [ dett(gy) a2, de)2det(giy)av,
D D
- / (1= |22)%(d®, d®)2dVa(z) < [|dB|[Ls..
D b

where det(g;;) = 1/(1 — |2|?)? is the determinant of the hyperbolic metric g.
Furthermore, for sufficiently smooth boundary values p € CY*(0D) there is a
uniform upper bound C' for its harmonic extension inside the disk: |d®(x)| <
Cllellcra(opy for any x € D and 0 < o < 1. This implies that (for sufficiently
smooth ) the L? 1-forms d® define an infinite-dimensional subspace S of harmonic
forms in L?> N L*. By (1), they define an infinite-dimensional space of stationary
solutions of the Euler equations on the hyperbolic plane H2.

(4) (Chan-Czubak, 2010) Since suitably rescaled steady solutions of the Euler equa-

tions solve the Navier-Stokes equations on (M, g)

B .
57X+ VX, Xo — LoXy = —gradyp, divyX, =0, (2.4.4)

where Ly := —Ap 4 — 2ch. Consider the hyperbolic plane H? with ch =1
Letting oy = th vields

0
atozt + Vx,as + A gop — 204 = —dp, 404 = 0. (2.4.5)

Let oy = f(t)d® for some d® € S. Then (2.4.5) is equivalent to
1
o= a|(2f(0) - /)2 - 3000

consequently, the pair (f(t)d®, (2f(t) — f'(t))® — %f%t)\d@\g), ® € S, solves
(2.4.5). We say that X, is a Leray-Hopf solution of the Navier-Stokes equations if
X € L*>([0,00), L?) N L?([0, 00), H') and satisfies

illsg 44 [ 1Dt Xol g s < IXols i l%e — Xollzzg =
(2.4.6)
for any 0 < t < oo and where (DefyXy);; = $(Vi(Xy); + V;(Xy)i) is the
deformation tensor field of X;. In the case of surface, it was showed that the Leray-
Hopf solutions are unique and regular. Any differentiable function f(t) satisfying

L 193012,
2 2
+4/ s g, - <O




2.4 Examples - 107 -

vields a vector field X; which satisfies (2.4.6). In summary, Chan and Czubak
showed that There exist infinitely many real-valued functions f(t) for which X; =
f(t)(d®)* is a Leray-Hopf solution of the Navier-Stokes equations.

“arXiv: math.AP/1205.5322

2.4.3 Metrics on Lie groups

Let G be a Lie group and (-,-) := (+,). the fixed Euclidean metric on 7.G. Using left

translation Ly(2) = gz, we obtain the metric (-, ), on TG for every g € G. Since
(dLg)n = (dLgnp-1), = (d (Lg © Ly-1)),, = (dLgn), o (dLy-1),, = (dLgn), © (dLn); "

it follows that L, is an isometry for each g € G.

Let g be the space of all left-invariant vector fields (dL, 0 X = X o Ly) on G. Then T.G
can be naturally identified with g. Note also that g is a Lie algebra. If X & g, then the integral
curve yx (t) through e € G is denoted by exp(t.X):

’yx(t) = XVX(t)’ ’)/X(O) =e.
Letting ¢ = 0 in above yields §x (0) = X, (o) = Xe. By the uniqueness theorem in ODE, we
have
exp((t + s)X) = exp(tX)exp(sX), t,s € [0,00).
The entire flow for X can now be written as
Fi(x) :=rexp(tX) = Lyexp(tX) = Rexp(tx)(T). (2.4.7)

This flow F% : G — G don’t act by isometries unless the metric is also invariant under right-

translations, i.e., the metric is bi-invariant.

The inner automorphism
ady: G — G, v+ grg~! (24.8)
is called the adjoint action of G on G. If we define
ad: G — Aut(G), g+— ad, (24.9)

then ad is a representation of the Lie group G. The differential of this action at e € G is a linear
map

Ad, = (dad,), : g — g (2.4.10)

is called the adjoint action of G on g. This is a Lie algebra isomorphism. For each ¢, the integral

curve exp(tX) gives a map

exp(t): g — G, X — exp(tX). (2.4.11)
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Hence, we have the following commutative diagram:
t-
exp(t-) G
Ad, l J{adg

g —— G
exp(t-)

A left-invariant metric is bi-invariant if and only if the adjoint action on the Lie algebra

is by isometries.

Proof. In case the metric is bi-invariant we know both L, and R -1 act by isometries. Then also
ad; = Ly o R -1 acts by isometries. The differential is therefore a linear isometry on the Lie
algebra.

Conversely, we assume that Ad, : g — g is an isometry. Using
(dRg)n = (dRng)e o ((dRpy)e) ™"
it suffices to show that (dRy ). is an isometry. This follows from
Ry = Lgoad,1, (dRy)e = (dLgy)eo Ady1.

Hence the metric is bi-invariant. O

Let G be a Lie group. We define the adjoint action Ad : g — End(g) of the Lie algebra on

the Lie algebra:
Ad := (dAd)e, (2.4.12)
where
Ad: G — Aut(g). (2.4.13)
We claim that
AdxY = [X,Y]. (2.4.14)

If we write ady, = Rj,-1 o Ly, then
Adh = d(adh)e = d(Rh—1 o Lh)@ = (dRh—l)h o (dLh)e.
Let ' be the flow for X. Then F*(g) = gF'(e) = Ly(F"(e)) = Rpt(e)g as both curves go

through g at ¢ = 0 and have X as tangent everywhere since X is a left-invariant vector field.
This also shows that dF"* = d (Rp:(.)). Calculate

(AdxY), = (dAd)c(X)(Ye) = Adpi() (Ye)

d
T

d
- %)t:a ((dRF_t(e))Ft(e) © (dLFt(e))€> (Ye)

d d _
= | @Re) ey Vi) = Z| @)y = (&), = XY
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By the left-invariance, we derive (2.4.14).

Let G be a Lie group with a bi-invariant metric (-,-). If X, Y, Z, W € g, then

VyX = %[Y,X],
Rm(X,Y)Z = —%[[X,Y],Z],
Rm(X,Y,2,W) = i (X, Y],[W, 2]).

In particular, the sectional curvature is always nonnegative.

Proof. The bi-invariance of the metric shows that the image Ad(G) C O(g) lies in the group
of orthogonal linear maps on g. This shows that the image of Ad lies in the set of skew-adjoint

maps:

d

d
0 = atzo(Y’Z) - %‘t:o (AdexP(tX)(Y)’Adexp(tX)(Z))

= (AdyY,2)+ (Y, AdxZ) = (IX,Y],2)+ (Y, [X,2)).
For X,Y, Z € g, since the metric is bi-invariant, it follows that
(Y, 2)g = (dLy(Ye),dLg(Ze))g = (Ye, Ze)e
so that (Y, Z) is constant and hence X (Y, Z) = 0. Using the Koszul formula, we have
AVyX,Z) = X(Y,2)+Y(Z,X) - Z(X,Y) - (X,Y],2) - ([V, 2], X) + ([Z, X],Y)
= —(X.Y],2) = (Iv, 2], X) + ([2, X], Y)

= _([X7Y]7Z) + ([YvX},Z) + ([XaYLZ) - ([Y,X],Z)

As for the curvature we then have

Rm(X, Y)Z = VXVYZ - VYVXZ - V[X7y}Z

1 1 1
= Z[Xv [Y7 ZH - Z[K [X7 ZH - 5[[X7 Y]v Z]
= X 2]+ V(2 X]) 4 12X, Y] - (X, Y], Z)
which equals —1[[X, Y], Z] because of the Jaboci identity. Finally, by the definition,
Rm(X,Y,Z, W) = (Rm(X,Y)Z,W) — —%([[X, Y1, 2], W)
= ZIXYLW) = —J(ZWLIXY) = —{(X.Y],[ZW]).
In particular,
Rm"(XAY,ZAW) = i([X, Y], [Z, W)
Rm(XAY),ZAW) — i([X, Y1, (2, W])
woiry) = L IXVLGYD 1y

1(X,X)(YVY) - (X,Y)? — 4[XAY]
Thus the Lie groups with bi-invariant metrics always have non-negative sectional curvature and
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with a little work shows that the Rimann curvature operator is also non-negative. O

Example 2.17. e2.17

Let G be the 2-dimensional Lie group

a p
G = ta>0, feR
0 1
The Lie algebra of G is
a b
g= ca,beR
0 0
If we define
1
X = ; Y= )
0 0 00
then

[X,Y]:=XY -YX =Y.

We have the left-invariant metric where X,Y form an orthonormal frame on G. Then use
the Koszul formula to compute
VxX =0, VyY =X, VxY =0, VyX=-Y.
Hence
Rm(X, Y)Y = VXVYY - VYVXY - V[X’y] = —X,
which implies that G has constant sectional curvature —1. We can also compute Ad:
a b)) [ a —af+ba
a f 00 0 0
0 1

The orthonormal basis X,Y is therefore mapped to the basis

Ad =aX + (—afB + ba)Y.

1 —-p 0 «

oo ) \oo
This, however, is not an orthonormal basis unless 5 = 0 and o« = 1. The metric is
therefore not bi-invariant. o
The Lie algebra of

SU(2) = {A€Myp(C):detA=1, A*=A"1}

z w
— = Pt =1

—-w =z

——————— O (D) O
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is

vV—la +v-1
5u(2): 5 v 20(,,8,’}/€R
—B+v-1v —v-la
and is spanned by
v—1 0 0 1 0 v—1
Xl = ) X2 = ) X3 =
0 —/—1 -1 0 v—1 0

We have the left-invariant metric where AIIX 1, Ay Lx,, A3 L X5 is an orthonormal frame

and [X;, X; 1] = 2X;9 (indices are mod 3). The Koszul formula is
2(Vx, X, Xi) = ([Xi, X1, Xi) + ([ X, Xa], X;5) — ([X;, Xe], Xi)-
From this we obtain
Vx,X;=0.
On the other hand,

Vx; Xit1

Moo+ X2 =X

( it2 )\2”1 ’>Xi+2a
112

E T IS gy

in+1Xi = ( i+2 = i+1 i > Xt
i+2

Therefore,
Rm(X;, X;41)Xi12 =0

that all curvatures between three distinct vectors vanish.

An interesting vase of the Berger spheres is A1 = € < 1, A\g = A3 = 1. In this case

Vi, Xo = (2—€)X3, Vx, X1 = —€2X3,
Vx,Xs = X1, Vx,Xo = —X,
Vi, X1 = €Xy, Vx, X3 = (€ -2)Xy,

Rm(X1, X2)Xe = €2X,
Rm(X3, X1)X; = €'X;3,
Rm(Xy, X3) X3 = (4—365)Xo,

Rm(X; A Xy) = €2X1 A Xo,
Rm(X3A X)) = €X3AX,
Rm(Xo A X3) = (4—36%)Xa A X3.

Thus all sectional curvatures must lie in the interval [€2,4 — 3¢]. Letting ¢ — 0—
we find that all sectional curvatures equal 1. As € — 0+, the sectional curvature

Sec(Xa, X3) — 4, which is the curvature of the base space S%(1/2) in the Hopf fibration.




2.4 Examples - 112 -

The standard orthogonal basis X1, Xo, X3 is mapped to

(= 2)

Ad X, = (\Z|2 - |w\2) X1 — 2Re (wz) X2 — 2Im(wz) X3,

i

X, = 2v/—1Im(2@) X1 + Re (w? + 22) X

~
|

g ©
IST
N———

+ Im(w? + 2%) X3,
X3 = 2Re(2W)X1 + v—1Re(2? — w?) X,

+ v/ —1Im(2? — w?) X3.

If the three vectors X1, Xo, X3 have the same length, then we see that the adjoint action

is by isometries, otherwise it is not. o

2.4.4 Riemannian submersions

Let ¢ : (M™,G) — (M, g) be a Riemannian submersion. We say two points p € M™
and p € M are p-related if ¢(p) = p. We also say tao vector fields X € C>®°(TM™) and
X € C®(TM) are p-related if dpo X = X o .

For each point p € M™, the tangent space Tﬁmm can be decomposed into

TM™ = TVM™ @ T M™ (2.4.15)
where

TIM™ .= Ker ((dp)p) (2.4.16)

is the vertical distribution at p, and TT}M is the orthogonal complement and called the
horizontal distribution at . Any vector ¥ in M™ can be decomposed into horizontal and

vertical parts:
v =0l + vt (2.4.17)

Set
TIM™ =M™, T+ M™ =T M™. (2.4.18)
p p

Hence, any vector field X in M™ can be written as

X=xl4+x* (2.4.19)
The fact that ¢ is a Riemannian submersion means that (dy)g : T;mm — T, M, where
p = ©(p), is an isometry for all p € M™. Consequently, given a vector field X on M we can

always find a unique horizontal vector field X’ eC™ (T+M™) on M™ that is p-related to X.
We say that X is the basic horizontal lift of X .
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Let V be a vector field on M™ and X, Y, Z vector fields on M with basic horizontal lifts
XY, 7.

(1) {V”,YO} is vertical.

2) ( V||g) (YQ ?°) vig (Y)?‘)) — 0.

o 3(F 7]
more, § ([YO,?Q] ,VH g (V—)YQV”,YO).
@ (V)T =Woxv +3 ([2.7))"

Proof. (1) Since X° is p-related to X and Vs p-related to the zero vector field on M, it

dy ([V”,T]) - [d¢ (V”) dip (Y)} —[0,X 0] =0.
(p3) (*.7°) = V! (3 (x.7")) -9 ([ X°].7)
-9 (X [V 7))
- 7 () = Ve

since ¢ is a Riemannian submersion. But this implies that the inner product is constant in the

follows that

direction of the vertical distribution.

(3) Recall the Koszul formula

%5 (Vo)yX.7) = X(9(V.2))+7 (3(2.X)) - Z (3 (¥.7)
In particular,

50T 7)< 7 (o(F7) ¥ (1(77)

-3 [X,Y

which implies

Hence it suffices to show that the horizontal vector field (V,)xY  is the horizontal component

of (Vg )ﬂY Using the Koszul formula, (-relatedness, and the fact that inner products are the
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same in M™ and M, shows that
25 ((vg)yo?o,?) =29 ((Vy)xY,Z) =25 ((vg)XY:,?) .
Thus, we proved (4). 0

The map
CO(M™, TEM™) x C°(M™, T M™) — C(M™, TIM™),
(YL,?L) — [YL, ?ﬂ : (2.4.20)
measures the extent to which the horizontal distribution in integrable in the sense of Frobenius.

It is in fact tensorial as well as skew-symmetric since

[YL7J£7¢}II _ <f [YL’?L] +YLf'?L>H _ [YL’?L}”'

The map is called the integrability tensor.

For vector fields X,Y on (M, g), we have

2
3 | [0 o

g (Bimy (X, Y)Y, X) =3 (%g (T,?)) ?°,Y°) +5 ‘ [X Y } ” 2.4.21)

g

Proof. By tensors properties we may assume that [X, Y] = 0. Then in this case
0=dyp [YO,?Q} = [dcp (YO) ,dy (?Qﬂ =[Xop, Yoy =0.
Hence [YO,VO] is vertical. Calculate

(= (0 o0\ T° ° _ (= =
g (Rmg (X°.7°) 7", X°) = g (Ve Ve = Vo

= 3% (7)) -2 (% (74
|

37

+ fmcmg([y xX° ,[X Y ])

= (T 5 ([ v]) 1) - 5[]

-7 <VYVXY° | % ([?ﬂWOD“ N %770 X7 7X0>
- st (7 (7)) ]
= g(Rmy(X, Y)Y, X) = > X 2

More generally, one can find formulae for Rmg where the variables are various combinations of

basic horizontal and vertical fields. O
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2.5 Exterior differential calculus and Bochner formulas

Introduction

[ Differential forms (1 Bochner technique
[ The rough Laplacian acting on tensor (1 The Bochner technique in general and
fields the Weitzenbock formula

2.5.1 Differential forms
The volume form dV of an oriented m-dimensional Riemannian manifold (M, g) is
defined in terms of a positively oriented orthonormal coframe (w )m by
dVy=w' A  Aw™

The volume satisfies m!(dVy)(e1,- - - , em) = 1, where (e;)], is the orthonormal frame dual to

(wi)g’ll. In a positively oriented local coordinate system !, - - - , 2™, we have

dV, = y/det(gi;)dxt A -+ A dz™. (25.1)

The wedge product of a p—form « and a q-form (3 is defined by

(a/\ﬁ)(le"' Xp+q Z Slgn J K .71? o 7ij)ﬁ(Xk1a"' 7qu)7
(J,K)

p ‘|‘ q
where J := (j1, -+ ,jp) and K = (k1,- - , kq) are multi-indices and sign(J, K) is the

sign of the permutation (1,--- ,p+q) = (j1, -, Jp, k1, , kq)-

&
The exterior derivative of a p-form [ satisfies
(dB)(Xo,- -, Xp)
1 < , -
7=0
1 Z+' —_ —_
0<i<j<p
1 < . -
= pi—l—l ‘ (—1) (ijﬁ) <X07... Xy 7Xp>_
7=0
In local coordinates, this is
P
(dB)igir i = Z VIV Biiyioi s (2.5.3)
=0
where 3., := [ (@-1, e ,87;p). If 3 is a 1-form, then
1
(dB)ij = §(Vzﬂj —V;B). (2.5.4)
If 3 is a 2-form, then
1
(dB)ijk = g(vzﬂjk + V,Bri + Vifij). (2.5.5)

——————— O (D) O
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The divergence of a p-form « is
divg(a)iy.i,_y = gjkvjozkil...i%l = Vkakil...ipfl.
In particular, if o = a;dzt is a 1-form, then
divy(X) = ¢V, X; = VI X;.
More generally, we define the divergence of a (p, 0)-tensor field « with p > 1 by
divg(a)iy.mi,_y = gjkvjozkil...ipfl.
Given a p-form 3 and a vector field X, we define the interior product by
(LX/B)(Yi7 T 7}/p*1) =p- B(Xa }/17 e 7Yp71)
for all vector fields Y7, - - -, Y},_1. Recall the Cartan formula
Px =doix +ix od.
The inner product on AP(M) := C*°(APT*M) is defined by
(o, BYg == plg™It - - P iy i By gy -
For example, for any positively orthonormal coframe (w?);,
<wi1 A AW Wt A /\wj"> = det (5““”) .
g
For given p-forms o and 3, their L2-inner product is defined by
(avﬁ)LQ,g = / (Oé,ﬁ>gdng.
M
The Hodge star operator *, : AP(M) — A" P(M),p=0,---,m, is defined
(o, B)gdVy = a A x4f3
for any o, 8 € AP(M). For instance,
g (WA AWP) =PI A A W™

for a positively oriented orthonormal coframe (w?)™ ;.

(2.5.6)

2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)

(2.5.12)

Show that acting on AP (M), we have *3 = (—1)p(m=p),

&

The adjoint operator ¢, of d acting on a p-form « is defined in terms of d and the Hodge

star operator by the formula
g0 i= (—1)™PTMHL s d % .
In terms of covariant derivatives, the adjoint ¢, is given by
m
(5901)()(17 t 7XP*1) = _pz (VeiOé) (eia Xla t aprl)a
i=1
where (e;)i; is an orthonormal frame. That is, 6, = —pdivga, or

ik
(Og@)iy-ip—1 = =PV ki iy -

(2.5.13)

(2.5.14)

(2.5.15)
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Show that

(dB, @) 2.y = (B, 850) 2 - (2.5.16)

where o € AP(M) and B € AP~1(M). Directly calculate

(B,0g0) 24 = /M B A *46q0dV, = /M B A g (=1)PHHL s d g, adV,

_ (_1)mp+m+1/ B(—l)(m*pﬂ)(p*l)d*gad‘/g - (_1)172/ BAdxyadV,
M M

= (=1’ (=1) (/M B A *gadVy — /M d(B A *40) dvg> — /M dB A xgdV,

since (M, g) is closed. &

The Hodge Laplacian acting on differential p-forms is defined by
Apg = —(dbg + dy4d) (2.5.17)

where we have adopted the opposite of the usual sign convention. Note that A 4 is a self-adjoint

operator. Acting on functions, it is the same as the usual Laplcian operator defined in (2.5.18).

2.5.2 The rough Laplacian acting on tensor fields

Let A, denote the Laplacian, also called the Laplace-Beltrami operator, acting on
functions, which is globally defined as the divergence of the gradient and is given in local

coordinates by
Ay = divgV, = 69V:V; = g (9,0 — Ty (2.5.18)

If {e;}!", is an orthonormal frame, then

Agf = eileif) = (Veei)f. (2.5.19)
=1

If M is the Euclidean space R™ with the standard metric Gsiang, then A = Agiand =
> 1<i<m 0i0; and the heat equation is (0y — A)u = 0.

(1) For any function f and any vector fields X and Y we define the Hessian Hess, f =
VVef = ng as follows:

L]

Vof(X,Y) = X(Yf)~ (VxY) f.
Then Ay f = tr, (ng) =Apngf.
(2) If |g| := det(gsj), then

1 .
Agf = —=0i ( Iglg”ajf) : (2.5.20)

Vsl &
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More generally, the rough Laplacian operator acting on tensor fields is given by

Ay = divyVy = tryV, = g7 V;V; = V/V;. (2.5.21)
More explicitly, given an (, s)-tensor field /3, Vg Bisan (r+2, s)-tensor field, which we contract
to m
ANgB(X1,-+, X)) =) VeBlen e, X1, -+, X,) (2.5.22)
i=1

for all vector fields X1, -, X,.

2.5.3 Bochner technique

The Bochner technique was invented by Bochne. Yano fuether refined the Bochner tech-
nique, but it seems to be Lichnerowicz who really put things into gear, when around 1960 he
presented his formulae for the Laplacian on forms and spinors. After this work, Bergerm Meyer,
Gallot, Gromov-Lawson, Witten, and many others have made significant contributions to this
tremendously important subject.

Prior to Bochners work Weitzenbock also developed a formula very similar to the Bochner

formula.

Lemma 2.3. (Commutator of A, and V, on functions)

For any function f,

AGVif = ViDgf + RV f. 2523)

Proof. By definition, one has
ANVif = ¢V = MYV = g (ViViVef = RV f)
= Vildf — 9" RrigyVPf = Vildf + 9" RupVPf = Vilgf + RipV'f.
Here our convenience is that gqui 0 = Brieg- O

Lemma 2.4. (Bochner formula for |V, f|2)

Suppose that (M, g) is a compact oriented Riemannian manifold. Show that for any

function f,
Ag|Vof2 =2|V2fIZ+ 2RV VI f + 2V fVi(Ayf). (2.5.24)

Conclude from this that if Req > 0, Ayf = 0 and |Vyf|y = 0, then ng = 0, and

Reg(Vgf,Vgf) = 0. (This lemma is interesting only in noncompact case.) o

Proof. Calculate
NgIVofl = g9V (g"VifVef) = g9g"Vi(VVif - Vof + Vif - V,;Vef)
= g9g"Q2ViVVif  Vof +2V;Vif - ViVef)

= 2|V2f2+ 299"V ViVif - Vo

——————— O (D) O
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since
2079 ViV f - Ve = 2979 (ViViVif — RE Vo f) - Vef
= 2<V9Agf7 ng)y - 29inikjpvpf ’ ka
we have

Ag|Vofl2=2IV2f12+2(VgAgf, Vg f)g+ 2R, VP f - vFf
which implies (2.5.24). If A, f = 0, then

| Varav, = [ AR+ [ 2Re, (9,59, 5)av,
M M M

By another hypothesis that Rc, > 0, we conclude that

/ ng\f;dvg=0=/ Reg(Vyf, Vof)dV,.
M M

Both integrands are nonnegative so that they must vanish identically. O
One has
1
8alVafls = 5 ((Vaf o@Dy +Reo(Vaf Val) +175515)
2
1 Vof
_ vif =2 > (2.5.25)
IV flg < IV le /g
wherever |V, f|4 # 0, and conclude that if Rcgy > 0, then
Vyf
AV, f z<~",v Af>.
g| g |g |ng|g g( g ) .
In particular, if Ay f = 0, then
Ay|Vyflg > 0. (2.5.26)

Since if M is compact and oriented, the assumption A, f = 0implies V4 f = 050(2.5.26)

is automatically valid. Hence, this lemma is also interesting in the noncompact case.

Proof. Calculate
B vz ViVif-V
ANg|Vyflg =9"ViV; <gMka . Vef) = g7 g"v; ((gquv ]’jfv ;{1/2)
p q

ij kb (T X7 . . . .\ 15 AKINT . .
_ 979 (ViViVif - Nof + ViV f -ViVef) g9 ngkg Vef (gPIN Vo f - Vof) -
|gvf’9 |v9f|g

Since

9 GHNN N N = (VoA £,V f)g + Reg(Vof, Vo f)

it follows that

1
Ag’vgﬂg = m (<Agf7 vgf>g + ch(vgf7 vgf) + \V?;f\g)
1 .
- mgm <vjvgf7 vgf>g<vivgf7 vgf>g
that is (2.5.25). O
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In (2.5.25) (V2f, ~ol f| )g is the 1-form given by

Vof Vgf Vif
Vaf, =2 > <viv —9> VAV = V|V, flo
<< 1,1, ) o 19,1% I,y = Vilvells

2 ng>
|<vgf, v,

Related to this is the fact that if Th and Ty are (r, s)-tensor fields, then

= |Vg|vgf|g|§ ;

Vg (Tl, T2>g = <ng1, T2>g + <T1, V9T2>g, (2.5.27)
where
(VoT1, To)g = (ViTy)ih % (Ty)hike (2.5.28)
and similarly for (T1,V jTs),. 2
Note 2.28
If Oig(t) = —2Rcy(y), then
2 2 2
(Ag) = 9) Vo flywy = 2 ‘Vg(t)f‘g(t) el
2(Vg f, Voo (Bgy = 0) £)) ) -
Calculate
% VoSl = 0 (97VifVif) = =igis- V'f - VI f +29Vi(0f) - Vs
= 2Regr) (Vo /o Vo f) +2(Vo) £ Vo) () 41
Combining it with (2.5.24), we complete the proof. s
Here \ng\g = g% I,V f - VN f. Similarly we denote for a p-form o
|af? := gttt .. PP Qi Oy - (2.5.30)
Show that for any tensor field A
VgAgA — AgV4A = Rmy * VgA + (VgRey) * A. (2.5.31)

Here, given tensor fields A and B, A x B denotes some linear combination of contractions
of A® B. Calculate

= PV, (V,ViA+Rmy+ A)+RmgxV,A = A V;A+V,Rmg+A+Rmy#V,A;

the formula (2.5.31) follows by V,Rmy = V Rc,.

——————— O (D) O
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Show that if X is a 1-form, then
AgXi — ¢* Ry Xj = A X, (2.5.32)

In particular, if the Ricci curvature of a closed manifold is positive, then there are no
nontrivial harmonic 1-forms. By the Hodge theorem, this implies the first Betti number
b1 (M) is zero.

Proof. By the definition, one has

ApgXi == (d(0,X)); = (55(dX));

where
6, X = —¢"V; Xy,
~d(0,X) = d(9"ViXy) = Vi (97X ) dat = (g*VeVix) dat,
(6,dX); = —2¢"Vi(dX) = —g¢"" (V;ViX; — V;ViX}).
Therefore,

ApgXi=g"ViViXi + ¢ (ViViXi = V;ViXp) = AgXi + ¢ Rijp X,
implying (2.5.32). If there is a nontrivial harmonic 1-form X, that is, Ay ,X = 0, then

AgXi . )(Z = RZ]XZX] = RCg(X,X) and
—/ IV X[ v :/ Re, (X, X)dV, > 0;
M M

consequently, Reg(X, X) = 0 = [VyX[ . We must have that X}, = 0 if the Ricci tensor is
positive on T, M. But then X = 0 since X is parallel. We get a contradiction. O

In Lemma 2.6, we have proved that if (M, g) is compact, oriented, and has Rcg > 0,

then every harmonic 1-form is parallel. By the Hodge theorem, b1 (M) = dimH!(M).
Now, all harmonic 1-forms are parallel, so the linear map
H (M) — TIM, w— w,

is injective. In particular, dimH! (M) < m. Furthermore, we can show that by (M) = m

if and only if (M, g) is a flat torus. &

If 3 is a 2-form, then
(AmgB)ij = NgBij + 2Rine; B — RinB*; — RjBi™. (2.5.33)
Let a be a p-form. In local coordinates we may write the Hodge Laplacian as
(Avaa)iy--ir = (_1)j+1gklvijvkalilmij,lijJrlmir + ngVngail...,,
+ (1) gM VeV iy iy iy gaein (2.5.34)
= (Aga)zjmir + (—1)jgk€ (Vkvij — Vijvk) Uiy qij iy
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Using the notation *, (2.5.34) can be written as

Apgo = Aga+ Rmy * o (2.5.35)

2.5.4 The Bochner technique in general and the Weitzenbock formula

Let (£, h) — (M, g) be a vector bundle over an oriented closed Riemannian manifold. Let
I'(M, £) denote the sections s : M — £. The connection on £ is a map
Ve :T(M,E) — T(M,Hom(TM,E)), s+— Vis. (2.5.36)
We assume the connection is linear in s, tensorial in X, and compatible with the metric h:
X(s1,50)n = (Vs1,82), + (s1,Vks2), - (2.5.37)
Since Hom (T M, ) = T* M ® &, the vector bundle has the induced metric g M ® h,
where g7 M is the bundle metric on the cotangent bundle 7 M; usually we write it as g ® h,

if there is no confusion. Using the pointwise inner product structures on I'(£), I'(T'M), and

integration, we get global L?-inner product structures on I'(€) and I'(Hom(T'M, £)):

(51,82)2(r(e)) = /M(sl, $2)pdVy, (2.5.38)
(51, 92) L2 (P (Hom(T M £))) = /M (S1,52) g dVy- (2.5.39)
From (2.5.36), we define the adjoint connection:
VE* T (Hom(TM, E)) — T'(E) (2.5.40)
defined by
/M (VE*S,s), dVy = /M (8,VEs) op dVy- (2.5.41)

We use the notation V& to denote the adjoint connection of V€. The induced connection
on the dual bundle £V is denoted by V¢ " or V&V Here we use the operation "\V" to make
the dual bundle; in this situation, the dual bundle of the tangent bundle T M is written
as TV M, but we adopt the classical notation that is T*M. The metric g induces the
Levi-Civita connection V ; on M, which can be viewed as a bundle connection VIM on
TM. In the bundle setting, we use VTM 1o denote the induced connection rather than

the classical notation V .

The connection Laplacian of a section is defined as
NG s = —V&*VEs. (2.5.42)

There is a different way of defining the connection Laplacian. Consider the second covariant

derivative .
LM, E) ——  T(Hom(M,TM,E))

VT*M®$
T(MT*MQT*M®E).
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We write it as
(Vg)i( g 5= VITMEE o g8 (5)(X,Y) — V%Mys. (2.5.43)

Take the trace > ;, ., (Vg )2 5 S with respect to the orthonormal basis of 7M. This is easily

seen to be invariantly defined. We shall use the notation

Afgs =ty ((V9)'s) = >0 (V9)h 5 (2.5.44)

1<i<m

Let (M, g) be an oriented closed Riemannian manifold, and £ — M a vector bundle

with an inner product h and compatible connection V¢, then
Af s =Af s (2.5.45)

for all sections s of £.

According to Proposition 2.9, we write

Als =AY s = AT s. 2546)

Proof. Let s1, s2 be two sections of £ and (e;)!™; be an orthonormal frame on M. Calculate

(A%,g51782)L2(1"(E)) = /(5" <A§{7g$1,$2>hd‘/g

= —/M <V551,V552>g®hdvg = — Z /M <V§isl,v(§i$2>hdvg.

1<i<m

The right hand side is equal to

(Ai’gszb S2)L2(F(E)) == /M <A§,gsla 82>h d%

= Z / <V§iV5181—V€TM€.51752> dVy
M et h

1<i<m

== Z / <v§isl’v§i82>hd‘/g+2/ VZ—;M <v(;81,52>hd‘/2]

1<i<m
_ E ve AV,
vTMe, 51552 g
M o h

1<i<m

= (A%15152) 1) + /M divy X dV,,

where X is defined by g(X,Y) := <V§,51, 52>h. Setting Y = 0;, we have X = ¢(X,9;) =
<V§i51, 52> B hence div, X = V; X i = V%;M <V§i51, 52> b which verifies the above identity.
Since M is closed, it follows that (Aigsl, SQ)LQ( = (A%ﬁgsl, 52) LTE) Thus, we

(E))
must have A‘z g51 = A% 451 for all sections s;. O

By our notation, we have Af/;/l = Ar4 and Agf\g/‘ = Ap,4. For sections s1, 59 € I'(E),
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we have

ALy (;(81782%) = ) (VTM)i,ei <;<31a52>h>

1<i<m

= > (v v, ) (Hensn)

1<i<m

1
= Z 5 [VZ;M (<v§i51782>h + <81’v£‘i52>h) — <V%Z;Mei8]_,82>h — <817V%Z;M67382>hi|

= Z (<V§iv581, 52>h +2 <v281, V£282>h + <$1, V‘;VfisQ)h)

1
1<i<m

(<v€eTvMei81’ 82>h + <81’ V%Z~Mei82>h)

1<i<m

N

1 1
= <V581, v532>g®h + B <Aig81, 82>h + B <81, A‘E7982>h

1 1
= <V551, V582>g®h + 5 <A§{7951, 82>h + ) <51, A%7952>h .

In particular,

1
B (GI51) = 1956l + (A5,5.5),. 2547)

For the connection V¢ we define the curvature
RE :T(M,TM)Q@T(M,TM)RT(M,E) — T(M,E)

by
2

RE(X,Y)s = (V¥)yy 5 —

(VE)y x5 = V& VEs — VEVEs — Vigys.  (2548)
Then the operator

A%, +C (R®) :T(M,E) — T(M,E)

isamap on I'(M, ), where € (Rg ) is a trace of the curvature R. We say a first-order operator
D :I'(M, &) — I'(M, €) is the Dirac-type operator of the vector bundle £ — M if

D’ =A%, + % (RY). (2.5.49)
Such a formulae are called Weitzenbock formulae. Here, we use the word “are” because there
are lots of way to contract the curvature R¢.
(1) Riemannian geometry: Let (M, g) be an m-dimensional Riemannian manifold. We take
& 1= @pLy AP T* M. In this case the Dirac-type operator D : I'(M, &) — T'(M, ) is
d + d,4. Moreover, -D2=A H,g» and the Weitzenbock formula now becomes
Amg = A5, + %ng(ei, ej)wied. (2.5.50)
Here we denote by (w®)™, the dual coframe of an orthonormal frame (e;)™; of M. This

was certainly known to both Bochner and Yano. However, in this case A% g = Ai, g =
Ap, g, so that (2.5.50) is exact the formula (2.5.32).
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(2) Spin geometry: Let (M, g) be an m-dimentional spin manifold. It induces the spinor bun-
dle Spy. In this case the Dirac-type operator is just the Dirac operator D : I'(M, Sy) —
I'(M, Spum), and the Weitzenbock formula reads

-4?:&%-%@. (2.5.51)
The formula was discovered and used by Lichnerowicz, as well as Singer, to show that
the ﬁ-genus vanishes for spin manifolds with positive scalar curvature. Using some
generalization of this formula, Gromov-Lawson showed that any metric on a torus with
nonnegative scalar curvature is in fact flat. Much of Witten’s work, e.g., the positive mass
conjecture, uses these ideas. Also, the work of Seiberg-Witten on 4-manifold geometry, is
related to these ideas.

In the following we shall prove the Weitzenbock formula (2.5.50) for p-forms. As before,
let (M, g) be an m-dimensional Riemannian manifold, and let A*(M) = @), AP (M) denotes
the space of all forms on M. On this space we can define a product structure that is different
rom the wedge product. This product is called Clifford multiplication, and for w € A'(M)
and § € AP(M), then

wx0 = wAO—1,0, (2.5.52)
Oxw = OANw+ (—1)Pr 0. (2.5.53)
If w1, wy are 1-forms, then by (2.5.52) we have
W1 ¥ wo = w1 ANwy — ngwg.
On the other hand, using (2.5.53) yields
W1 ¥ wo = w1 Nwy — ngwl.

To verify the well-defined operation %, we shall check L w2 =L twi1. By definition we have
1 2

L2 = w2 (wg) = (w2), da* (g” (w1); aj) =g (w1); (wg)j = w <wg> = LWt
By declaring the product to be bilinear and associate, we can use these properties to define the

product between any two forms. For example
(w1 Awg) %0 :=wy % (we x%60) + Lpw2 - 0.
Note that even when 6 is a p-form, the Clifford product with a 1-form gives a mixed form.
For 1-form w we have
w*w=—|w[Z <0. (2.5.54)
In general, for 1-forms w; and wy we obtain
w1 % wa + wa % w1 = —2g(wy, w2). (2.5.55)
If (w;)™, is an orthonormal coframe of M, then
Wi ¥wj = —wj X wi, WXwj=w; Awj, 17 J. (2.5.56)

Hence, we see that Clifford multiplication not only depends on the inner product, wedge product,
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and interior product, but actually reproduces there three items.

For 01,05 € A*(M), w € AY(M), and o) € A%(M), we have
g(wx01,02) = —g(01,w1 % 02), (2.5.57)
g ([, 01]x,602) = —g (61,3, 02]x) (2.5.58)

where [91, 92]* = 01 * 92 — 92 X 91.

Proof. The proof is based on the definition of the Clifford multiplication and the fact that the

two maps
AP(M) — APTHM), 0+ e,0 :=w A0,
APTH M) — AP(M), 0 1,20

are ajoint to each other. We write

b=> 60, 6= > 6.

0<p<m 0<p<m
Then
wx 0 = —quﬁg) + Z (ew?’) - qu9§p+2)) + eﬁfm_l)-
0<p<m—2
The left hand side of (2.5.57) becomes
gwx01,0) = g (=00 0+ D g (@b - 07,00

0<p<m—2

g (@t 6") = g (0 et D0 g (67,008 Y)

0<p<m—2
— Z g (0§p+2), ew9§p+1)> +g (9%”71), quﬁén)> .
0<p<m-—2
Rearranging the terms yields

o (st 00) ¢ S g (st 040 1 g (el D, )

0<p<m-—2
which equals the right hand side of (2.5.57). To prove the second formula (2.5.58), it suffices to

prove

g([¥,0]%,60) =0 (2.5.59)

for any form 6 € A*(M). Since v is a 2-form, we shall verify (2.5.59) for a special case that
¥ = w1 A wy where wy,ws € A (M). By definition, one has
g (w1 Aw2,0]%,0) = g((w1 Awa) % 60,0) — g (0% (w1 Aw2),0)
= g<<w1 ¥ wy + 1t ﬁCUQ) %0,9) —g ((9916 (wl ¥ wo+tL ﬁ&)g) ,9>
w1 Wi

= g(wp % (wex0),0)—g((0 %wi)*ws,0)
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so that (2.5.59) holds for ¢» = wy A wo if and only if
g (w1 % (w2 %0),0) =g ((0x%w)*wsb). (2.5.60)

For convenience, we set

Yi=wy %0 = Z PP =0 xw = Z o) 9= Z 0P

0<p<m 0<p<m 0<p<m
Since
wo ¥ 0 = —quﬁ(l) + Z <€w20(p) — wa(p”)) + erG(mfl), (2.5.61)
’ 0<p<m ’
it follows that
o) _ _ (1)
(G [ Lans
PP = e, 0P — gD p— 1 -1,

2

P = e, 00D,
Using formula (2.5.61) again implies

wy X (wex0) = wyx1 = _wa[}(l) + Z <6w1¢(17) _ wa(pﬂ)) + EW”]Z)(m—l)

0<p<m-—-2

=l <er9(0) - Lwn9(2)) + €, (—Lw50(1)> — Lwi <€w29(1) — ngﬂ(S))

2

+ Z [€w1 <6w29(p—1) — ngg(p+1)) ~ (Ewgg(zﬂrl) _ Lwﬁg(p+3)>}

1<p<m—3 ’
+ €y (ew29(”_3) - ngem—l)) — (erG(m_l)> + €y (6w29(m_2) - ng9(m)) .

On the other hand, it is easy to see that

0w =—1 00+ > (=1)F (%0(”) + que)(w’)) + (1) e, 0"V, (25.62)
1 1

0<psm-—2
Thus
0 = — 0,
w1
o) = (=1t (emH(p*l) + ngg(pﬂ)) . p=1,--,m—1,
oM = (—1)" e, 00D,

Again, from (2.5.62) we deduce that
(0x%w))*xwy = @x*wy
=l (6W19(0) + nge(z)) + €w, (—nge(l)) — <6w10(1) + Lw§9(3))

_ 1<p;;1_3 [(ng (ewla(%l)) 4 ngtg(pﬂ)) i (6wle(p+1) n nge(p+3)>j|

— €y (ewle(”_?’) + quﬁ("_l)) — <ewlﬁ("_1)) — €y (ewle("_Q) + quﬁ(”)> .

1 1

For degree 0, we have

g(wr % (wax0),0), = g (—ng (%9(0) _ ngm?)) ,9(0>)
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=—g (emﬁ(o) — ngg(Q), eW19(0)> = —g (ewlﬁ(o), ew00(2)> +9 (9(2), ewgewl0(0)>
——g (ng%g(m, 9(o>) _g <9<2), 6M%9(0>)

=g (—ng (ewlﬁ(o) + Lw§0(2)) ,«9(0)) = g((0%wi)%*w,0),.

Similarly, we can verify for other degrees. 0

For 01,0y € A*(M) and vector fields X,Y we have the derivation properties:
Vx (91 9:692) = Vxb1 %05+ 601 % Vx0s, (2.5.63)
and

ng(X7 Y) (91 * (92) =S (ng(X, Y)Ql) % 0y + 01 % (ng<X, Y)HQ) . (2.5.64)

Proof. In case 6; = 03 = w is a 1-form, we have
Vx(wx0)= —VX\w|3 = —2¢ (Vxw,w) = Vxw % w +w % Vxw.
In case 61 = wis a 1-form and 65 = 0 is a general form, we have
Vx (wx0) = Vx (el —140) = evywd+ eVl — L(wa)ue — 1,4 Vxb
= Vxwx0+wxVxw.

The same formula holds for any forms. The second formula follows from the first formula. [J

Let {e;}'==™ and {w'}1<i<m denote the orthonormal frame and coframe, respectively.
The Dirac operator on forms is given by
D: A (M) — A*(M), 6 D w' % V,0. (2.5.65)
1<i<m
The definition is independent of the choice of the frame fields and coframe fields.

Given a frame {e; }1<i<m and its dual coframe {w'}1<i<m, we have

d0 = €,Ve0, (2.5.66)
s = —t(: Ve, (2.5.67)
D = d+d, (2.5.68)

Proof. (2.5.66) and (2.5.67) hold for functions and 1-forms, so that it also holds for any forms.

(2.5.68) is a direct consequence of the previous two formulas. O

The square of the Dirac operator satisfies

—D?=—(d+ 59)2 = —(d6, + 64d) = A (2.5.69)
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If X be a vector field, then

ApgX® = AT MY — Reg(X). (2.5.70)
Proof. Calculate
AugX'(er) = ~d(8,X°) (i) - 8 (4X*) (@)
= Vg X' +2 Y (Vejde> (eis )
1<j<m
= Vez Z VeJX ej +2 Z (veJdX) 6@,6]‘)
1<j<m 1<j<m
- Z <v§i,erb> () + Z Ve; KveiXb> (ej)7<verb) (ei)}
1<j<m 1<j<m
= Y (X VX)) - Y (V2 X) (@)
1<j<m 1<j<m
= AYIMx N (ng €i,e; Xb) (€5)-
1<5<m

By definition, one has

Z (ng €, e;) )(e]) = Z (ng(ei,ej)(Xb(ej))—Xb(ng(ei,ej)ej)>

1<5<m 1<js<m
=— > X (Rmy(eiej)e;) = —X (Reg(er)
1<j<m
=~ g(X,Reg(e))) = —g(Reg(X) i) = —Re(X)’(er).
Extending to any linear combinations of e;, we prove the corollary. O

For any form 0, we have

D* = w'xw %V 0 (2.5.71)
_ (vgi,eje) % w % W, (2.5.72)
Proof. Recall that
V2 e, =VeVe, = V. e

is tensorial in both e; and e;, and thus the two expressions on the right hand side are invariantly

defined. We may assume that Ve; = 0 at a point and consequently Vw? = 0. Calculate at this

point,

D% = w'%V,, (Df) = w'xV,, (0 % V,,0) = w'%(Vew %V 0+w %V,V,0)
= wxw x Ve; Ve, 0+ W' x Veiwj % Ve, 0
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= wxw %V, V0 —w xw %xVy, 0 = wl%wj%vghej&

Similarly, we can prove the second formula. O

‘We can now establish the relevant Weitzenbock formula.

Theorem 2.7

For any form 6, we have

* ik 1 2 -
-D% = Ay Mo-— @' * W % Rmy(e;, €5)0, (2.5.73)

sty ]_ ] )
= Afyg M0 — SRmg(es, )0 % o % o, @574

Proof. Using Proposition 2.13, it suffices to check

* Tk 1 . . . .
A%g Mg — §w’ % wl % Rmy(e;,e)0 = —w' 2w x V2 _ 0 (2.5.75)

€i,€5 N
The left hand side of (2.5.75) equals
YoVE - wiawd 2 V2 0 = ARTMI Y wixwd % (vgi,ejew 9)

€i,€; €j,ei
1<i<m i£] i<j
_ A*T* M iw o e _ A*T* M L. i o
= AR, 70— E w' % w? % Rmy(e;,e5)0 = ARy 9—§w x* w’ % Rmg(e;, ;)0
i<j
where we use the fact that w’ x w’ = —1 and w? % W/ = —w’ % W' O

2.6 Integration and Hodge theory

Introduction

[ Integration by parts [ Killing vector fields
[ De Rham theorem and Hodge decom- (1 Affine vector fields

position theorem

2.6.1 Integration by parts

Let (M, g) be an oriented n-dimensional Riemannian manifold with boundary M. The
orientation on M defines an orientation on 9 M. Locally, on the boundary, choose a positively
oriented frame field {e;}1<ij<m such that e; = v is the unit outward normal. Then the frame

field {e; }2<i<m is positively oriented on IM.

Theorem 2.8. (Stokes’s theorem)

If acis an (m — 1)-form on a compact oriented m-dimensional manifold M with (possibly

/da:/ Q. (2.6.1)
M oM )

empty) boundary OM, then

——————— O (D) O
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Let {w'}1<i<m denote the orthonormal coframe field dual to {e;}1<j<m. The volume form
of MisdV, = w! A+ Aw™ and the volume form of M is dVg’ = w?A--- Aw™. According
to (2.5.8), we have

(LVdV;}) (627 T 7em) =m: d‘/g(ebe% T ,€m) = =

and hence
dVg’ =y (dVy) . (2.6.2)

Let (M, g) be a compact oriented m-dimensional Riemannian manifold. If X is a vector
field, then

/ divy(X)dV, = / (X, v)gdV, 263)
M oM

where div,(X) = V; X"

Proof. Define the (m — 1)-form a by a := vx (dV}). Using (2.5.9) and d? = 0, we compute
da=doux (dVy) = Lx (dVy) .
In an orthonormal frame e, - - - , e,,,, one has

"gX (d‘/:q) (617“' 7€m) = Z d% (617"' 7v8iX7"' 7em) = dng(X>dVg(617"' 7€m)

1<i<m
so that da = div4(X)dV;. Now Theorem 2.8 implies

/M div,(X)dV,, — /M da:/ma: /W ox (V).

Since

<X7 V>g
(tx (dVy)) (€2, ,em) =mdVy(X, ez, -+ ,em) = m(X,v)gdVy(er, - ,em) = m—1)
so that vx (dVy) = (X, v),dV. O

Let (M, g) be an m-dimensional compact oriented Riemannian manifold.

(1) If M is closed, then
/ AgudVy = 0.
M
(2) We have the following Green formula

ov ou
/M (uAgv —vAgu) dVy = /aM <u81/ = U@V) dv,.

In particular, on a closed manifold

/uAgvdVg:/ vAgudVy.
M M

(3) If f is a function and « is a 1-form, then

/M fdivgadVy = — /M<ng, a)gdVy + /8M f<Oé7V>ngg/.
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Proof. Since Aju = div, (Vgu), (1) follows. For (2), we note divy(uV v — vV u) = ulgv —
vAgu. For (3), we note fdivya = fVia; = Vi(fa;) — Vif - a;, where a = a;dz’. O

Corollary 2.2

Let (M, g) be a closed m-dimensional Riemannian manifold. If o is an (r, s)-tensor field

and B is an (r — 1, s)-tensor field, then

/ (0, VB, dV, = — / (divg(c), B)ydV,. 2.64)
M M )

Proof. Let; := ai’ﬁ::}gﬁkl'”ks. Since

igeein
divg(n) = V5 = W (ai?::z;@’z%::j:s)
= Wi g ok gighE — (divy(a), B), + (o, VgB),
Hence, (2.6.5) follows by applying the divergence theorem. -

Note 2.34. (Norm of 2-tensor dominates trace)

Show that for any 2-tensor « on an m-dimensional Riemannian manifold (M, g), we have

1
|a|§ > po- (tryar)?. (2.6.5)

More generally, for a p-tensor o (p > 2),

2

e (2.6.6)

1. ..
02 > = |y,

Choose a normal coordinate system x'

2

(trga)? = Z ai; | < Z 12 Z o, =m|a|§.

1<i<m 1<i<m 1<i<m

.-+, 2" so that g;; = d;; at a point. Then

)
Lemma 2.8. (Bochner formula and inequality)
On a closed oriented m-dimensional Riemannian manifold (M, g),
2
/ V2 f|g dVy + / Reg (Vof,Vgf)dVy = / (A, f)? dV,. (2.6.7)
M M M
In particular,
m—1
/ Rey (Vyof,Vof)dVy < / (A, f)? dV,. (2.6.8)
M M Q©
Proof. Taking the integral on both sides of (2.5.24) yields
2
0= /M Ve f|, dVy+ /M Reg (Vo f, Vof) dVy + /M (Vol. Vo (Dgf)), AV,
By (2.6.5), the last integral equals
- [ iy (9. a0, = = [ 18,52,
Thus we prove (2.6.7). For (2.6.8) we use the inequality
2 1
V3l = — () (2.6.9)
that is a consequence of (2.6.6). O

——————— O (D) O
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Suppose that f is a non-zero eigenfunction of the Laplacian with eigenvalue \ > 0,
Ayf+Af =0,

on a closed oriented m-dimensional Riemannian manifold (M, g). If Rcy > (m—1)Kyg,
where K > 0 is a constant, then

A > mK. (2.6.10)

Proof. By (2.6.8) we deduce that

(m=DK [ 19, fav, <
On the other hand,

m—1

2 _ 2 r2
/M (8 av, =""1 /M/\ 12av,

m—1

| 1vartav, == [ agav,= [ apav,

so that mK X < A\2. Since A > 0, we must have A\ > mK. O

2.6.2 De Rham theorem and Hodge decomposition theorem
Let M be a closed oriented m-dimensional manifold. Consider the following complex
induced from the exterior differentiation d,
d:0— A(M) = AL M) = - = A" HM) = A™(M) =0, (2.6.11)
where d? = 0. Hence Im(d) C Ker(d) and we define the p-th de Rham cohomology group

_ Ker (dlar(v))

HY = .
deR(M) Im (d‘Ap*l(M))

(2.6.12)

If M is a closed oriented n-dimensional Riemannian manifold, then the p-th de Rham

cohomology group is isomorphic to the p-th singular real coholomogy group:
Hip (M) = HG,, (M R)

and consequently, the de Rham cohomology groups H geR (M) are all finite.

A differential form « is called harmonic if
Agga=0. (2.6.13)

The space of harmonic p-forms is denoted by

HE(M) := {a € A/(M) : Ay ga =0} (2.6.14)
Since

/ (Amrgaa), dV, = —/ (1da? + 5,0f2) av,,
M M

we have that « is harmonic if and only if daw = 0 = §4c. Therefore

HE(M) = {a € A/(M) : da = 4o = 0} .
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Given a p-form 7, we want to find a condition that Ay o = < has a solution for some

a € AP(M). If B € HE(M) is a harmonic p-form, then

(775)L2,g = (AH,gO‘7ﬂ)L2,g = (a’AH,dﬁ)L{g =0.
Hence a necessary condition to solve Ay gov = v is (v, 3) 2, = 0 for all 3 € Hy(M). The

converse of this is also true.

Let (M, g) be a closed oriented m-dimensional Riemannian manifold. Given v €
AP (M), the equation
AH,ga =7

has a solution o € AP(M) if and only if (v, 8)r2,, = 0 for all f € HP(M). Conse-
quently, we have the following decomposition of the space of p-forms
AP(M) = Ay (AP(M)) © HE(M) (2.6.15)
= db, (AP(M)) @ 5,d (AP(M)) & HE(M).

Moreover, the space H5 (M) is finite-dimensional.

In each de Rham cohomology class, there is a unique harmonic form representing the
cohomology class. In particular, the p-th de Rham cohomology group ngR(M) is

isomorphic to the space of harmonic p-forms Hj(M).

If (M, g) is a closed oriented n-dimensional Riemannian manifold and if f : M — R is

/ fdv, =0,
M

then there exists a smooth function u : M — R such that Agu = f. The function u is

a smooth function with

uniquely determined up to an additive constant.

Proof. By the Hodge decomposition theorem, we have f = A u + h for some smooth function
u:M — Rand h € ’Hg(M). Thus Ayh = 0 and hence g = 0 since M is compact. The

uniqueness is obvious. 0

The Hodge Laplacian A g , commutes with the Hodge star operator *:
Apgoxg=x50Ap,. (2.6.16)
Thus, if & € H5 (M) is a harmonic p-form, then *4c is a harmonic (m — p)-form, i.e.,

kgt HE(M) — HIP(M)
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is an isomorphism. By Corollary 2.3,
Hpyg (M) = Hpg" (M), (2.6.17)

which is known as the Poincaré duality theorem for de Rham cohomology.

2.6.3 Killing fields

A vector field X on an m-dimensional Riemannian manifold (M, g) is called a Killing
field if the local flows generated by X act by isometries. This translates into the following simple

characterization.

A vector field X is a Killing field if and only if £xg = 0.

Proof. Let F* be the local flow for X. Recall that

(L) (V,W) = S| g (ar'(v),aF (W)
Thus we have
t t t—to g to t—to g to
dt‘t 9 (dF (V) dF' (W) = dt‘ (dFttodF™ (V), dF' 0 dF'o ()
= di X (dF*dF™(V),dF*dF"(W)) = ZLxg(dF"(V),dF*(W)).
Sls=

This shows that .#xg = 0 if and only if t — g(dF*(V),dF*(W)) is constant. Since FV is the

identity map this is equivalent to assuming the flow acts by isometries. O

X is a Killing field if and only if V +— (V4)v X is a skew-symmetric (1, 1)-tensor.

Proof. Recall that

W, w) = o (V)X W)~ (Vow X (V)
= 5 (Ve vy - e w) - X0, w))

_ % (Vg(X, W) — Wg(X,V) — g(X, [V, W]))

= STV X W) + g (X, (V) — g (Fow X, V) — g (X, (Vy)wV)
g (X, (Vv W) + 9 (X (Vo)) = 3 lg (Vv X, W) — g (V) )w X, V)]
and
ng(Va W) =g ((VQ)VX7 W) + g (V7 (VQ)WX) .
Hence

AX°(V, W) + 3 Zxg(V.W) = g (Vg)v X, 7).
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Thus, £xg = 0if and only if V' — (V,)y X is skew-symmetric. O

In the following we consider Killing fields in negative Ricci curvature and positive Ricci
curvature. It is related to the Hopf conjecture which states that any even-dimensional manifold

with positive sectional curvature has positive Euler characteristic.

Let X be a Killing field and V' any vector field. If we set [ := %|X 3, then
Vof = —(Vg)xX,
Hessg f(V,V) = g((Vg)v X, (Vg)vX) — Rmy(V, X, X, V),
Agf = |ng’§_RCg(X7X)-

Proof. Since X is a Killing field, it follows that Zxg(V, W) = 0 for any vector fields V' and
W. Consequently, g (Vg)y X, W)+ g (V,(Vy)wX) = 0. For (1),

g(ViVef) = (Volvf =g(Vgv X, X) = =g (V. (Vg)x X).
For (2), we use the fact that g (V, (V4)yX) = 0 to derive
Hessg f(V,V) = g(VovVyf,V) = g((Vgv (=(Vg)xX),V)
= —9((Vg)x(VgJv X, V) — g (Rmy(V, X)X, V) — g (Vg)y,x) X, V)

= —Rmy(V, X, X, V) =g (Vo) x(Vo)v X, V)49 (Vo) (v,)xv X V) =9 (V) (v,)y x X, V)
= 9 (Vv X, (Vv X) —Rmy (V. X, X, V) =g (Vo) x (Vv X, V) =g (Vo) x V; (Vo) X)
= —Rmy(V, X, X, V) + g (Vv X, (Vo)v X) = (Vo) xg (V. (Vg)v X)
= —Rmy(V, X, X, V) |[(Vo)v X[7.

For (3), we select an orthonormal frame {e; }1<;<yn, and calculate

Agf = 3 Hessyf(eier) = 3. Ve XPP— Y Rmy(e, X, X,e)

1<i<m 1<i<m 1<i<m

= —Rey(X, X) + [V, X[

Thus, we complete the proof. O

Suppose (M, g) is a compact and oriented m-dimensional Riemannian manifold and
has non-positive Ricci curvature. Then every Killing field is parallel. Furthermore, if

Rcy < 0, then there are no nontrivial Killing fields.

Proof. Set f = %|X ]g Using Proposition 2.16 yields

0:/ Agdeg:/ (~Reg (X, X) + [V, X[2) dvgz/ Vo X[2dV, > o.
M M M
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Thus, |V4X| = 0 and X must be parallel. In addition
/ —Rey(X, X)dV; =0, —Rey(X,X)>0.
M
So Rey (X, X) = 0. If Rey < 0 this implies X = 0. O

Suppose that (M, g) is a compact and oriented m-dimensional Riemannian manifold
and has quasi-negative Ricci curvature, i.e., Rcg < 0 and ch(V, V)< O0foralV €
T,M\ {0} for some p € M. Then (M, g) admits no nontrivial Killing fields.

Proof. We have proved in Theorem 2.13 that every Killing field is parallel. Thus a Killing field
is always zero or never zero. In the latter holds, then Re, (X, X)(p) < 0, but this contracts with
0=A,f(p) = —Rey(X, X)(p) > 0. O

Problem 2.1. (Hopf)

Any even-dimensional closed manifold with positive sectional curvature has positive Euler

characteristic. P

We will show that H;(M;R) = 0 provided the Ricci curvature is positive. Assume
this, the Hopf conjecture holds in dimension 2; in dimension 4, Poincaré duality implies that
Hi{(M;R) = H3(M;R) = 0. Hence x(M) =1+ dim(H2(M;R)) +1 > 2.

If (M, g) is a closed, even-dimensional Riemannian manifold of positive sectional curva-

ture, then every Killing field has a zero.

Proof. Let X be a Killing field and consider the function f = %]X \3 If X has no zeros, f will

have a positive minimum at some point p € M. Then (Hess, f )p > 0. We also know that
Hessy f(V,V) = g ((Vg)v X, (Vg)v X) — Rmy(V, X, X, V).
Since (Vg f), = —((Vg)xX), and f has a minimum at p, ((V4)xX), = 0. Thus, we

have a skew-symmetric map 7, M — T, M with at least one zero eigenvalue. But then, even
dimensionality of 7}, M ensures us that there must be at least one more zero eigenvector v € T, M

linearly independent from X. Thus

Hess, f(v,v) = ((Vg)u X, (Vg)uX) ,, — Rmgy(v, X, X,v) = —Rmy(v, X, X,v) <0

g(p)

by assumption. O

If a closed Riemannian m-manifold (M, g) admits a nontrivial Killing field, then the

fundamental group has a cyclic subgroup of index < c(m).
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We define the Betti number of an m-manifold M as

bp(M) = dim(H,(M; R)) = dim(H?(M;R)) (2.6.18)
and the Euler characteristic as the alternating sum
XM) =) (=1)Phy(M). (2.6.19)
0<p<m

It is a key result in algebraic topology that H,,(M; R) and H?(M; R) have the same dimension

when we use real coefficients. Note that Poincaré duality implies that b, (M) = by,—,(M).

Let X be a Killing field on a compact Riemannian manifold M. If N; C M are the

components of the zero set for X, then

X(M) = 3 XM,
D obyp(M) = DTS by (N,
D b (MM) = 3 b (M)

P i
Here we use the fact that the zero set of a Killing field is a disjoint union of totally geodesic

submanifolds each of even codimension.

If M is a compact 6-manifold with positive sectional curvature that admits Killing field,
then x (M) > 0.

Proof. We know that the zero set for a Killing field is non-empty and that each component has
even codimension. Thus each component is a 0, 2, or 4-dimensional manifold with positive

sectional curvature. This shows that M has positive Euler characteristic. O

If M is a compact orientable positively curved 4-manifold that admits a Killing field, then
the Euler characteristic is < 3. In particular, M is topologically equivalent to S* or

CP2

The rank of a compact Lie group is the maximal dimension of an Abelian subalgebra in
the corresponding Lie algebra. The symmetry rank of a compact Riemannian manifold is the

rank of the isometry group.

(1)Let M be a compact m-manifold with positive sectional curvature and symmetry rank
k. If k > 2, then M is diffeomorphic to either a sphere, complex projective space or

a cyclic quotient of a sphere S™ /Z,, where Z, is a cyclic group of order q acting by
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isometries on the unit sphere.

(2) Let M be a closed m-manifold with positive sectional curvature. If M admits a Killing
field such that the zero set has a component N of codimension 2, then M is diffeomorphic

10 8™, CP™2 ora cyclic quotient of a sphere S™ |'Z,,. 0

Theorem 2.19. (Piittmann-Searle, 2002)

If M is a compact 2m-manifold with positive sectional curvature and symmetry rank

k> 222 then x (M) > 0. o

Theorem 2.20. (Wilking, 2003)

Let M be a compact simply-connected positively curved m-manifold with symmetry rank

k. If k > 7 + 1, then M has the topology of a sphere, complex projective space or

quaternionic projective space. V)

Theorem 2.21. (Rong-Su, 2005)

If M is a compact 2m-manifold with positive sectional curvature and symmetry rank

k> 27%_4, then x(M) > 0. @

The theorem also holds if we only assume that k£ > % as well as k£ > 2 when 2m = 12.

2.6.4 Affine vector fields

Let (M, g) be an n-dimensional Riemannian manifold. For a vector field X we define the

Lie derivative of the connection as
(ZxVg) (U, V) = Zx((Vo)uV) = (Vg)zxvV — (VoJuZxV  (2.6.20)
= [X, (Vg)UV] — (Vg)[X,U]V — (Vg)U[X, V. (2.6.21)

LxVgisa(2,1)-tensor field. 9

Proof. For any smooth function f on M, we have
(gX(Vg)g) (fU7 V) = [X» (vg)fUV] - (Vg)[X,fU]V - (Vg)fU[Xa V]
= [Xa f(vg)UV] - (vg)[X,fU]V - f(vg)U[Xa V]

= fIX,(VouVI+ X[ (VouV = (Vo) sixuexsvV — F(VgulX, V]
= [([X,(VouV] = (Voix.V — (VoulX,V]) = f(ZxVy) (U,V).

For the second factor, one has

(ngg) (U, fV) = [X7 (vg)UfV] - (Vg)[X,U}fV - (vg)U[Xa fV]

——————— O (D) O
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= X, Uf-V+ [ (VouV]I= (X, UIf-V+ [ (VoxuV) = (Vou (fIX, VI + Xf-V)

= [X,Uf-VI+ X, (VouV]+Xf-(Vo)uV = [X,VIf-V = f(Vg)xt)V-Uf-[X,V]
— [ (VoulX, VI =UXf -V =X[f-(Vo)uV = f(ZLxV,) (U, V).

Hence .Zx V, is a (2, 1)-tensor field. O

We say a vector field X is an affine vector field if £xV, = 0.

(1) For an affine vector field X, we have
(VQ)QU,VX = —Rm,y(X,U)V.

(2) Show that Killing vector fields are affine.

Proof. Calculate for any vector fields X, U, V.,
(ZxVy) (U,V) = Rmy(X, U)V = [X,(Vg)uV] = (Vg)ixu)V — (VgulX, V]
— (Vo)x(Vg)uV + (Vg)u(Vg)xV + (V) 1x,u)V
= (Vg)x(VouV = (Vo) v)uvX — (Vou (Vg)xV — (Vy)v X)
= (Va)x(Vo)uV + (Vo)u(Ve)xV = (Vo)u(VolvX = (Vo)vov X = (V)i X.

Hence, if X is affine, we obtain the desired result. O

Let X be a vector field on a closed oriented m-dimensional Riemannian manifold (M, g).

Then
/M [RCQ(X’X) +trg ((VQX)Q) — (dngX)Q} v, = 0,

1
/M |:RC9(X,X) +g (trgVEX, X)+ 3 ]fxg@ - (dngX)Q} avy, = 0.

Proof. Calculate
divy (Vg)xX) = Vi((Vyo)xX)' = V;(V,; X" XY)
= ViV X X4 VX VX = (VU 4 R X)X 4 VX VX
= V;ViX" X9+ Ry X' X"+ V; X"V, X7,
The first term can be computed by
divy (divyX - X) =V, (V, X" X7) = V;V,; X" - X7 + V, X" - V,; X7,
Hence

divy ((Vy)x X) — div, (div,X - X) = Rey(X, X) + V; X' - V; X7 — (div, X)?.
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Since X is compact and oriented, taking the integral on both sides implies the first integral

formula. OJ

Note 2.35. (Yano)

If X is an affine vector field then tr, VgX = —Rcy(X) and that div 4 X is constant. Using
Lemma 2.12 yields on closed oriented manifolds affine fields are Killing fields. &

2.7 Curvature decomposition and LCF manifolds

Introduction

[ Decomposition of the curvature ten- (1 Locally conformally flat manifolds

sor field

Let (M, g) be a Riemannian m-manifold. The Riemann curvature (4, 0)-tensor field Rm,
is a section of the bundle ®% A2 T* M = A?°T* M ®g A2T* M, where A>T* M denotes the

vector bundle of 2-forms and ® g denotes the symmetric tensor product bundle.

2.7.1 Decomposition of the curvature tensor field

By the first Bianchi identity, Rm, is a section of the subbundle Ker(b), the kernel of the

linear map:
b:* N2 T*M — NT*M ®5 T*M 2.7.1)
defined by
1
b(Q)(X,Y,Z, W) := 3 QX,Y, ZW)+QY,Z, X, W)+ QZ,X,Y,WV)). (2.7.2)

We shall call C(M) := Ker(b) the bundle of curvature tensor fields. For every x € M, the
fiber C, (M) has the structure of an O (7 M)-module, given by

X : O(TaM) x Cyx(M) — Cx(M) (2.7.3)
where
Ax ((aNB)@(yAd)):=(Aa A AB) ® (Ay A AJ) (2.7.4)
for A € O(TiM) and «, 3,7,6 € TM. As an O(T; M) representation space, C, (M) has a
natural decomposition into its irreducible components. Consider the Kulkarni-Nomizu product
©: MM x O*T*M — C(M) (2.7.5)
defined by
(@ © Bijre = ieBjk + ajiBic — cirBie — jeBi. (2.7.6)
The irreducible decomposition of C, (M) as an O(7;; M )-module is given by
CM)=Rgog)® (T M g) & W(M) (2.7.7)



2.7 Curvature decomposition and LCF manifolds — 142 —

where @%T*M is the bundle of symmetric, trace-free 2-forms and
W (M) := Ker(b) N Ker(c) (2.7.8)

is the bundle of Weyl curvature tensor fields. Here

c:?N2T*M — &*T*M (2.7.9)
is the contraction map defined by
m
c()(X,Y) =) Qe;, X, Y, e). (2.7.10)
i=1
Note that
(9 © 9)ijre = 2(giegjk — Gikgje)- (2.7.11)

The irreducible decomposition of C(M) yields the following irreducible decomposition of

the Riemann curvature tensor field:
Rmy=f-g0g+hog+W, (2.7.12)
where f € C®(M), h € C®(M,®3T*M), and W € C*°(M, W(M)). Taking the contrac-

tion c of this equation implies
Rji, =2(n—1)fgjr + (m — 2)hji; (2.7.13)

taking the contraction again we have

Ry =2(m —1)mf + (m — 2)trgh =2m(m — 1) f, (2.7.14)
since h is trace-free. Hence
R, 1 1
=—  h=——Rc,——— R, g. 2.7.15
/ 2m(m — 1)’ m_2 m(m — 2) Ry -9 ( )

Using (2.7.12) and (2.7.15) we deduce that for m > 3,

R 1
R = J — R 1 2.7.16
m, 2(m_1)(m_2)g®g+m_2 cg © g + Weyl, ( )

Ry 1
= —2 ——Rc} Weyl 2.7.17
2nﬂL(m_l)g@ngm_2 ¢y © g+ Weyly, ( )

where Rc; = Reg — % g is the traceless Ricci tensor field and Weylg is the Weyl tensor field,
which is defined by (2.7.16). We let

Wijki := Weyly(0;, 0;, O, 9y). (2.7.18)
In local coordinates, (2.7.16) says that for m > 3,
R
Wigne = Rigwe + (o (o Wiedik = 9indse) (2.7.19)
1
- m(Rijk + g Rjr — Rikgje — ginRje).
Hence
Wijke = —Wiike = —Wijor = Wiaij- (2.7.20)
We claim that
9*Wijke = 0. (2.7.21)



2.7 Curvature decomposition and LCF manifolds — 143 -

Indeed,
ik Ry !
9" Wijke = —Rje+ CECE) (e = ngje) = —— (Rje + Rje — Ryje — nltje)
R 1
= —Rj— —5g0 — — (2= m)R;e — Ry;)

_ RQ Rg _
— *ij - mgﬂ + Rjﬂ + m— 29]( = 0.

The Weyl tensor field vanishes when m < 3. For m = 2, the possibly non-trivial

component is Wi212. Using (2.7.21), we have
0 = Wi212 + Wagaa = Wio12.

For m = 3 there are only two possible types of nonzero components of W. Either there
are three distinct indices such as W1a31 or there are two distinct indices such as W12921.

First we compute, using the trace-free property,
Wia31 = —Waaza — Wsa33 = 0.
Next, we have
Whao1 = —Wagaa — Wisaa3 = —Wiaa3 = Ws113 = —Wai12 = —Wiaz

which implies W1291 = 0.

&
By Note 2.36, (2.7.12), (2.7.13), and (2.7.14), we conclude that for m = 2,
R R
Rijre = f(giegjk — 9ikgje), R = 7993'1@- (2.7.22)
Similarly, for m = 3, we have
R
Rijre = Riegj + Rjngie — Rirgje — Rjegir — 79(.9%9]% — Gikgje)- (2.7.23)
If § = €% g for some function f, then
Efjk = Rfjk: — afgjk — ajkéf + aik6§ + aﬁgik, (2.7.24)
where
1
Q5 = VNJ»f = VlfV]f + 5 ‘ngﬁ Gij- (2.7.25)
That is,
e_Qmeg7 =Rmyg —a®g. (2.7.26)

From this deduce the Weyl tensor field is conformally invariant:

Weylr, = e/ Weyl,. (2.7.27)

Proof. First we compute that

TE =T8 + Vif -6 + V- 0F =V f - gy
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k
i then

If we set Afj = ff] -r
Ry, = Rl + ViAL — VAG + AR AL — ATAL
Simplifying it gives (2.7.24) and hence (2.7.26). 0

From (2.7.7) we have the (reducible) decomposition:

C(M) = (°T* M g) @ W(M). (2.7.28)
Then
Rm, = ﬁsg ® g+ Weyl, (2.7.29)
where S, := Rey — % g is the Weyl-Schouten tensor field. If m > 3, then
VWijke = %Gijk (2.7.30)
where (S;, := S¢(0;, 0k))
Cijk = ViSjk — VS (2.7.31)
1

ViRjk — VR — m(vz’Rg “gjk — VjRg - gik)

are the components of the Cotton tensor field C,.

(1) For m > 4, if the Weyl tensor field of an m-dimensional Riemannian manifold (M, g)

vanishes, then the Cotton tensor field vanishes. When m = 3, the Weyl tensor field always
vanishes but the Cotton tensor field does not vanishes in general.
(2) If m = 3, then

C

e2fg

= efq,. (2.7.32)
g &

2.7.2 Locally conformally flat manifolds

We say that a m-dimensional Riemannian manifold (M, g) is locally conformally flat if
for every point p € M, there exists a local coordinate system {z’}1<;<,, in a neighborhood U

of p such that

gij =V - 0ij

for some function v defined on U/, e.g., v~ 1 ¢ is a flat metric.

Note 2.38

Any Riemannian surface is locally conformally flat. Indeed, if (M, g) is a Riemannian

surface and u is a function on M, then
Reug =e (Rg — Agu) .

To find u locally so that Reuy = 0 we need to solve the Poisson equation Agyu = Ry which

is certainly possible. &
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An m-dimensional Riemannian manifold (M, g) is locally conformally flat if and only if
(1) for m > 4 the Weyl tensor field vanishes,

(2) for m = 3 the Cotton tensor field vanishes.

If a Riemannian manifold (M, g) has constant sectional curvature, then (M, g) is locally

conformally flat.

Proof. If the sectional curvature is constant, then

R
Rm, = ——¢
My 2m(m — 1) 9049
so that the Weyl tensor field vanishes. By Proposition 2.17, (M, g) is locally conformally
flat. O

(1) If (N, gn) and (P, gp) are Riemannian manifolds such that
Secg,, = C, Secy,, = —C, forsomeC € R,

then their Riemannian product (N x P, gn + gp) is locally conformally flat.
(2)If (N, gn) has Sec,,, = C, then the Riemannian product (N"x R, gy +dt?) is locally
conformally flat.

Proof. (1) Since

C C
Rmg,, »» = Rmg, +Rmg,, = ) IN © gn — 597313 ® gpr
C
= 5 (ov —gpr) © (9n + gpr),

the uniqueness of the decomposition tells Weyl s, p» = 0.

(2) The Riemann curvature tensor field of the product is

C C
Rigy,n = 508 © gy = 5 (v — dt*) © (gn +dt?)

where we used the fact that dt? © dt? = 0. Therefore Weyly g = 0. O
We say that two Riemannian manifolds (M, ¢) and (V, h) are conformally equivalent if

there exist a diffeomorphism ¢ : M — A and a function f : M — R such that g = e/ p*h.

If (M, g) is a simply-connected, locally conformally flat, closed m-dimensional Rieman-

nian manifold, then (M, g) is conformally equivalent to the standard sphere S™.

A map v from one Riemanian manifold (M, g) to another (N, h) is said to be conformal

if there exists a function f : M — R such that g = ef1)*h.
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Theorem 2.23. (Schoen-Yau, 1988)

If (M, g) is a simply-connected, locally conformally flat, complete m-dimensional Rie-
mannian manifold in the conformal class of a metric with nonnegative scalar curvature,

then there exists a one-to-one conformal map of (M, g) into the standard sphere S™.

@

When (M, g) is not simply-connected, we can apply the above results to the universal cover
(M™, ).
If (M7T", g1) and (M3, g2) are Riemannian manifolds, then the product Riemannian
manifold (M7 x M52, g1 + g2) satisfies

Rmyg, 44, (X,Y,Z,W) = Rmy, (X1,Y1, 21, W1) + Rmg, (X2, Y2, Z2, Wa),
chl+g2(XaY) = chl(XhYl)"{'Rcm(X?vY?)

where X = (X1, Xs), etc.

2.8 Moving frames and the Gauss-Bonnet formula

Introduction

[ Cartan structure equations (1 The Gauss-Bonnet formula
' Curvature under conformal change of (1 Moving frames adapted to hypersur-
metric faces

2.8.1 Cartan structure equations

Let {e;}1<i<m be a local orthonormal frame field in an open set I/ of an m-dimensional
Riemannian manifold (M, g). The dual orthonormal basis (or coframe field) {w'}1<;<, of
C®(M,T*M) is defined by w'(e;) = o} forall 4,j = 1,--- ,m. We can write the metric g as

g = Z W' @ W' (2.8.1)

1<i<m
The connection 1-forms wg are the components of the Levi-Civita connection with respect to

{eihgz’gmi

(Voxei = Y w!(X)ej, (2.8.2)

1<j<m
forall 7,5 =1,--- ,m and all vector fields X on /. Since for all X
0= X(ei,ej)g = (Vg)xeiej), + (ei, (Vg)xej),,
the connection 1-forms are anti-symmetric:

w! = —wi. (2.8.3)

——————— O (D) O
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From w'(e;) = 5; and the product rule we see that

(Vg)xw' = —wh(X)w’. (2.8.4)
The curvature 2-forms Qi = ng on U are defined by
Rm/(X,Y)e; := %ng(X, Y)e; (2.8.5)
so that
Rm/(X,Y) := % (Rmy(X,Y)ei, e;),, - (2.8.6)

Theorem 2.24. (Cartan structure equations)

The first and second Cartan structure equations are

dw® = WA w;, (2.8.7)
Qz = dwlj — wf A wi. (2.8.8) v
Proof. Calculate
. 1 : 1 ,
dw'(X,Y) = 5 ((Vg)xw') (V) — 3 (Vgyw') (X)

_ —%w§(X)wj(Y)+%w§(Y)wj(X) = (W Aw)(X,Y)

implying (2.8.7). From (2.2.8) and Vgei = ngf cer + wfvgek, we have
; ; 1
Qz(Xv Y) = ng(X’Y) = 5 <(vg)§(,Yei7 (Vg)%,Xei7ej>g

1
= dof (X Y){er i)y + 5 (WF () = wF Xk (1)) (er, )
that (2.8.8) follows. ]
For a surface M, we have
do' =W AWl dw? =w AWl Q) = dwl.

The Gauss curvature is defined by

K, := 2Rmj(eq, e3) = 2dws (e1, €2). (2.8.9)
Note 2.40
Show that
1 1
dw" (e, e5) = 2Wf(€j) — 5wie)
Consequently,
wr(ej) = dw'(ej, ex) + dwl (ei, ex) — dw®(e;, ). (2.8.10)

By definition, we have
1 1 1 1
At (e, e5) = — 5wl (e)w! (&) + 5ef () (er) = —5wf (e) + gl (ey)-
Therefore

dw'(ej, ) + dw’ (e, e) — dw®(ej, e;)

——————— O (D) O
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2 (wh(er) — wh(es) + wier) — wiler) — wh(er) +wh(ey))

= (ke k(o) = wlen).

Note that the similarity between this and the formula for the Christoffel symbols.

Prove

A = wF A — Wl A QF. (2.8.11)

From (2.8.8), we have

ng = d(dwj—wf/\w@ = —dwf/\wi—i—wf/\dwi

3

= wf/\(dwi—wﬁ/\wﬁ)—w]/\<dwf—wf/\w§> = waQi—wi/\Qf.

The identity (2.8.11) implies that VgQg = 0 that is equivalent to the second Bianchi
identity. &

If (M2, g) is a Riemannian surface and u : M?* — R is a function, then

Reug = e~ (Ry — Agu). (2.8.12)

&

2.8.2 Curvature under conformal change of metric

Let § := e**g and let {w'}1<i<m be a local orthonormal coframe field for g. Then
{@*}1<i<m> Where @' := e%w’, is a local orthonormal coframe field for §. Also, let {e; }1<i<m

and {€; }1<i<m denote the orthonormal frame fields dual to {wi}lgigm and {@}1<i<m, respec-

tively, so that é; = e “e;.
Show that
A = Q+V, Veu wF AW -V Ve u wb Aw (2.8.13)

I |Vgu|§wi Aw? 4+ du A [ej(w)w’ — e;(u)w]

where V 4 denotes the Levi-Civita connection with respect to the metric g.

&
According to (2.8.6) and (2.8.13), we calculate the Ricci curvatures by
n n
Reg (60,6) =23 <Qg (ex, é0) &5, ék>g =230 (&)
k=1 k=1

= e " [Reg(er, €) + (2 = m)Ve, Ve,u — 6 Agu +(2 — m) <Ngu|s21 it = eﬁ(u)ei(u))}

——————— O (D) O
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so, the scalar curvatures of g and g are related by

Re2u

= [Rg —2(m —1)Agu — (m — 2)(m — 1) mmﬂ . (2.8.14)

If we let u := — f/m, where f € C°°(M), then
1 2 1
_ 2f/m - _ 4 - 2
Respjmy = e [Rg 49 <1 m) Agf (1 m) <1 m> yvgf|g} . (28.15)
If we take m — oo then

dim Roapjmg = Ry +20f — |vgf|§ . (2.8.16)

2.8.3 The Gauss-Bonnet formula

The Gauss-Bonnet formula says that the integral of the Gaussian curvature (which is the
half of the scalar curvature) on a closed Riemannian surface (M, g) is equal to 27 times the

Euler characteristic of M.

If (M, g) is a closed oriented Riemannian surface, then

1
5 | KgdAg=x(M). (2.8.17)
™ J M2

Let e, es be a local positively oriented orthonormal basis for 7'M in an open set i/ C M
so that
dAy = wh A w?.

The Gauss-Bonnet integrand is locally the exterior derivative of the connection 1-form —w?:

K,dA, = 2dwi (e, e2)(w' Aw?) = dws. (2.8.18)

For higher dimension m, we have the following Gauss-Bonnet-Chern formula:

X(M) = - m/Q / K,dV, (2.8.19)

where m is even and

1 L RN - i
K::M Z sign (i1, -+ yim) UL A QS A AQI

11,0 5im

For m = 4, it was shown by Allendoerfer and Weil that

1 R,
X(M) = 52 /M <|ng‘ ‘ch - T

2

) dv,, m=4. (2.8.20)
g

2.8.4 Moving frames adapted to hypersurfaces

Let (M, g) be an m-dimensional Riemannian manifold and let ¥V denote the associated
Levi-Civita connection. Given a hypersurface M — M, let {e;}1<i<m be a moving frame
in a neighborhood & C M of a point in M. The connection 1-form wf of (M,g) satisfy

Ve = wf (X)ej. We assume that the frame is adopted to M, that is, e,, := v is normal to
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M. The first fundamental form is defined by
9(X,)Y) =g(X,Y) (2.8.21)
for X, Y € C*°(T'M). This is also the induced Riemannian metric on the hypersurface M. The

second fundamental form is

h(X,Y) = (Vx1,Y) = Wl (X)(Y, ;)3 (2.8.22)
for X and Y tangent to M. The second fundamental form measures the extrinsic geometry of

the hypersurfce, e.g., how nonparallel the normal is. Let

hij := h(ei, e5) = wi,(e;) (2.8.23)
so that
wh= Y hi (2.8.24)
1<i<m—1

The mean curvature is the trace of the second fundamental form:

H:= Y hlene)= Y hi. (2.8.25)
1<i<m 1<i<m
The induced Levi-Civita connection V of ¢ satisfies
Vxei = (Vxe) = > wl/(X)ej, (2.8.26)
1<j<m—1

where T denotes the tangent component of a vector. Thus {wf H<ij<m—1 are the connection

1-forms of (M, g).

O = dwl - Y WrPAw, dg=1m, (2.8.27)
1<k<m
Q = dl— D wiAwl, dj=1 m-1 (2.8.28)
1<k<m-—1
Thus, forz,5 = 1,--- ,m — 1, we have Qg = ﬁf +w A wh = ﬁz — hikhjgwk A w’. Hence,

we obtain the Gauss equation

Rijre = Rijie + hichji, — hirhjoe. (2.8.29)
One has
Rjx = Rjx — Rmjkm + Hhjr — g"hjoha, (2.8.30)
Ry = Rj—2Rpum+ H* —|h|2. (2.8.31)

Proof. Calculate Rj;, = gMRijkg = Rjk — ijkm + Hhjy, —gifhjghik. Hence R, = gijjk =
Ry — 2Ry + H? — |h[2. 0
Forj=1,---,m — 1, we have

Qo=dol, — S Wk AW (2.8.32)
1<k<m—1
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The (1, 1)-tensor field W := Z;";ll wZ,Lej is the Weingarten map. Considering W as a 1-form
with values in 7'M, we have

VW= Qe (2.8.33)

1<j<m—1

which is a 2-form with values in T M.

Note 2.44. (Codazzi equations)
Show that for X, Y, Z tangent to M,

((vg)Xh) (Y7 Z) - ((Vg)Yh) (X7 Z) = - <R_m§(X7Y)Z7 V> .

, (2.8.34) .

Consider a smooth function f : M — R on a (m — 1)-dimensional manifold. For any
regular value ¢ € R of f (i.e., Vg f(x) # 0 for all z € M such that f(z) = c¢), the level set
f~1(c) is a smooth hypersurface by the implicit function theorem. The second fundamental form

of the level set f~1(c) is the given by
H V,\W
h(v, w) = BessaHWV W) (2.8.35)

Indeed, v := V,f/|V,f|, is a unit normal vector for f~!(c). For V, W tangent to f~*(c) we

have

MVW) = (T ), = <<vg>v|§ggji] ,W>
1

1
= W, (VoY Wy = g

since (Vg f, W)y = 0. In particular, if f is (strictly) convex (V2f > 0) V2f > 0, then any
smooth hypersurface f~!(c) is (strictly) convex (h > 0) h > 0.

Hess, (f)(V, W)

2.9 Variation of arc length, energy and area

Introduction

[ First variation of arc length Jorm
(1 Second variation of arc length (A First and second variation of energy
'd Long stable geodesics ' First and second variation of area

[ Jacobi fields in relation to the index

Let (M, g) be an m-dimensional Riemannian manifold.

2.9.1 First variation of arc length
Given a path v : [a, b] — M, its length is defined by

b
Ly(y) == / () 291

——————— O (D) O
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The distance function is defined by
dgp(@) = dy(p, ) = inf Ly(7), (2.9.2)

where the infimum is taken over all paths v : [0,1] — M with y(0) = p and y(1) = z. A
geodesic segment is minimal if its length is equal to the distance between the two endpoints.
Let v, : [a,b] = M, r € t C R, be a 1-parameter family of paths. We define the map
T :[a,b] xt — Mby
Y(s,7) :=y(s). (29.3)

We define the vector fields R and .S along T by

0 0
R:=T, (ar> . S:=T. (as> . 2.9.4)

We call R the variation vector field and S the tangent vector field. More precisely, the map T

induces a map between tangent spaces at each point (s,r) € [a,b] x t

T*,(s,r) : T(s,r) ([a, b] X ‘C) — T'YT(S)M'

0

s>70> = T>|<,(s,7") <aS
0

) = T (i

S,Rc C™ (T([a, b x t) ’TM’T([G b}Xt)>

Then

0
S(’Y"”(s)) = S’Yr(s) = T*,(S,T‘) ((85

0
R (s)) = Bys) = Tugom <O’ <8r

Thus,

By the above notation, we have

| SN, S, =

0
= 5, ((S:8)g0T) (5,1) = (R(S,5)) (1r(s]R9:5)
We also note that
S(v0(s)) = Fo(s)- (2.9.6)
The length of -y, is given by
b
Ly(n) = / 1S(30(5))], ds. (2.9.7)

Suppose 0 € t. If vy is parametrized by arc length, that is, |S(o(s))|g = 1, then

d b 5
e r:oLg(%) = —/a (R, VsS), (v0(s))ds + [(R, S)g(0(s))] . (2.9.8)
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Proof. Calculate (use the formula (2.9.5))

d

b
S = 5 [ 18G5 186u(9). 80n(6)), ds

b
= 5 [ 156" (RIS.8)) (i (s)) s

By the assumption that |.S(yo(s))|s = 1, we conclude that

b b
| a0 =5 [ @S8)) (o(sds = [ (5.(T,)n8), (o(s))ds

dr lr=0
However,

(V)rS — (Vg)sR = [R.5] = Y. ([; g]) _

which implies that

d b
ozt = [ (.9sR), Gulsas
Integrating by parts yields the formula (2.9.8). U

If vr : [0,0] = M, r € v C R, is a 1-parameter family of paths emanating from a fixed
point p € M (i.e., v-(0) = p) and vy is a geodesic parametrized by arc length, then

: o larr) = <§T %(b),"m(b)> : (2.9.9)

g

dr r=0

If we do not assume ~yq is parametrized by arc length, then we have

. olelr) = —/ab<R7 (Vg)s <|SS|9) >g (vo(s))ds  (2.9.10)

ar
(. ‘SS,> <~m<s>>]

Hence, among all paths fixing two endpoints, the critical points of the length functional

b
+

a

are the geodesics vy, which satisfy

o () *

2.9.2 Second variation of arc length
Now we suppose that we have a 2-parameter family of paths v, , : [a,b] — M with
geqCRandr € vt C R. Define @ : [a,b] X g x t — M by
D(s,q,7) = Yg,r(9). (2.9.11)

The map ® induces a map between tangent spaces at each point (s,q,7) € [a,b] X q x t

Dy (sqm)  Tlsgm ([a:0] X g X v) — T, (M. We define vector fields @, R, and S along ®
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as follows:
0
S('YQJ“(S)) = S’Yq,r(s) *, 7Q:T) = (D*v(qu”') % s ’
0
Q(Py(lﬂ’(s)) = Q"}/q,'r(s = * (S#], = (I)*v(quvT) % q )
0
R(’yq’T(S)) = R’qu(s) = 7 $,4,T = @*7(57%7’) ET :

Then S, R, Q) € Cw((l)([aa b} L R 7TM‘<I’([a,b ><q><t)>'

Suppose 0 € q and 0 € . If vo 0 is parametrized by arc length, then
82
dqor

L F
(a,r)=(0,0) s(Yar)

b
— [ ({V0)sQ (T)sR), = ((V)5Q,5), (Vo)sR, ), ) (ofs))ds

b
~ [ ®any(@.8)5,R), (oofs)) s (29.12)

b

b
- / (Vo)oR, (T4)sS), (00())ds + [((Vg)aR. S}y (10.0())]

a

Proof. Differentiating the first variation of arc length we have
82 0 b S
L r) = 5 ) R T d
8‘187“‘(%?“):(0,0) 9(%ar) 8q‘(q,r):(o,o)/a <|5|g (Vg)s > (Vg,r(s))ds

g

b
B fi[‘(q,r)(0,0)/a (Q <|SS|Q7 (vg)SR>g> Dar2)ds

-/ ' (<|§| <vg>Q<vg>SR>g ; <<vg>Q (,5,) ,<vg>sR>g> (ar(5)) ds

b
— [ (8.(V)s(V,)oR + Riy(@. S)R), (oofs)) ds

b
+ [ (T08 = (8.(9,)08), S.(V)sR) (nals))ds
where we use the identity that

S
(Vy)a (m) =151, (Vo)aS — 11,3 (S, (V5)aS), 8. (29.13)

Then the result follows from an integration by parts. O

If v, is a 1-parameter family of piecewise smooth paths with fixed endpoints and such that

Yo is a geodesic parametrized by arc length, then

;fg L) = /a b<‘((vg)sR)LE—<ng(R, 9)8, R)g> (vo(s))ds, (2.9.14)
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where ((V4)sR)* is the projection of (V4)sR onto S*, i.e., (Vy)sR): := (Vy)sR —
((Vg)sR,S),S.

Proof. Tt suffices to show that |((Vy)sR)|2 = ((V4)sQ, ((V4)sR)*)4 which is equivalent to
prove <((Vg)SR, S), S, ((Vg)sR)L> = 0. By the definition, the left side of above equals
g
2 2
(((Vo)sR. 8, 8. (Vo)sR— (Vy)sR.S),S) = |((V)sR.S),| —[(Vo)sR.S),| ISI;
which is zero, since 7 is parametrized by arc length. O
A geodesic is stable if the second variation of arc length, with respect to variation vector

fields which vanish at the endpoints, is nonnegative.

If, in addition, (M, g) has nonnegative sectional curvature and the paths -y, are smooth

and closed, then
d2
— L,(~v.)>0.
dr? lr=0 g(’)/ ) =0

That is, any smooth closed geodesic 7 is stable.

If (M, g) is an even-dimensional, orientable, closed Riemannian manifold with positive

sectional curvature, then M is simply-connected.

If ~, : [0,b] — M is a 1-parameter family of paths, € (—e, €), 7o is a unit speed geodesic,
and R(vy(0)) = 0, then

d2
Ly(vr) = ((Vg)rR,S), (0(b))

W r=0 g
b 2
- /0(‘((Vg)sR)i‘g_<ng(R,S)S,R>g> (vo(s))ds. (2.9.15)

Givena V' € T, ;, M, we extend V' along 7o by defining

T(10(s)) == “R(0(s)). (2.9.16)

s
where V (70(s)) is the parallel translation of V' along o, i.e., ((V4)sV) (70(s)) = 0. Note that

V =V(%(b)) = R(70(b)). Then ((Vg)sR)(70(5)) = (Vo)) (5V (10(5)) = 5V (0(s))
so that (V4)sR = V. Since V(7o(s)) is the parallel translation of V' along o, it follows that

(Vy)sR)* 2

2 1 ‘—L 2
g b2 g b2

v
9

where V' =V — (V,S)ySand V4L =V — (V,S(70(b))gS(0(b)) = V — (V,50(b)) g50(b).
Hence

[ @asrr | cotonas = [ 5 v+ as= 5 v
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and
d2

23| Lo(r) = ((Vo)rR,S), (0(b))

b
N 1‘VL‘2_/ (Rmy(R, 5)S, R), (o(s))ds. ~ (2.9.17)
b g 0 g

If v : [0,b] = M, r € (—¢,€), is a 1-parameter family of paths emanating from a fixed
pointp € M, i.e., v,(0) = p and 7y is a geodesic parametrized by arc length, then

dg(p, Bv(r)) < Lg(%)a dg(P,ﬁv(O)) = Lg(’YO) (2.9.18)
where By : (—€, €) — M where By (1) := ~,(b) so that By (0) = V € Ty (yM. Thus,

the function r — dg(p, By (r)) is a lower support function for v — Lg(7y,) at r = 0.

Proof. According to Corollary 2.8, we have

d 4 9
- L r) = e r\S)y = r{S = 0
dr lr=0 g(’Y ) <87“ (s,r):(b,O)F}/ ( ) Os (S:T):(bvo)’y ( )>g('yo(b))
Hence dy(p, 5(0)) = Lg(70)- -

Definition 2.2

Suppose that u € CO(M) and V' € T,M. Let By : (—€,€) — M be the constant speed
geodesic with By (0) = p and By (0) = V. If v : (—e, €) — R is a C?-function such that

u(By(r)) <v(r), re(—€¢), u(Bv(0))=10v(0),
then we say that

(Vg)V(vg)Vu < U”(O) (2.9.19)

in the sense of support functions with respect to p and V. If (2.9.19) holds for all p

and V', then we say (2.9.19) in the sense of support functions.

Note 2.46

Show that if u : M — R satisfies Vgu < 0 in the sense of support functions, then u is

concave; that is, for every unit speed geodesic By : [a,b] — M we have

u(By((1 = s)a+sb)) > (1 —s)u(Bv(a)) + su(By (b)), forallse[0,1].

L]

Returning to our discussion, we assume [y is a geodesic so that (V,)oQ = 0. If the

sectional curvatures are nonnegative and dg ,,(x) := dg(p, z) is the distance function, then

d? 1
T (Volvio < ] Lon) < (- IVE) o) 2920
r= 9P

in the sense of support functions, since

b
b= /0 15(v0(s))lgds = Lg(70) = dg(r0(b), P) = dgp(70(b))
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and

0

VSO, = (5], 0 5
g

0
= —_— T S = O
<8r or=00) " )>g

The inequality (2.9.20) is a special case (K = 0) of the Hessian comparison theorem. Note

0
(sx):(b,())’yr(S)’ %

r=0

that this inequality holds in the usual C'?-sense at points where dg , are smooth.

Assuming the sectional curvature is nonnegative, one has

(Volv(Vovda, < 2|V|2. 2.9.21)
Proof. Calculate
d? d d
— Lo(v,)% = 7‘ 2L, () - — Lo(7y
dr?lr=0 s(r) dr lr=0 ( o(r) dr oy )>

2

2 d d 2 ININE
Ly(w) ) +2Lo(0) o _ Lo) <2 G| _ ot ) +26-5 [V

d
:2 —
(dr

r=0 r=0 Yo (b))

2 2
Lg(%)) =2 ‘VL’Q = 2"/’3'

=2 ‘VLC(vo(b» 2 <ci'

So, (Vg)v(Vg)vdz, < 2|V|2. Equivalently, V2d2 , < 2g(7o(b)) forany V € T, (y M. O

r=0

2.9.3 Long stable geodesics

Let v : [0,5] — M be a stable unit speed geodesic in an m-dimensional Riemannian
manifold (M, g) with Ry, < (m — 1)K in By(v(0),r) and By(v(5),r) where K > 0 and
2r < 5. Let {E;}1<i<m—1 be a parallel orthonormal frame along ~ perpendicular to 4. By the

second variation of arc length, we have

0

IN

> /08<1<<vg>ﬁ<soEi<w>>>l\j

1<i<m—1

(R (0 (). )3 i), ) ds

- Askn—nﬁxf—¢%@Wd4@

for any function ¢ : [0, 5] — R. Consider the piecewise smooth function

%7 0 S S S 7.7
@(s) == 1, r<s<3s-—r, (2.9.22)
525 5_r<s<3.
-
We then have
2(m—1

[ reatnnas < 2D [ e 3,91
0 0

::%m—U+£ﬁ—wm@mw“+/iﬂ—ﬁmq%ww

r T
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< 2(7717"_1)—{—(771—1)1(-437“ < 2(m—1)<i+KT).

If v : [0, L] — M is a stable unit speed geodesic in a Riemannian m-manifold with
Rey < (m— DK, in By (1(0),1/VEK) U B, (v(D),1/VEK),
where K > 0, then

/L Ty {5 A = Al — DI
0

The above computation is useful in obtaining an estimate for the rate of change of the

distance function under the Ricci flow.

2.9.4 Jacobi fields in relation to the index form

Let, : [a,b] = M,r € t C R, be a 1-parameter family of paths. Assume -y is a geodesic.
Then S(y0(s)) = #o0(s), and hence ((V4)sS) (70(s)) = 0. For the variation vector field R, we
have

0= (vg)R(vg)SS = (vg)S(Vg)RS + ng(Ra S)S = (Vg)S(vg)SR + ng(R7 S)S.
Thus
(Vo)30(5) (Vg)s0(s)R(10(s)) + Rmyg (R(70(s)), Y0(s)) Fo(s) = 0.
A Jaboci field J is a variation of geodesic and satisfies the Jabobi equation
(Vg)s(Vg)sd +Rmy(J,5)S = 0. (2.9.23)

Given p € M and V,W € T, M, we define a 1-parameter family of geodesics v, :
[0,00) — M by
Yr(s) := exp,, (s(V +1W)) = ywirw(s). (2.9.24)

We may define a Jacobi field Jy - along v9 = vy by

0
Jvw(s) = g TZO'YV—&-rW(S)- (2.9.25)

Definition 2.3

A point z € M is a conjugate point of p € M if x is a singular value of exp,, : Ty M —
M. That is, v = exp,(V), for some V € T,M, where (exp,)«v : Tv(TpM) —

Texpp(V)M is singular (i.e., has nontrivial kernel).

(1) Equivalently, v(r) is a conjugate point to p along ~y if there is a nontrivial Jacobi field

&

along v vanishing at the endpoints.

(2) Given a geodesic vy : [0, L] — M without conjugate points and vectors A € T, ;)M
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and B € T yM with (A, S)y = (B, S)q = 0, there exists a unique Jacobi field J with

J(0)=Aand J(L) = B. Iy

If v : [a,b] — M is a path and V' and W are vector fields along -y, we define the index
form of V and W by

b
L5 (V.W) = / (((T9)sV: (Vo)) = (Vo)sV: 5), (V)53 8),

— (Rmy(V; 8)S, W>g) ds, (2.9.26)

where S := %| s=07s and s is a 1-parameter family of .
If 74, is a 1-parameter family of paths with fixed endpoints and if 79 is a unit speed
geodesic, then by Lemma 2.16,
82
9qOr l(gr)=(0,0)

Lg(vgr) = Igﬁo,o(Qa R).

Suppose vy : [0, L] — M is a geodesic without conjugate points. In the space Vect 4 ()
of vector fields X along ~y with (X, S), =0, X(0) = A and X(L) = B, the Jacobi field

minimizes the (modified) index form:

L
T, (X) = /0 (|(vg)sxy§—<ng(X, S)S, X) g) ds. (2.9.27)

Proof. If X and Y are vector field along v, then

T, (X +1Y) = /L (|(vg)S(X + V) — (Rmg(X + Y, 9)8, X + tY>g> ds
0
L
_ /0 (IV)sX +£(Vg)sY 2~ (Rung (X, 5)S, X)) ds

- / ' (2t (Rmg(X, )5, Y), + 12 (Rmy (Y, 5)S, Y>g> ds
0

so that

1d

2 dt li=o
(Note that the tangent space T’y Vect 4 p(7) is the space of all vector fields along v which vanish

L
Ty (X +1Y) = /0 (V)X (V)sY)y — (Bmy(X.5)S.Y), ) ds.

at the endpoints) If furthermore Y satisfies Y (0) = Y(L) = 0, using
d

%<Y, (Vg)sX)g = ((Vg)sY, (VQ)SX>9 + (Y, (VQ)S(VQ)SX>9 )
we obtain
L
o] LX) = /O (V,)5(V)sX +Rmg(X, $)S,Y), ds
and
2 L
S|,z = /0 (I(V,)sY — (Rmy(v.5)S.Y), ) ds.

Hence the critical points of Z, ,, on Vect 4 () are the Jacobi fields.
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‘We claim that

L
2
| (170sY = @y (v.9)5.7), ) ds >0
for any nonzero vector field Y € T'x Vect 4 g(y), so that the index form 1, is convex. Hence
the Jacobi fields minimize Z, - in Vect 4, g(y). We now give a variational proof of this inequality.

Normalize the index by defining

7T Z
o(t) == inf e 91:4(%)
O;EZETXveCtAyB(’y) fO |Z(3)|§d$
where .
Zya(Z) = /0 (1V)sY 2 = (9im, (¥, 9)8.1), ) ds
fort € [0, L].

(1) First we have
d
121, < (Vg)sZl,, (Rmy(Z,8)S,2), < |22

for some constant C' depending only on ¢g. Indeed,

d d 1 1
517l = S22 = 2 (V))s2.2), < 121, (V)2 = (V)52
(ii) Second we have A\1([0,¢]) = 7{—22, where A1 ([0,1]) is the first eigenvalue of d?/ds? with

Dirichlet boundary conditions. Hence

t 2
| Ji((R1z1)? - ClzB) ds o
u(t) > inf . >T
O#ZETXveCtA7B('y) fo ‘Z‘gds ¢

For t € (0, L] where 7| is minimizing (e.g., for ¢ > 0 small enough), we have ¢(t) > 0.
Since Z, ~ 1 is a second variation of | [0,¢] Vanishing at the endpoints 0 and ¢, and ¢(t) is continuous,
if the claim is not ture, we can find ¢y € (0, L] such that ¢(¢y) = 0. ThenZ, ~ +,(Zo) = 0 for some
vector field Zy with Zy(0) = 0, Zp(tp) = 0, and Zy # 0. By considering the Euler-Lagrange

equation for
Ly 10 (Z)
E(Z) = 5T
o 1Z(s)|2ds

at Zp, we have for all W vanishing at 0 and ¢,

1d -1
=-—| EZy+uW)=——
2 du lu=0 ( 0 ) (;50 |Z()(S)|?1d8

since Zy ~ 1, (Z0) = 0. Thus Zy is anontrivial Jacobi field along || 4, with Zo(0) = 0 = Z(to).

0 /0 *(V0)5(Vy)s 70 + Runy(Zo, )8, W), ds

This contradicts the assumption that there are no conjugate points along . Hence ¢(t) > 0 for
all't € (0, L]. O
2.9.5 First and second variation of energy

Given a path v : [a, b] — M, its energy is defined by

1 b
Ey(v) =5 / 4 (s)|2 ds. (2.9.28)
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Let 7, : [a,b] — M denote a 1-parameter family of paths, r € v € R. We also use the variation

vector field R and the tangent vector field S. The length of ~, is given by

IR
Byon) =5 [ el d.

Lemma 2.20. (First variation of energy)

Suppose 0 € v. The first variation of energy is

b

Lo Bo0n) = = [ (R (958, ) (s ds + (R S)y (5D |- @929

Proof. Calculate
b b
B0 =5 [ 5] 6630, e ds = 5 [ (RIS ((s))ds
b b
— [ ((V0)e5.8),) Golods = [ ((T)sR.5),) Gols)ds

that implies the lemma. O

Note 2.48

The critical points of the energy, among all paths fixing two endpoints, are the constant

speed geodesics vy, which satisfy
(vg)"y'7 =0.

The speed of v is constant since F|3|2 = 2 (V)57 Y)y = 0.

&

Let v4,r : [a,b) = M withq € ¢ C Rand r € ¢t C R, be a 2-parameter family of paths.
Recall the definition of vector fields ), R, and S.

Lemma 2.21. (Second variation of energy)

Suppose 0 € q and 0 € v. Then the second variation of energy is

82 b
5 oo P00 = [ ((F)5Q.(T,)sR),) (oo(s))ds
b
+ / (Rmy(Q, S)R, S),, (70,0(5)) ds (2.9.30)
b
= [ (T)aR.(95)58), (Goolo)ds + (Voo S), | (o) )
Proof. Since
2 b
oo Bt = [ (QUS.(T,)sR),) Gnals)ds
b
= [ (V208 (Va)sR), + (5. (Vo)a(T)sR), ) (ools))ds
we prove the lemma. O

——————— O (D) O



2.9 Variation of arc length, energy and area - 162 -

2.9.6 First and second variation of area

Let , : S™~! — M be a parametrized hypersurface in an m-dimensional Riemannian
manifold (M, g) evolving by
Oy = By (2.9.31)

where 3, is some function on S™~! := x,(S™1). In terms of local coordinates (*)7;' on

S™~1, the area element of S”" ! is

Sy, = y/det(gi;)da' A~ A dx™ L (2.9.32)

Then
Orgi; = 2B,hij. (2.9.33)
Hence
1 ..
0,dV] = §g” (0rgij) AV, = B, H,dV}. (2.9.34)
Thus the first variation of
Ay(SIY = / vy (2.9.35)
St
is
d
— A (S = / B H,dV!. (2.9.36)
dr 37(”—1
Under the hypersurface flow (2.9.31), we have
O-Hy = =g, B — |he2, Br — Reg, (vr, vp) By (2.9.37)
When 3, = —H,, the mean curvature flow, we have
O-H, = Ny, Hy + ||} Hy + Reg (vr, vr) Hy. (2.9.38)

Now, we can compute the second variation of area:

d? _
WAQ(S':” 1) = /Sml /37“ (_Agrﬂr - |h7"52hﬂr - ch (Vm Vr) ﬂr + Hgﬂr) dS;n

= [ (VaBl o+ (2 = s, =Ry (vr,00)) 82) S

If 0,z, = v,, then
d2

A = - /87”1 (HZ = |hy |2 = Rey(vr, v,)) dSL.

However,

Ry, = Ry — 2Rcy(vp,vp) + HY — | e}, . (2.9.39)

Therefore, if 0,2, = v, then the second variation of area is given by

d2 m—1 1 2 2 /
WAQ(ST ) = 3 /S:n_1 (Rg, — Ry + H — |, ) dS;. (2.9.40)
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Theorem 2.27. (Schoen-Yau, 1979)

If S? is an orientable closed stable minimal surface in a 3-manifold (M3, g) with positive

scalar curvature, then S? is diffeomorphic to a 2-sphere. ©

Proof. Let Sf be a variation of S? with 53 = S%and B = 1, by (2.9.35), H = 0, and the

Gauss-Bonnet formula, we have
2

d 2 2 2 2
0<255| auSH = [ (R~ R — ) aVjam(S*) = [ (R + IhE) v

Since Ry > 0 and |h|2 > 0, it follows that x(S?) > 0. Since M? is orientable, S* = 8. [J

2.10 Geodesics and the exponential maps

Introduction

[ Exponential maps theorem

J Gauss lemma and the Hopf -Rinow ‘A Cut locus and injectivity radius

Let (M, g) be an m-dimensional Riemannian manifold and p € M. For V' € T, M, there
is a unique constant speed geodesic vy : [0, byy) — M is the constant speed geodesic emanating

from p with 4y (0) = V. Here [0, by) is the maximal time interval on which 7y is defined.

2.10.1 Exponential map

Forall « > 0 and t < b,y , we have

Yav(t) =wl(at), bay =a 'by. (2.10.1)
Let O, C T, M be the set of vectors V' such that 1 < by, so that yy () is defined on [0, 1]. Then

define the exponential map at p by
exp, : Op — M, V— yy(1). (2.10.2)
If by > t, then by =t~ by > 1 and

exp, (V) = v (1) = w(t). (2.10.3)

Note 2.49

If M is compact, then for each p € M and V' € T, M, there is a unique constant speed

geodesic yy : [0,00) — M with v(0) = p and Yy (0) = V. &

Let O := UpemOp. Then the exponential map exp,, induces a map
exp: O — M (2.10.4)

by setting exp|p, = exp,. This map is also called the exponential map. Furthermore, the
set O is open in T'M and exp : O — M is smooth. In addition, O, C T, M is open and

exp, : Op — M is also smooth.

——————— O (D) O
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(IIf p € M, then
dexp, : To(TyM) — T,M (2.10.5)

is nonsingular at the origin of T), M. Consequently exp,, is a local diffeomorphsm.
(2) Define Exp : O — M x M by

Exp(V) = (7(V), expnv) V)
where 7 (V') is the base point of V, i.e., V' € T\ M. Then for each p € M and with it
the zero vector, 0, € T, M,

dExpp,0,) : T(p,0,) (TM) — Tipp) (M x M)

is nonsingular. Consequently, Exp is a diffeomorphism from a neighborhood of the zero

section of T'M onto an open neighborhood of the diagonal in M x M.

Proof. Let Iy : Ty M — Ty(T,M) be the canonical isomorphism, i.e.,

d
(V) L:O. (2.10.6)

Recall that if V' € Oy, then v/ (t) = v (1) for all ¢ € [0, 1]. Thus,

Io(V) =

dexp,(To(V) = 2| _ exp, V) = 2| qw()= 2| () =4v(0) =V
In other words, d exp,, ol is the identity map on 7}, M. This shows that d exp,, is nonsingular.
pp) (M x M) is naturally identified with T), M x
T, M. The tangent space 1{,,)(T'M) is also naturally identified to T;,M x Ty, (TM) =
T, M xT, M. Weknow that dExp(nOp) takes (p, V') to (p, exp,(V)). Under above identification,
if we consider the map dExpy, o  as a linear map T, M x T, M — T, M x T;, M, then it looks
like

For (2), we note that the tangent space 7|

which is clearly nonsingular. O

Suppose that N is an embedded submanifold of M. The normal bundle of N in M is

the vector bundle over N consisting of the orthogonal complements of the tangent spaces
TN C TyM:
TN = {(p,V):V €TLM, pe N, V € (TpN)* C T,M}. (2.10.7)
So for eachp € N,
TyM = TN & Ty N

is an orthogonal direct sum. Define the normal exponential map exp’ by restricting




2.10 Geodesics and the exponential maps — 165 -

exp to ONT*N, so
expt : ONT*N — M.

As in part (2) of Proposition 2.19, d exp™ is nonsingular at Op, p € N. Then it follows
that there is an open neighborhood U of the zero section in TN on which exp' is
a diffeomorphism onto its image in M. Such an image exp™(U) is called a tubular
neighborhood of N in M.

&

Suppose that (M, g) is a Riemannian manifold, p € M, and € > 0 is such that
exp,, : B(0p,€) CTHM — U C M
is a diffeomorphism onto its image U := exp,(B(0p, €)) in M. Then U = By(p, ¢) and
foreach' V€ B(0,,€), the geodesic v : [0,1] — M defined by
T (t) == exp,(tV)

is the unique minimal geodesic in M from p to exp, (V).

OnY{ we have the function () := | exp,, ' (). Thatis, r is the Euclidean distance function

from the origin on B(0,, €) C T,,,M in exponential coordinates.

2.10.2 Gauss lemma and the Hopf-Rinow theorem

Let (M, g) be a Riemannian manifold and p € M. Suppose that V' € T, M and for some
L > 0 the constant speed geodesic ¢ with 43 (0) = V is defined on [0, L] for every V in some
neighborhood of V. Given u € (0, L), let

W e Ty (TyM) = T, M is perpendicular to V., then the image (exp,)suv (W) of W
is perpendicular to (expy,)« (V) = v (u):
((expp)euv (W), (expp)*,uV(V)>g = 0. (2.10.8)
If the distance function r := dg(p, -) is smooth at a point x, we then have
Vgr(z) = 40(b), (2.10.9)
where vy : [0,b] — M is the unique unit speed minimal geodesic from p to x. Thus, if

Yo = Vv, for some unit vector Vy, then Vv = (exp,,)«0(Vo).

Proof. Given V,W € T, M, we define the family of geodesics

Yr(s) := exp,(s(uV +rW)), 0<s< 1
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Then Ly () = [uV +rW|y(, and

d _d 1/2
ar TZOLQ(%) = TZO(uV+TW,uV+7’W>g(p)
_ 2u(V, W>g(p) _ 1 VW) -
2uV + W]y lr=0 Vlg) 7w
On the other hand, we have
d 1 1 1
il Ly(vr) = —/ R, (Vy)sS),ds + —— (R, S
drlr=0 s(r) ulVlg(p) 0< (Va)s8la “’V|g(p)< >g‘0
1
= —— (XD} )xuV W), (exp )*,uV uV
u|V‘g(p) <( p) ( ) ( g ( )>g
1
= = ((&XDy)xuV w ; (€XDPyp ) x,uV V
Vi ((expp)wuv (W), (exp,)suv (V)

since 7, are geodesics. Thus

<(expp)*,uV(W)7 (expp)*,uV(V)>

which proves the first part.

g <V7W>g:0

Let 7, : [0,b] — M, r € t, be an arbitrary variation of y with ~,.(0) = p. Since 7 is
a minimal geodesic, we have Ly(,) > dg(p,¥-(b)) and Lg(v0) = dy(p,v0(b)). Hence, since
Vr exists at x,

d
<Vgr7X>g(:1:) = %

L
=0 g(’VT%

where X = % lr=07r(b). On the other hand, by the first variation formula (2.9.8),

! LX) = (o)X,

0
Bl (=
drlr=0 a() <Bs
Therefore, V 4r = 40(b). O
Let 9/0r denote the radial unit outward pointing vector field on 7,,M \ {0} and consider
the map, where X € T, M,
(expp)s,x : Tx (TpM) — Texpp(X)M'
We denote by Oy the canonical isomorphism
d
Ox : TyM — Tx (TyM), Y +— 0xY = —| (X +1tY). (2.10.10)
Hence we obtain
(exp,)«x = (exp,)s,x 0 0o : TyM — Texp, (x)M. (2.10.11)
Since (expp)*@ = idTp M is invertible, there exists an € > 0 such that exp, restricted on the
punctured ball B(0,¢) \ {0} C T, M is an embedding. We denote
e -1 -
rg(z) == |exp, (x)‘g(p), T € By(p,€) := exp,(B(0,¢)).

If {r,01,--- 6™ 1} are spherical coordinates in 7,,M, then we set

0 0 0 0
< — ~lZx)), 2 — (2 x)).
ooy oy = e (5200) T (expy)ex (%))
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For every X € T, M, we may write it as

m—1
0 .0
X = b'—1
Brgla ; AR
By Gauss lemma, Lemma 2.22, one has
0 0
(381,
87‘9 T 899 x g
and hence
0
<8_7"g I,X> =a=X(ry) = <gradg(rg(1:)),X>g.
Thus
0
Trgla = grad,(ry)(z), x € By(p,e). (2.10.12)

orevery V€ B(0,¢), vy : [0,1] — M is the unit path, up to reparametrization, joining
p and vy (1) = exp, (V') whose length realizes the distance dy(p, exp,(V)) = |V, In

particular, short geodesics are minimal and r4(x) = dgy(p, x) for x € By(p, €).

Proof. Since 9/0r is unit, it follows from (2.10.12) that
. . 9 . .
Bl 2 (30 5] ) = (B mad ) B00), = Bo) = Gons(5(0)

for any path 3 from p to exp,, (V') that stays inside B(p, €), so that

Wiy =ralexmy V) = [ atry3)an s [ 13l du < dylo,ex0, (V).

Hence vy realizes the distance from p to expp(V O

Theorem 2.29. (Hopf-Rinow)

Let (M, g) be a Riemannian manifold. Then the following are equivalent:

(1) (M,dy) is a complete metric space.
(2) There exists p € M such that exp, is defined on all of T, M.
(3) Forall p € M, exp,, is defined on all of T, M.

Any one of these conditions implies

(4) For any p,q € M there exists a smooth minimal geodesic form p to q. O

2.10.3 Cut locus and injectivity radius

Let (M, g) be a Riemannian manifold.

Definition 2.4. *Lipschitz functions)

A function f : M — R is a globally Lipschitz function with Lipschitz constant C' if for
all z,y € M we have

|f(x) — f(y)| < Cdy(x,y).

——————— O (D) O
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If for every z € M there exists a neighborhood U, of z and a constant C', such that

[f (@) = f(y)] < C: - dy(z,y)

forall x,y € U, then we say that f is a locally Lipschitz function. &

The distance function d,(p, -) is a globally Lipschitz function with Lipschitz constant 1.

Given a point p € M and a unit speed geodesic v : [0, 00) — M with 7(0) = p, either 7y
is a geodesic ray (i.e., minimal on each finite subinterval) or there exists a unique 7, € (0, c0)
such that dy(p, y(r)) = r for r < r and dy(p,y(r)) < r for r > r,. We say that () is a cut
point to p along ~.

(i) If v(r) is a conjugate point to p along -, then r > .
(i) The cut locus Cuty(p) of p in M is the set of all cur points of p.
(iii) Let
Dy(p) :=A{V € TyM : dy(p,exp,(V)) = [V]4}, (2.10.13)

which is a closed subset of T, M. We define Cyy(p) := 0Dy(p) to be the cut locus of p in

the tangent space. We have

Cuty(p) = exp,(Cy(p)) (2.10.14)

and
exp,, : int(Dy(p)) C TpM — M\ Cuty(p)

is a diffeomorphism. We call int(Dg4(p)) the interior to the cut locus in the tangent space

T,M.

A point v(r) is a cut point to p along ~y if and only if r is the smallest positive number
such that either v(r) is a conjugate point to p along -y or there exist two distinct minimal

geodesics joining p and ~(r).

Given V' € T, M and r > 0, we have vy (r) = exp, (V). For each unit vector V' € T, M
there exists at most a unique 7y € (0,00) such that vy (ry) is a cut point of p along vy .
Furthermore, if we set 7y = oo when vy is a ray, then the map from the unit tangent space at p

to (0, oo] given by V'~ ry is a continuous function. Hence we have
Cy(p) = ODy(p) = {rvV : V € TyM, |V|yp) = 1, yv is not aray} (2.10.15)

has measure zero with respect to the Euclidean measure on (7, M, g(p)).

Cuty(p) = exp,(Cy(p)) has measure zero with respect to the Riemannian measure on

(M, g).
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If z ¢ Cut,y(p) and z # p, then dy(p, -) is smooth at z and [V 4dy(p, )| 4(z) = 1by (2.10.9).

Since Cuty(p) has measure zero, we have |V ydy(p, )| = 1 a.e. on M.

Definition 2.5. (Injectivity radius)

The injectivity radius inj,(p) of a point p € M is defined to the supremum of all r > 0

such that exp,, is an embedding when restricted to B(0,r). Equivalently,
(1) inj,(p) is the distance from 0 to Cy(p) with respect to g(p).
(2) inj,(p) is the Riemannian distance from p to Cuty(p).

The injectivity radius of a Riemannian manifold (M, g) is defined to be
inj := inf inj . 2.10.16
gt 5= datt Sl (p) ( )

When M is compact, the injectivity radius is always positive.

Theorem 2.30. (Klingenberg)

(1) If (M, g) is a compact Riemannian manifold with Secy < K, then

&

™ 1
——, — - length of shortest closed geodesic ; .
Ui 2 gth of g }
. . . . . . 1
(2) If (M, g) is a complete simply-connected Riemannian manifold with 0 < ;K <
Secy < K, then

inj, (M) > min { (2.10.17)

inj (M) >

=

(3) If (M,g) is a compact, even-dimensional, orientable Riemannian manifold with
0 < Secy < K, then
injy(M) =

=
A3

2.11 Second fundamental forms of geodesic spheres

Introduction

[ Geodesic coordinate expansion of the tance spheres and the Ricatti equation
metric and volume form [ Space form and rotationally symmet-
' Geodesic spherical coordinates and ric metrics
the Jacobian (A Mean curvature of geodesic spheres
(1 The second fundamental form of dis- and the Bonnet-Myers theorem

In this section we consider geodesic spherical coordinates and the second fundamental
forms and mean curvatures of geodesic spheres. We also give the proofs of the Laplacian and
Hessian comparison theorems for the distance function and the corresponding volume and Rauch

comparison theorems.

——————— O (D) O
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2.11.1 Geodesic coordinate expansion of the metric and volume form

Let (M, g) be a Riemannian manifold. The exponential map exp,, : T M — M is defined
by exp, (V) := qv (1), where vy : [0,00) — M is the constant speed geodesic emanating from
p with 4y (0) = V.

Given an orthonormal frame {e; }1<; < at p, let { X*}1<;<, denote the standard Euclidean

coordinates on T M defined by V' =3, ., V'e;. Geodesic coordinates are defined by

zt = Xioexp;1 : M\ Cuty(p) — R. (2.11.1)
In geodesic coordinates, we have

1 1

gij = 0ij— gRiqua:pxq - EVTRiquxpquT
1 2
so that g;; = 6;; + O(r7), and
1 S| -
det(g) = 1-— §Rijx’w] — EVkRiszacjwk (2.11.3)

1 1 1 gkl 5
- (EvekaZj + %Rpiqupkgq — 1—8Rinkg) 'xlzxt + O(’r‘g).

Lemma 2.26. (Expansion for volumes of balls)
One has

_ m o Rg(p) 2 3
Vol(By(p, 7)) = wmr™ |1 mr + O(r )] . (2.11.4) .

Proof. It follows from
1 i
det(g)(x) =1— 6Rij(p)$ ) + O(Tg’(ac))
by (2.11.3). O

In geodesic coordinates centered at a point p € M we have

)
gi;(p) =071 %gjk(p) =0. (2.11.5) .

2.11.2 Geodesic spherical coordinates and the Jacobian

We say that the geometry is bounded or controlled if there is a curvature bound and an
injectivity radius lower bound.

Given a point p € M, let (X*)™, be local spherical coordinates on 7,,M \ {p}. That is,
. IV
X"V)=r(V) = |Vigp), X'(V):=¢0" (W) forl1 <i<m-—1, (2.11.6)
g
where {0"}1<i<m—1 are local coordinates on S7*~! := {V € T,M : |V]y,) = 1}. Let

——————— O (D) O
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exp,, : Tp M — M be the exponential map. We call the coordinate system
r:={z" = X0 expgl} : By(p,inj,(p)) \ {p} — R™ (2.11.7)
a geodesic spherical coordinate system. Abusing notation, we let
rg =a", 0 :=a' (2.11.8)

fori =1,---,m — 1, so that

0 1, 0 0 1, 0
ar, - gz ggr — @ laxe
which form a basis of vector fields on By (p, inj,(p)) \ {p}. Recall from (2.10.12) that the Gauss

(2.11.9)

lemma says that grad,ry = % at all points outside the cut locus of p, so that

2
2 0 0 0
d =|—] = d — ) =—r1r,=1 2.11.10
|gra grg|g ‘arg , <gra oo o, >g argrg ( )
and
o 0 0 0
9m =9\ 5737 ) =\ a3vm av;,) =9
dry’ 00, oxX™m’ 90X g
fori =1,--- ,m — 1. We may then write the metric as
g =dryg ®drg + gi;dd}, © db), (2.11.11)

where g;; := g(0/00}, 0/06)).
Along each geodesic ray emanating from p, 9/ 89; is a Jacobi field, before the first conjugate

point for each i < m — 1. We call

Jg = \/det(gij)lgm'gmfl (2.11.12)

the Jacobian of the exponential map. The volume of g is

dVy = /det(g)dy A -+ AdOT " Ndrg = JgdOg Adrg (2.11.13)
in a positively oriented spherical coordinate system, where
dOg == dby A -+ N doy . (2.11.14)

Hence the Jacobian of the exponential map is the volume density in spherical coordinates. If

~(7) is a conjugate point to p along v, then J,(y(r)) — Oasr — 7.

Along a geodesic ray v emanating from p we have that

lim ((vg) 0 ) (y(z)) := E; € TyM (2.11.15)

o
T—p org 69;
exists. Suppose (E;)i<i<m—1 is orthonormal (one can always choose such geodesic

spherical coordinates and we shall often make this assumption in the sequel). Then

i Jg(v(rg))

rg—0 r;n_l

1 (2.11.16)

Intuitively, one way to see that (2.11.16) holds is to note that (M, cg,p) converges as
¢ — oo in the pointed limit (R™,0), so that the limit in (2.11.16) should equal the

Euclidean value. &




2.11 Second fundamental forms of geodesic spheres -172 -

2.11.3 The second fundamental form of distance spheres and the Ricatti equation

Consider the distance spheres
Sg(p,r) ={x e M :dy(p,z) =r}. (2.11.17)

Let h denote the second fundamental form of .S, (p, ) as defined in (2.8.22). We have

o 0 g 0
hl = h YRRl = v 8 =y &
J (893 aeg]) <( g)agg org agg]>g

0 0 10
_ i = I = — g 2.11.1
<8T97(Vg)8§§ 89§>g K 2‘9ng] ( ¥

since 0/0ry is the unit normal to Sy(p,r) and gim, = gjm = 0. The mean curvature H of

Sy(p,r) is
H__ijrm_}ija .._ian (2.11.19)
AR At 87“99” s org Y o

(1) For r4 small enough,

1
hij = ——gij +O(rg), (2.11.20)
g
1
H = == 4+ 0(,). 2.11.21)
Ty

(2) In spherical coordinates, the Laplacian is
0? 0 0? 0
A, = g% ~T4%+—) = a5 +H—+A 2.11.22
9 = 9 (axaaxb abmo) o2 T g, T Asen 1122

62 o 0
— o+ (2 VAR ) o + Ao,

or2 dryg dry
since ', = 0fora=1,--- ,mand where A S, (p,r) U8 the Laplacian with respect to the
induced metric on Sy(p, ). Iy
We have the Ricatti equation
0
Ehij = _Rmijm + hikgkehgj (2.11.23)
where Rp;jm = (ng(a%, %)%, 8%)9. In particular,
g g’ 00y g
0 o 0
—H=-Rey | 7—, = | — |h2. 2.11.24
org ‘9 (8rg’ 8rg> b ( )

Proof. Since |0/0ry|, = 1, it follows that (V)s/ar,(0/0rg) = 0. From (2.11.18), we have
0 0 0 0 0 0
aTaghz‘j = o, <%’(vg)a§gaeg>g = —<%7(Vg)£g(vg)8%6%>g

0 0
= _<(97“g’(vg){;:@(v9)aézgaog>g_Rmijm
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0 0 0 0 0
- —8% <3Tg’ (Vg)a?gagg>g + <(Vg)agi %,(Vg)&aeg>g — Rpijm

o (o <a a> <(v) 0 8>
= i la\a a0 ) — R iy
o0; \ ory \or, 90}/ | st Oy 00}/

0 0
+ <(V (Vy) > — Rimijm = 0+ hikhjégke — Rpijm.-
g

g %377“9’ g % ory
Since
0 0 0 y
T H=d9—h— — .. -hY. .. = hi
87”‘9 g 87’9 () 87}7 g’L] Y 87"9 g’L] 1]
we obtain (2.11.24). ]
IfReg > (m — 1)K, then
) H H \?
— | — )| < -K—-|—] . 2.11.25
ory (m—l>_ <m—1> ( )
From (2.11.21), one has
H
lim i =1
rg—0 1 —
! L)
In terms of the radial covariant derivative
0
th,-j = ((vg)ah> = 7}7@']' - Ffmhkj — F]Tcn]hzk
37“9 Zj aT‘g
and ¥ . = h;*, we deduce from (2.11.23) that
vmhij = _Rmijm - hikhjggkf. (2.11.26)
Invariantly, we write this as
0 0
\Y X, Y)=—(R — ., XY,— ) —Rr¥X,Y 2.11.27
(V) 6 == (o (G X)) —aoxy) @i

for X, Y € T'Sy(p,r).

2.11.4 Space form and rotationally symmetric metrics

We consider the geodesic spheres in simply-connected space form (Mg, gx ). In this case

the metric is given by
JK = drg + S%{(Tg)gSmfl, (2.11.28)

where
T%sin(\/f?rg), K >0,
sk (rg) = Ty, K =0, (2.11.29)
\/%sinh(m%), K <0.



2.11 Second fundamental forms of geodesic spheres - 174 -

Lemma 2.29. (Curvatures of a rotationally symmetric metric)

If

g = dry + ¢*(rg)ggm—1 (2.11.30)

for some function ¢, which is called a rotationally symmetric metric, then the sectional

curvatures are
¢ 1 (¢)?
¢’ 2

where K..q (rad for radial) or Ky, (sph for spherical) is the sectional curvature of planes

Kiaq = — Kopn = (2.11.31)

containing or perpendicular to, respectively, the radial vector. As a consequence, we have

Reg = —(m — 1)%/617“3 + [(m—2) (1= (¢')?) — ¢"¢] ggm-1 (2.11.32)
and , o
Rg=—2(m—1)%+(m—1)(m—2)1_¢#. (2.11.33)
Furthermore, the Laplacian of g is
Ag:a—Z—i-(m—l)ﬂi—i—AS( . (2.11.34)
or? ¢ Org a(pr)

v

Proof. One way is to use the Cartan structure equations: w"™ = dr, and Wt = gb(rg)ni, where
{n*}1<i<m—1 is a local orthonormal coframe field for (S™ !, ggm-1). Another way of deriving

(2.11.31) is to consider the distance spheres. From (2.11.18), we have

10 ¢’ .
th = 58_%91] = ¢¢/98m—1 = Eglju )= ]-7 M= 1. (21135)

That is, the distance spheres are totally umbillic with principal curvatures  equal to ¢'/¢. The

intrinsic curvature of the hypersurface Sy (p, r) is

1
K, = ? (2.11.36)
From the Gauss equations, we have K, = Kj, — K2. ]
Using (2.11.19) yields
/
H = g"hijj = (m — 1)¢ (2.11.37)

E .
Example 2.19

When ¢(rq) = sk (rq) given by (2.11.29), the mean curvature Hy (ry) of the distance

sphere Sk (p,r) is

(m — 1)V Kcot(VKr,), K >0,
Hg(rg) := m—l K =0, (2.11.38)

Tg

(m — 1)y/|K|coth(/|K|ry), K <0.

Note that Hk (1) is a solution to the equality case of (2.11.25). That is,

0 (Hx(rg)\ _ e (Hxlry))*
arg(m_1)_ K (m—l) (2.11.39)

——————— O (D) O
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and

2.11.5 Mean curvature of geodesic spheres and the Bonnet-Myers theorem

By the ODE comparison theorem, we have

Lemma 2.30. (Mean curvature of distance spheres comparison)

If the Ricci curvature of (M, g) satisfies the lower bound Rcy > (m — 1)K for some

K € R, then the mean curvatures of the distance spheres Sy(p, ) satisfy

H < Hg (2.11.40)

at points where the distance function is smooth. ©

Proof. From (2.11.25) and (2.11.39), we have

o H+ Hg
I (H-Hy)< 217K
87‘9( K) =

Note that (H — Hg)(rg) = O(rg). Integrating (2.11.40), we get that for any r4 > € > 0,
s H+ H
(H ~ 1)) < (1~ H)() oxp |~ [ 208
€

m—1
Letting € — 0 yields (H — Hg)(rg) < 0. O

—— L (H — Hy).

(s)ds] : (2.11.41)

Theorem 2.31. (Bonnet-Myers)

12.31If (M, g) is a complete Riemannian manifold with Rcg > (m — 1)K, where K > 0,

then diam(M, g) < 7/ K. In particular, M is compact and (M) < co. 0

Proof. Consider any point p € M and suppose 7 : [0, L] — M is a unit speed minimal geodesic
emanating from p. Then dy(p, -) is smooth on v((0, L)) and for every r € (0, L), the distance
sphere S, (p, ) is smooth in a neighborhood of v(r). By Lemma 2.30, we have

H(rg) < (m— 1)\/Ecot(\/Erg)

along /g, ). Since

lim  cot(VKr,) = —o0,
rg—(m/VE)

it forces that L < m/+/K. Thus diam(M, g) < 7/v/K. Now a complete Riemannian manifold
with finite diameter is compact.

Furthermore, we may apply the diameter bound to the universal covering Riemannian
manifold (.Mv ,G), where g is the lifted metric. Indeed, g satisfies the same Ricci curvature lower

bound as g. This implies M is compact and we conclude 71 (M) < 0. ]

—_— e
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2.12 Comparison theorems

Introduction

(A Laplacian comparison theorem (A Mean value inequalities

[ Volume comparison theorem (1 Rauch comparision theorem

[ Hessian comparison theorem

Two fundamental results in Riemannian geometry are the Laplacian and Hessian compar-
ison theorems for the distance function. They are directly related to the volume comparison
theorem and a special case of the Rauch comparison theorem. The Hessian comparison theorem

may also be used to prove the Toponogov triangle comparison theorem.

2.12.1 Laplacian comparison theorem

The idea of comparison theorem is to compare a geometric quantity on a Riemannian
manifold with the corresponding quantity on a model space. In Riemannian geometry, model
spaces have constant sectional curvature, while, model spaces for the Ricci flow are gradient

Ricci solitons.

If (M, g) is a complete Riemannian manifold with Rcg > (m — 1)K, where K € R, and
ifp € M, then for any x € M where dg(x) := dy(p, x) is smooth, we have
(m — 1)VE cot (ﬁdg(@) . K>0,

Agdy(z) < el K =0, (2.12.1)

(m — 1)1/]K] coth (w/\K|dg(az)> , K <O.
On the whole manifold, the Laplacian comparison theorem (2.12.1) holds in the sense of

distributions.

In general, we say that A,f < F in the sense of distributions if for any nonnegative

C*°-function ¢ on M with compact support, we have

[ s [ o,
M M

Proof. 1If ry(x) := dg(x) is the distance function to p, then since r, is constant on each sphere

Ag, (p,ry = 0, then from (2.11.22) we have that the Laplacian of the distance function is the radial
derivative of the logarithm of the Jacobian (and is the mean curvature of the distance spheres)
0
Ayrg =H = I InJ,. (2.12.2)

Hence, if Rcy > (m — 1)K, then, by Lemma 2.30,
Agry < Hg(ry). (2.12.3)

This proves the Laplacian comparison theorem assuming we are within the cut locus.
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To prove (2.12.1) holds in the sense of distributions on all of M, we argue as follows. For

any nonnegative ¢ € C'*°(M) with compact support,
/ o(x)Hg (dg(z / / ¢ (exp,(0,7)) Hg ()] 4(0,7)dO(0)dr.
M Cy(r

Given a unit vector 6 € T, M, let ry be the largest value of  such that s — 7p(s) = exp, (0, s)

minimizes up to s = r. By the Fubini theorem, we have
/ o(x)Hg (dg(z / / @ (exp,(0,7)) Hg (r)J¢(0,7)drdO(0).
Now fo;\/é) < r < ry, by Lemma 2.30 and (2.12.2),
Hp(r)Jg(0,7) > H(0,7)J4(0,7) = iJg(ﬁ,T).
Hence

0
/ o(z)Hg (dg(z /Sm 1/ expp (0 r)) B —Jg4(0,7)drdo(0)
/Sm 1/ (¢ oexp,) (evr)Jg(e,T)de@(0)+/ ¢ (exp,(0,79)) Jg(0,79)dO(0)

syt
/Sm 1/ (¢ o expy) (8,7)J4(80,7)drdO(6).

By the Gauss lemma we arrive at

/ p(v)Hp (dg(x))dVy(z) > —/ <V990avg7"g>gdvg:/ rgAgpdVy,
M M M

where the last equality follows from the fact that 4 is Lipschitz on M and the divergence theorem

holds for Lipschitz functions. O

Using x cothx < 1 4 x yields

If (M, g) is a complete Riemannian manifold with Rcy > (m — 1)K, where K < 0, then

1
Agdy < mT + (m - 1)y/|K] (2.12.4)
g

in the sense of distributions. In particular, if (M, g) is a complete Riemannian manifold

with Reg > 0, then for any p € M

(2.12.5)

in the sense of distributions.

Estimate (2.12.1) is sharp as can be seen from considering space forms of constant curvature

—K. If K =0, then (2.12.5) is sharp since on Euclidean space A|x| =

2.12.2 Volume comparison theorem

A consequence of the Laplacian comparison theorem is
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If (M, g) is a complete Riemannian manifold with Rcy > (m — 1)K, where K € R, then

for any p € M, the volume radio
Voly(By(p, 7))

Volg (Bk (pk, 7))
is a nonincreasing function of r, where pg is a point in the m-dimensional simply-

connected space form of constant curvature K. In particular,
Voly(By(p, 7)) < Volg (Bk (pk, 7)) (2.12.6)
forallr > 0. Given p € M and r > 0, equality holds in (2.12.6) if and only if By(p,r)

is isomorphic to B (prc, 7).

Proof. Given a point px € Mg, let ¢y, : T, Mg \ {0} — S~ be the standard projection
Yp, (V) := V/|V|p,. The volume element of the space form satisfies
AV = \/det(gr)dO} A --- ANdOR~  Ndrg = s7 7 (ry)dok A drg,

where do is the pull-back by ¢, o exp,, ; of the standard volume form on the unit sphere
S If (0")1<i<m—1 are coordinates on S7'~!, then

’}(:Giowoexp;;, 1=1,---,m—1.
From

dog = (Y oexp, ) (dO' A--- NdO" ) =db A AdOTT,

we get

Jrc == /det(gr) = s (ry).

When K < 0 the above formula holds for all 7, > 0 and when K > 0 we need to assume
ry € (0,7/VK).
Now we consider a Riemannian manifold (M, g) with Rcy > (m — 1) K. From (2.11.19)

and (2.11.40) we obtain
0 \/det(g)

n———%= < 0. 2.12.7
dry ‘9%—1(7"9) B ( :
Assume that the coordinates (01')21—11 on S;”_l are such that lim,_,o %% =e € T,M

are orthonormal. Then we have
. Vdet(g) 1

m—1

Jg < 8™ (ry). (2.12.8)

Without making any normalizing assumption on the coordinates (92');’;11, this says

Jy(04,74)dO4(0,) < sggfl(rg)dasg(p,r) (6,).
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Equivalently,
3(0,1)d0(6) < s (r)do g 6).

This is the infinitesimal are comparison formula which gives us

dV, < dVi. (2.12.9)

Integrating this proves (2.12.6), at least within the cut locus. To see that this result holds on the

whole manifold, we argue as follows. Let
Cy(r) :={V € TpM : |V]yp) = L and v (s) = exp,(sV), s € [0, 7], is minimizing}.
Note that Cy(r2) C Cy(r1) for 11 < ry. since the cut locus of p has measure zero and

expy,(dVy) = JdO A dr inside the cut locus of p, for any integrable function ¢ on a geodesic

ball B, (p,7) we have

/B (p7) pla)dVy(w) = /0 ( /O ¥ (exp,(6,7)) J(9,7“)d®(9)> dr.

In particular,

v = [ = [ e = [ ( /Cg(r)w,md@(e)) &

< /O (/C ) S%_l(r)do—sgll(e)) dr < /0 (A;,Llsg—l(r)dasgl(e)> dr

g

— /r </ . 8%—1(7")@5;”1(9)) dr = Volg(Bk(pK,T))-
0 S;nK :

This completes the proof of (2.12.6). ]

g

If (M, g) is a complete Riemannian manifold with Rcy > 0, then for any p € M, the

volume ratio

Voly(By(p, 7))

T.m

is a nonincreasing function of r. Since

lim VOIQ(BQ(pa ’I")) = W,
r—0 Rl

we have

Voly(By(p:7)) _ W (2.12.10)

for all r > 0, where wy, is the volume of the Euclidean unit m-ball.

If (M, g) is a complete noncompact Riemannian manifold with Rcy > 0 and if for some

pEM
VOlg(Bg (p,7))

lim ———————~ =w
7—00 rm mo
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then (M, g) is isomorphic to Euclidean space.

Let (M, g) be a complete Riemannian manifold and p € M. Given a measurable subset I
of the unit sphere Sg"b_l C TpMand 0 < r < R < oo, define the annular-type region:
reM:r<dy(pz)<R
and there exists a unit speed
AEW’R(])) = minimal geodesic  from C By(p, R) \ By(p, 7). (2.12.11)

7(0)=ptoz
satisfying 7/(0) € T’

Note that id " = Sglfl, then

m—1
Sp

orr (P) = Bg(p, R) \ By(p, 7).

Given K € R and a point pg in the m-dimensional simply-connected space form (Mg, g ) of

A
constant curvature K, let AEK’T’ r(pK) denote the corresponding set in the space form.

Suppose that (M, g) is a complete Riemannian manifold with Rcqy > (m — 1)K. If
0<r<R<Sr<s<Sandifl' C S]’anl is a measurable subset, then

voly (47,50) Vol (47,.a(0)
Volg (AgK’&S(pK)) ~ Volg (AgKmR(pK)).

(2.12.12)

Taking r = s = O and I' = S7"~! yields Theorem 2.34.

Let (M, g) be a complete noncompact Riemannian manifold with nonnegative Ricci
curvature. For any point p € M, there exists a constant C = C(g,p,m) > 0 such that
foranyr > 1

Voly(By(p,7)) > Cr. (2.12.13)

Proof. Let x € M be a point with dy(p, ) = r > 2. By Theorem 2.34 we have

Vol, (A*;T_;TH(QC)) p Volg (A;gf;l_Lml(PK))
Vol (Ag%n;l_l(:c)> ~ Volg (Agf,;),lr—l(PK))

giving us
Voly(By(z, 7+ 1)) — Voly(By(z,r — 1)) < (r+1)™—(@r-1m < C(m)
Voly(By(z,r — 1)) - (r—1)m -
for some constant C'(m) depending only on m. Since By(p,1) C By(x,r + 1) \ By(z,r — 1)
and By(x,r — 1) C By(p, 2r — 1), it follows that

Voly (By(p, 1))
T
C(m)
We have proved the corollary for » > 3. Clearly it is then true for any r > 1. g

Voly(By(p,2r — 1)) > Voly(By(z,r — 1)) >
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Example 2.20

A simple example of a complete Riemannian manifold with nonnegative sectional curvature

and linear volume growth is S™ 1 x R (we may replace S™~! by any closed manifold with
nonnegative sectional curvature). If we want M to also have positive sectional curvature

at least at one point, then we may take a cylinder S™~! x [0, c0), attach a hemispherical

cap, and then smooth out the metric. o

If Rcy > 0, then by (2.11.22) and (2.12.5) we have

H=Ayd, < mT_l. (2.12.14)
g

Hence the area A, (r) of the distance sphere S, (p, r) satisfies

dAg(T'):/ Hdaﬁ/ mildo’:milAg(r)‘
dr Se(p.r) Sepr)  Tg r

Integrating this yields

m—1
Agls) < Aglr) o, 52
Therefore
Vol /A dp>/ Ay E—dp =L 4,(r), (2.12.15)
r m
we obtain
1
A,(s) Vo (ng(p’r)) mel s (2.12.16)
or
A 1,(B
g(S)i1 < Vol g(pﬂ“))’ s> (2.12.17)
MWy S™ W™
Let

Vol,(By(p,
AVR,(p) := lim Voly(By(p,7)) (2.12.18)
r—00 Wy, ™
be the asymptotic volume ratio. The asymptotic volume ratio is an important invariant of the

geometry at infinity of a complete noncompact manifold with nonnegative Ricci curvature.

On a complete noncompact Riemannian manifold with nonnegative Ricci curvature we

have
A05) 5 AVR,(p) (2.12.19)

mwys™1 —

forany s > 0.

Proof. Since A,4(s)/s™~! is nonincreasing, it follows that

1,(B — Vol, (B 1 s
Vog( g(pas)) Vog( g(p,r)) — / Ag(p)dp
Wi (8™ — rm) W (8™ —rm) ..
1 s Pl Ay(r) [7pm tdp Ay(r)
< A d — g T — g
T wp(rm—s™m) /T o(7) pm—1 4P wprm—1 pm _ gm mwy,r™=1
for any s > r. Letting s — oo yields (2.12.19). g
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2.12.3 Hessian comparison theorem

Proposition 2.20. (Hessian comparison theorem—general version)

Let i = 1,2. Let (M, g;) be complete Riemannian manifolds, let ~; : [0, L] — M, be
geodesics parametrized by arc length such that +y; does not intersect the cur locus of v;(0),

and let dg,(-) := dg,(7:(0)). If forall t € [0, L] we have
Secg, (Vi A41(t)) > Secg, (Va A A2(t))
for all unit vectors V; € T,y M; perpendicular to %;(t), then
V2, dg, (X1, X1) < V2, dg, (X2, X2) (2.12.20)

forall X; € T, )M, perpendicular to ¥;(t) and t € (0, L].

Theorem 2.35. (Hessian comparison theorem—special case)

Let (M, g) be a complete Riemannian manifold with Secy > K. For any point p € M

the distance function ry(z) = dg(p, x) satisfies

Vz‘Vj’r’g = hij <

m— 1HK(rg)gij (2.12.21)

at all points where 1 is smooth (i.e., away from p and the cut locus). On all of M the

above inequality holds in the sense of support functions. ©

Proof. From (2.11.27), we have
V.o h<—-Kg—h?

Org

along a geodesic ray 7 : [0, L) — M emanating from p. We claim that

h(rg,0y) < Hi (rg)g(rg,by). (2.12.22)

m—1
Indeed, given any unit vector V' at p, we parallel translate it along y. Let V(ry) := V(y(rg));
then [V (rg)lg(y(r,)) = 1 and Vg 5,V (r4) = 0. Hence

IV ENV O] = Vo V) V() + 20 (T 0 V). Viry) )

d?“g Org

< =KWV (rglyyrg)) = [V (1g), V(rg))]? = =K = [h(V (rg), V(ry))]*.

From (2.11.20) and (2.11.21) we have
Hp(rg) 1

h(V(rg),V(rg)) — m—1 E +O(rg) — E O(rg) = O(ry)
Consequently
MV (1), V(ry)) — )
< V() V(e) - ZK_(?] exp [— / ' (HK_(Sl) h(V(s), V(s))) ds]
which gives
AV (rg), Vi(rg)) — ——— Hklry) <0

——————— O (D) O
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for all 7, > 0. Hence

ViVjrg = hij < —— Hic(r4)gis

inside the cut locus when Secy, > K. ]

Note that the Hessian of the distance function is the second fundamental form of the distance

sphere, which in turn is the radial derivative of the metric. yielding information about the inner

0 _.

products of the Jacobi fields 55
g

10 10 o 0
ViVirg=hij=-—gji==-—\ =,— ) . 2.12.23
BT =T 59,9 T 20, <ae; 06] >g (21223
If J; and J are Jacobi fields along a geodesic v : [0, L] — M without conjugate points and if
Ji(0) = 0 and (V)5 Ji(0),7(0)) g(y(0)) = 0 for i = 1,2, then we have

10

=, JaY g = (V) 1 (Vo) sarg = h(J1, ). (2.12.24)
20r,

Let (M, g) be Riemannian manifold with Secq, > K and let y : [0, L] — M be a unit
speed geodesic. If J is a Jacobi field along -y J(0) = 0 and ((V4)4J(0),5(0))g(~(0)) = 0,
then

1 7(ra)lgtr(rg)) < [(Va)30)T(0)] 5 0 55 (79)- (2.12.25)

g(y

Proof. By our hypotheses, (J(rg),¥(rg))g(v(r,)) = O for all r; > 0. From (2.12.22) and
(2.12.24),

1/2
9 ('J(Tg)'g(v(») _ 0 (V) IO o))
Ory sk (rg) ory sk (ry)
_ m%u&% J(Tg)) g(v(re)) 5K (Tg) = I (Tg)g((re)) S (Tg)
s (rg)
1 Sk (19) 17 (rg)lg((ry))

= ‘J(rg)|g(7(rg))sK(rg) h(J(T9)7 J(’I"g)) -

B J(rg) J(rg) Hic(rg) | 19 (rg)lgy(ry))
- (i )T e

T)lgvire)) 1 (gl g(v(rg)) m—1 sk (rg)

sk (rg) sk (rg)

The result now follows from limy., 0 [J(rg)lg(v(re)) /5K (Tg) = [(Vg)500) 7 (0)lg(~(0))- O

Suppose that (M, g) is a Riemannian manifold with constant sectional curvature K. If J is

aJacobi field along a unit speed geodesic y with J(0) = 0 and ((V 4)+J(0),5(0)) g(y(0)) =
0, then

|J(Tg)|g(7(rg)) = |(Vg)7(0)‘](0) ‘g(’y(O)) SK(T!J)'
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In general we have the expansion
1 . .
|J(rg)|3(7(rg)) = rl- - (Rmy (V4(0)J(0),4(0)) 5(0), Vﬁ(O)J(O)>g(7(o)) i
+0(r)). (2.12.26) a

Finally we consider the Hessian in spherical coordinates. We have

0? 0 0?
mVm — = —lomas = a9
ViV 87"3 mm Aga 87“3
0? 0 0? -0
Vi = ———T°%. — = -l —,
VeV = ar0m  Tmioae = argo0, " og
0?2 0 0
v P e 0 gsgs g, O
ViV o000, 0z VT g

where V¥ is the intrinsic covariant derivative of the hypersurface Sg(p,r). In particular, if
f = f(rg) is aradial function, then

9% f of

ViVnf = Goge VuVaf =0, ViVsf = hyg

2.12.4 Mean value inequalities

The following mean value inequality that is a consequence of the Laplacian comparison

theorem, has an application in the proof of the splitting theorem.

Proposition 2.21. (Mean value inequality for Rc, > 0)

If (M, g) is a complete Riemannian manifold with Rcy, > 0 and if f < 0 is a Lipschitz

function with Agf > 0 in the sense of distribution, then for any x € M and 0 < r <

inj,(z),
1

W, ™

f(z) <

/ fdVy. (2.12.27)
By(z,r)

Q©

Proof. By the divergence theorem for Lipschitz functions, we have

0< Tm1—1 /B( )Agfdvng or_1 Vdet(g)dOy,
g(x,7r

-1
OBgy(z,r) or rm

where dO, = dfy A --- A d#' 1. Since

9 \Jdetly) i( T, ) I R o

87"9 r;nfl 87'9 ,r,;nfl rgme
o) —1
B 6—%Jg-rg—Jg(m—1) _ - Jgrg — Jg(m —1) _
= o < o =

—_— e
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from A rg—H——an < m=Land f < 0, we have
0 < / 8f \/det 6 V/det(g
~ JoBy(an) ar rm-1 37“ Cpm-1

0 det(g) d 1
- T YR ) g, = & / fdo, |,
/3139(35,@ 37"( rm-t > 0 dr (Tm YoByan
where dog = \/det(g;;)dO,. Since

1
lim / fdo, = mwy, f(z),
r—0 ym—1 OB, (1) 9 ( )

where mwy, is the volume of the unit (m — 1)-sphere, integrating the above inequality over [0, s]

yields
1
mwp f(2) < —— / fdoyg.
Sm
0Bgy(z,s)

Integrating this again over [0, ] implies
r’m 1

f(x)—é—/B( Jav,

m T mwp,
which is the desired inequality (2.12.27). (I

Proposition 2.22. (Mean value inequality for Sec, < H)

Suppose that (M, g) is a complete Riemannian manifold with Secy < H in a ball By(x, 1)
where r < injg(/\/l). If f € C°°(M) is subharmonic, i.e., if Agf >0, and if f > 0 on
M, then

1
Vi (r)

where Vi (1) is the volume of a ball of radius r in the complete simply-connected manifold

flz) < /B - fdvy, (2.12.28)

of constant sectional curvature H.

2.12.5 Rauch comparison theorem

More generally, applying standard ODE comparison theory to the Jacobi equation, one has
the following
Let (M, g) and (M™,§) be Riemannian manifolds and let v : [0,L] — M and 7 :
[0, L] — M™ be unit speed geodesics. Suppose that 7 has no conjugate points and for
anyr € [0, L] and any X € TmM, X e Tﬁ(r)/\;lm, we have

Secg (X A4(r)) < Secg (X AH(r)).

——————— O (D) O
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If J and J are Jacobi fields along v and 7 with J(0) and J(0) tangent to ~y and 4, and if
[T Olgr0) = 1T(0)lgo(s00)):
(Va0 A0),0p = (Taks@T©50))
(Vo0 Olyy = [T O]
then
7 (M)grry) 2 17 (M)laary) - (2.1229)

Corollary 2.17. (Cartan-Hadamard theorem)

If (M, g) is a complete Riemannian manifold with nonpositive sectional curvature, then
forany p € M, the exponential map exp,, : T, M — M is a covering map. In particular,

the universal cover of M is diffeomorphic to Euclidean space R™. ©

2.13 Manifolds with nonnegative curvature

Introduction

(1 The topological sphere theorem and soul theorem

[ Cheeger-Gromoll splitting theorem (1 Topological comparision theorem

2.13.1 The topological sphere theorem

Given a Riemannian manifold (M, g), let Sec,(II) denote the sectional curvature of a 2-
plane II C T, M where p € M. The Rauch-Klingenberg-Berger topological sphere theorem

says the following.

Theorem 2.37. (Topological sphere theorem)

If (M, g) is a complete, simply-connected Riemannian manifold with }1 < Secy(I) < 1
for all 2-planes 11, then M is homeomorphic to the m-sphere. In particular, if m = 3,

then M3 is diffeomorphic to the 3-sphere. ©

Recently, Brendle and Schoen showed that

Theorem 2.38. (Diffeomorphic sphere theorem)

If (M, g) is a complete, simply-connected Riemannian manifold with %1 < Secy(I) < 1
for all 2-planes 11, then M is diffeomorphic to the m-sphere. ©

There is not much known about general closed Riemannian manifolds with positive sectional

curvature.

——————— O (D) O
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Problem 2.2. (Hopf conjecture I)

p2.2 Does there exist a Riemannian metric on S*> x S? with positive sectional curvature? o

Problem 2.3. (Hopf conjecture II)

Prove that if (M?™, g) is a closed, even-dimensional Riemannian manifold with positive

sectional curvature, then x(M?>™) > 0.

o

Note that any closed, odd-dimensional manifold has x (M?™ 1) = 0. The case of complete

noncompact manifolds with positive sectional curvature is simpler.

2.13.2 Cheeger-Gromoll splitting theorem and soul theorem

In the study of manifolds with nonnegative curvature, often (especially when the curvature
is not strictly positive) the manifolds split as the product of a lower-dimensional manifold with a
line.

A geodesic line is a unit speed geodesic v : (—00,00) — M such that the distance
between any points on 7 is the length of the arc of v between those two points; that is, for any
51,82 € (—00,00), dg(v(s1),7(s2)) = |s2 — s1|. A unit speed geodesic § : [0,00) - M is a
geodesic ray if it satisfies the same condition as above. Given a geodesic ray 3 : [0, 00) — M,

the Busemann function

bg: M — R (2.13.1)
associated to [ is defined by
bg(x) := slggo (s —dg(B(s),2)). (2.13.2)

(1) In Euclidean space the Busemann function is linear. For any unit vector V.€ R™,
the Busemann function b.,,, associated to the geodesic ray yy : [0,00) — R™ defined by

Y (s) := sV is the linear function given by

by, (x) = (z,V)
forallz € R™.
(2) The Busemann function is well-defined, finite, and Lipschitz.
(3) |Vgbslg = 1 at points where it is CL.
(4) If 8 is a geodesic ray in a Riemannian manifold with Rcy > 0, then Agzbg > 0 in the
sense of distributions. Indeed, using (2.12.5) yields
m—1

Agbo(®) 2~ B

——————— O (D) O
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Suppose (M, g) is a complete noncompact Riemannian manifold with Rcy, > 0 and
suppose that there is a geodesic line in M. Then (M, g) is isomorphic to R x (N™~1 h)

with the product metric, where (N™~1, h) is a Riemannian manifold with Rcy, > 0.

Proof. Given a geodesic line v, consider the two Busemann functions b,, associated to the
geodesic rays y4 : [0,00) — M defined by y4(s) = y(+£s) for s > 0. Since Re, > 0,
we have Ayb,, > 0 in the sense of distributions and hence Ay(b,, + b,_) > 0. From

dg(v(s),7(—s)) = 2s, we note that for any z € M

by (2) +by (z) = lim [25 — dy(v(s),2) = dg(7(=5), )]
< lim [25 —dg(y(s),7(=s))] = 0.

Using Proposition 2.22, we obtain
1

Wy, ™

0=b,, (2)+b, () < / by, +b, ]dV, <0
By(z,r)

forany z € yand 0 < r <inj,(z). Hence b, + b,_ = 0 in a neighborhood of .

By applying the mean value inequality again, we see that the set of points in M where
by, + by_ = 0is open. Since this set is also closed and nonempty, we have b, +b,_ = 0
on M and hence also Ay(b,, + b,_) = 0. Since Ayb,, > 0, this implies Ayb,, = 0 in the
sense of distributions. Standard regularity theory of PDE now implies b, is smooth. Therefore,
|Vgby,|g = 1. Since Vb, is a nonzero parallel gradient vector field on M, (M, g) splits as a
Riemannian product R x (N, h) where N = {z € M : b, (z) = 0}. O

(1) The above result generalizes the Toponogov splitting theorem, which derives the same

conclusion, under the stronger hypothesis of nonnegative sectional curvature.
(2) In the study of the Ricci flow on 3-manifolds one of the primary singularity models

is the round cylinder S? x R. This singularity model corresponds to neck pinching. We

shall see that the splitting theorem has applications to the Ricci flow.

&

A submanifold S C M is totally convex if for every xz,y € S and any geodesic y (not
necessarily minimal) joining x to y we have v C §. We say that S is totally geodesic if its
second fundamental form is zero. In particular, a path in a totally geodesic submanifold S is a
geodesic in § if and only if it is a geodesic in M.

Given a noncompact manifold (M, g), we say that a submanifold is a soul if it is a closed,

totally convex, totally geodesic submanifold such that M is diffeomorphic to its normal bundle.

Let (M, g) be a complete noncompact Riemannian manifold with nonnegative sectional

curvature. Then there exists a soul. If the sectional curvature is positive, then the soul is
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a point (e.g., M is diffeomorphic to R™). ©

Furthermore Sharafurdinov proved that any two souls are isometric. An important tool in

the study of manifolds with nonnegative curvature is the Sharafutdinov retraction.

Theorem 2.41. (Soul conjecture; Perelman, 1994)

If (M, g) is a complete noncompact Riemannian manifold with nonnegative sectional
curvature everywhere and positive sectional curvature at some point, then the soul is a

point.

Q©

Another fundamental result about noncompact manifolds with positive sectional curvature

is the following.

Theorem 2.42. (Toponogov, 1959)

If (M, g) is a complete noncompact Riemannian manifold with positive sectional curvature

bounded above by K, then

inj(M,g) > ——. (2.13.3)

S

Moreover, M is diffeomorphic to Euclidean space. ©

2.13.3 Topological comparison theorem

As a consequence of Section 2.9 we have the following

Lemma 2.31

Let (M, g) be a complete Riemannian manifold with nonnegative sectional curvature and

p € M. IfB: (a,b) — M is a unit speed geodesic, then the function ¢ : (a,b) — R
defined by
¢(r) :==r* = d5(p, B(r))

is convex. v

Proof. Givenrg € (a,b), let~, : [0, L] — M be a 1-parameter family of paths from p to 5(r)
with 7, : [0, L] — M a unit speed minimal geodesic from p to (o) and
0

S

sl ) = 2V o),

where V is the parallel translation of 3(rg) € T, (r)M along 7. Since V|2 = 1, it follows

r=rg

from that (since Secy > 0)

Since

——————— O (D) O
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we conclude that ¢ is convex. O

In general, if ¢ : (a,b) — R is a Lipschitz function such that for all ro € (a,b)
there exists a C-function 1, (r) defined in a neighborhood of o with 1., (r) < ¢(r),

Yro(ro) = ¢(r0) and %\T:mwm (r) > 0, then ¢ is convex.

L]

Let (M, g) be a complete Riemannian manifold with nonnegative sectional curvature and
let a : [0, A] — M be a unit speed minimal geodesic joining p to q. If § : [0, B] — M
is a unit speed geodesic with 3(0) = q and if 0 € [0, 7| is the angle between B (0) and
—&(A), then

df](p, B(r)) <12+ A% — 2rA - cos(6)

forallr € [0, B]. In particular,
2 2 2
dg(p, B(B)) < A® + B* — 2AB - cos(0). (2.13.4)

By the law of cosines, equality is attained for Euclidean space. That is, the right-hand
side of (2.13.4) is the length squared of the side in the corresponding Euclidean triangle
with the same A, B and 6.

Proof. For e > 0, let
fe(r) =12 — dg(p, B(r)) + A% — 2Ar - cos(f) + er.
Then f. is convex. We also have
fe(0) = =dZ(p,q) + A> = —L2(0) + A = —A* + A> =0

because « is a unit speed minimal geodesic. By a first variation argument (we may assume

dg(p, -) is smooth at g. Otherwise, we can apply Calabi’s trick)

2|t = (2= 20,0509 (Ve 500, 500

5 r=0 g
= €—2A((A),(0)), —2A-cos(d) = €>0,

—2A - cos(f) + e>
r=0

fe(r) > 0 for » > 0 small enough, depending on €. Since f, is convex, we conclude that
fe(r) > 0forall r € (0, B]. In particular, lim._,o fc(r) > 0 for all € (0, B], which proves the

theorem. OJ

More generally, we have the following statements of the Toponogov comparison theorems
for manifolds with a sectional curvature lower bound.
A geodesic triangle is a triangle (i.e., three vertices joined by three paths) whose sides

are geodesics. The triangle version says that a triangle in a manifold has larger angles than the
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corresponding triangle with the same side lengths in the simply-connected constant curvature

space. Given a triangle (p, ¢, 7), £pqr denote the angle at q.

Theorem 2.44. (Toponogov comparison theorem—triangle version)

Let (M, g) be a complete Riemannian manifold with Sec, > K. Let A be a geodesic
triangle with vertices (p,q,r), sides qr,7p, pq, corresponding lengths a = Lg(qr),b =
Ly(7p),c = Lg(pq) such that a < b+ ¢,b < a+ c,c < a+ b (for example, when all of
the geodesic sides are minimal), and interior angles o = Arpq, 3 = Apqr,~v = ALqrp,
where o, 3,7 € [0, 7). If the geodesics G and 7p are minimal, and ¢ < 7 /\/K in the case
where K > 0 (no assumption on c when K < 0), then there exists a geodesic triangle
A = (p,q,T) in the complete, simply-connected 2-manifold of constant Gauss curvature
K with the same side lengths (a,b, ¢) and such that we have the following comparison of
the interior angles:

a>a:=4rpq, B> B := Lpqr.

Q©

A geodesic hinge consists of a pair of geodesic segments emanating from a point, called
the vertex, making an angle at the vertex. The hinge version says that a hinge in a manifold has
a smaller distance between its endpoints than the corresponding hinge in the constant curvature

space with the same “side-angle-side”.

Theorem 2.45. (Toponogov comparison theorem—hinge version)

Suppose (M, g) is a complete Riemannian manifold with Sec, > K. Let / be a geodesic
hinge with vertices (p, q, ), sides qr,Tp, and interior angle £qrp € [0, 7| in M. Suppose
that G is minimal and that Ly(7p) < 7/ K if K > 0. Let /' be a geodesic hinge with
vertices (p',q',r") in the simply-connected space of constant curvature K with the same
side lengths Ly(q'r") = Ly(qF), Ly(r'p’) = Lg4(7D) and same angle £q'r'p' = Lqrp.
Then we have the following comparison of the distance between the endpoints of the
hinges:

dy(p,q) < di(p',q)

where dy denotes the distance in the simply-connected space of constant sectional cur-

vature K. v

——————— O (D) O
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2.14 Lie groups and left-invariant metrics

Introduction

[ Lie groups and left-invariant metrics [ Curvatures formulas for Lie groups

[ Left-invariant metrics with left-invariant metrics

[ Left-invariant vector fields

we have discussed the curvatures of bi-invariant metrics on Lie groups. In this section, we

focus on the curvatures of left-invariant metrics on Lie groups.

2.14.1 Lie groups

A Lie group is a smooth manifold G with the structure of a group, such that the map
p: G x G — G,defined by p(o,7) = o - 771, is smooth.

Given o € G, we define left multiplication by o:

Ly,:G—G, T—0-T. (2.14.1)

2.14.2 Left-invariant metrics

A Riemannian metric g on G is left-invariant if for any o € G, L, is an isometry of (G, g):

(Lo)"9g=g.

Every Lie group admits a left-invariant metric.

Proof. Since T, G is a vector space, we can find an inner product g, on T.G. For any o € G, we

set

9o = (La*1 )* Ge-

Since G is smooth and the multiplication is also smooth, we obtain a smooth metric g on GG. For

T€G,

(LT)*gU = (LT)* ((Lafl)*ge) = (Lafl-T)*ge = (L(T*LU)*l)*ge =09r-1lo-

Therefore g is left-invariant. O

2.14.3 Left-invariant vector fields
A vector field X is called left-invariant if
(Lo)yoX =X oL, (2.14.2)

for any o € . Let g be the space of all left-invariant vector fields on G. Then 7. G, where e is
the identity element of (7, can be naturally identified with g. Note also that g is a Lie algebra.
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For any left-invariant vector fields Y, Z € g, we claim that
(Y, Z)4 = const. (2.14.3)
Since Y and Z are left-invariant, it follows that for any 0 € G
Yo = (Lo)weYe, Zo = (Lo)reZe
Hence

(Y, Z)4(0) = (Yo, ZO')ga = ((Lo)xeYes (Lo)seZe),, = (Ye, Zeg. = (Y, Z)g(e).

9o

2.14.4 Curvatures formulas for Lie groups with left-invariant metrics

The connection and curvature of a left-invariant metric may be computed algebraically and

metrically using the following

Let g be a left-invariant metricon G. If X, Y, Z, W € g, then
(VxY.2), = &
Rmy(X,Y,Z,W) = ((Vg)xZ,(Vg)yW), = (Vg)y Z,(Vg)xW),
—{(VaxnZ.W),,
Rmy (X, VY, X) = ((Vg)xY,(Vo)yX), —{(Vg)vY, (Vg)xX),

(<[X7 Y]’Z>g - <[X7 Z]7Y>g - <[Ya Z]7X>g)7

If (M, g) is a Riemannian manifold and X,Y, and Z are Killing vector fields, then

(Vg)xY, 2), = % (X, Y], Z)g + (X, 2], Y)g +([Y, Z], X)g) - (2.14.4)

Proof. Since Y is a Killing vector field, we have

0= <(V9)XY, Z> + ((vg)ZYaX>g'

Hence
(Vg)xY, Z)g = —((Vg)zY,X)g = ([Y,Z],X)g—((Vg)vZ, X)q
= (2], X)g + ((Vg)xZ,Y)y
= (V. Z], X)g + (X, Z],Y)g + (Vg)2 X, Y )q
= (V. 2], X)g + (X, Z],Y)g = ((Vg)v X, Z),
= ([, 2], X)g + ([X, Z],Y)g + ([X, Y], Z)g — ((Vg)xY, Z)g
implying (2.14.4). 0

A left-invariant metric is bi-invariant if it is also invariant under right multiplication.
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Note 2.58

If (G, g) is bi-invariant and if X is a left-invariant vector field, then X is a Killing vector
field.

Lemma 2.33

Let g be a bi-invariant metric on a Lie group G. If X, Y, Z, W are left-invariant vector
fields, then

(i) the Levi-Civita connection is given by

&

1
(2) the Riemann curvature tensor field is given by

Rmy(X,Y, 2,W) = 1 ([X, W}, [V, Z]), — (X, 2} [V, W)y).  2.146)

Proof. It follows from Proposition 2.23 and Lemma 2.32. (I

Corollary 2.18
A bi-invariant metric on a Lie group G has nonnegative sectional curvature. v

Proof. Letting Z = X and W =Y we have

Ring(X, .Y, X) =~ {[X, V][V, X))y = /X, V]2 > 0.

Hence Secy, > 0. |
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Introduction

' Ricci flow and Hamilton’s theorem (1 Evolution of geometric quantities
([ Ricci flow equation (1 De Turck’s trick and short time exis-
1 The maximum principle for heat-type tence

equations [ Reaction-diffusion equation and Uh-
[ The Einstein-Hilbert functional lenbeck’s trick

3.1 Ricci flow and Hamilton’s theorem

Introduction

[ Ricci flow and geometrization

3.1.1 Ricci flow and geometrization

Theorem 3.1. (Hamilton, 1982; 3-manifolds with positive Ricci curvature)

If (M3, g) is a closed® 3-manifold with positive Ricci curvature, then it is diffeomorphic
to a spherical space form. That is, M?> admits a metric with constant positive sectional

curvature.

“Here, closed means compact without boundary.

@
Problem 3.1. (Thurston geometrization conjecture)
Every closed 3-manifold admits a geometric decomposition. o

A corollary of the geometrization conjecture is the Poincaré conjecture, which says that

every simply-connected closed topological 3-manifold is homeomorphic to the 3-sphere.

3.2 Ricci flow and the evolution of scalar curvature

Introduction

[ Ricci flow equation (A Variation of scalar curvature

' Simple examples
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3.2.1 Ricci flow equation

Given a 1-parameter family of metrics g(¢) on a Riemannian m-manifold (M™, g), defined

on a time interval t C R, Hamilton’s Ricci flow equation is
8tg(t) = —QRng(t), 8tg@-j = —2Rij. (3.2.1)

For any C* metric gy on a closed manifold M™, there exists a unique solution g(¢), ¢t € [0, €),
to the Ricci flow equation for some € > 0, with g(0) = go.

This was proved in Hamilton (1982) and shortly therefore a much simpler proof was given
by De Turck (1983).

3.2.2 Simple examples

Let M™ = S™ and let ggm denote the standard metric on the unit m-sphere in Euclidean

space. If gg := 7"(2) gsm for some rg > 0 (rg is the radius), then
g(t) == [r§ — 2(m — 1)t] ggm (3.2.2)
is a solution to the Ricci flow (3.2.1) with g(0) = go defined on the maximal time interval
2
(—00,T), where T := 2(—WZ’—L1) That is, under the Ricci flow, the sphere stays round and shrinks
at a steady rate.

Example 3.1. (Homothetic Einstein solutions)

Suppose that g is an Einstein metric, i.e., Ricyg, = cgo for some ¢ € R. Derive the

explicit formula for the solution g(t) of the Ricci flow with g(0) = go. g(t) is homothetic
to the initial metric gy and that it shrinks, is stationary, or expands depending on whether
c is positive, zero, or negative, respectively. In fact, g(t) = a(t)go where a(0) = 1. We
then have

a'(t)go = 9yg(t) = —2Ricyyy = —2Ricy, = —2cgo.

Hence a(t) = 1 — 2ct so that g(t) = (1 — 2ct)go.

Example 3.2. (Product solutions)

Let (M7, g1(t)) and (M35, g2(t)) be solutions of the Ricci flow on a common time

interval t. Show that
(MT™ x M52, g1(t) + g2(1))

is a solution of the Ricci flow. In particular, if (M™, g(t)) is a solution of the Ricci flow,

then so is (M™ x R, g(t) + dr?). N

Some other solutions are the cigar and Rosenau solutions on R? and S?, respectively. In

addition, some homogeneous solutions are explicit.

——————— O (D) O
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3.2.3 Variation of scalar curvature

Introduce

Ogty = 0 — Byr)-

The evolution equation for the scalar curvature is

2
Oy Rote) = 2[Regin] 5 - (323)
When m = 2, since then Ric, = % g, we have
2
Uty Ry(t) = Rg(t). (3.2.4)
Lemma 3.1. (Variation of scalar curvature)
If 059:5 = vij, then
OsRg = —A4V + divg(divgv) — (v, Ricg>g, (3.2.9)
where V = gijv,-j = tryv is the trace of v. o
If v = —2Ricy, then
divy (divgv) = VPV, = =VPV,R, = —AyR,.
Hence we obtain (3.2.3).
Let (M2, h) be a Riemann surface. If g = uh for some function u on M?, then
Ry =u"'(Ry — ApInu). (3.2.6)

Consequently, g(t) = u(t)h is a solution of the Ricci flow if and only if u = u(t) satisfies

Oru = Aplnu — Ry, (3.2.7) &

3.3 The maximum principle for heat-type equations

Introduction

([ The maximum principle (1 Heat equation and the Ricci flow

[ Ricci flow on non-compact manifolds

3.3.1 The maximum principle

For elliptic equations on a Riemannian manifold (M™, g), the facts we use are that if a

function f : M™ — R attains its minimum at a point g € M™, then
Vgf(zo) =0, Agf(zo) = 0. (3.3.1)

For equations of parabolic type, such as the heat equation, a simple version gives the following

——————— O (D) O
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Proposition 3.1. (Maximum principle for super-solutions of the heat equation)

Let g(t) be a family of metrics on a closed m-dimensional manifold M™ and let u :
M™ x [0,T) — R satisfy
Uyyu 2 0. (3.3.2)

Then ifu > catt = 0 for some c € R, then u > cforallt > 0.

Proof. Given any € > 0, define u. : M™ x [0,T) — R as
ue:=u+e(1+1).

Since u > c att = 0, we have u, > c att = 0. Suppose for some ¢ > 0 we have u, < ¢
somewhere in M™ x [0,T'). Since M™ is closed, there exists (z1,%1) € M™ x (0,T") such
that uc(z1,t1) = cand uc(z,t) > cforallz € M™ and t € [0,¢;). We then have at (x1,%1)

0> Dg(t)u€ > € > 0,

which is a contradiction. Hence u. > ¢ on M™ x [0,T) for all ¢ > 0 and by taking the limit as
e —0,wegetu>con M™ x[0,T). O

Corollary 3.1. (Lower bound of scalar curvature is preserved under the Ricci flow)

If g(t), t € [0,T), is a solution to the Ricci flow on a closed manifold with Ry = cat
t = 0 for some c € R, then
Ry 2

forallt € [0,T). Inparticular, nonnegative (positive) scalar curvature is preserved under

the Ricci flow.

Lemma 3.2. (Maximum principle)

Suppose g(t) is a family of metrics on a closed manifold M™ and v : M x [0,T) - R

Q©

satisfies

Oy < (X (1), Vo) ) + F(w),

(t)
where X (t) is a time-dependent vector field and F is a Lipschitz function. If u < c at
t = 0 for some ¢ € R, then u(x,t) < U(t) for all x € M™ and t > 0, where U (t) is the
solution to the ODE

au
= _F
o = £W)

with U(0) = c.

v

Let (M™,g(t)), t € [0,T), be a solution to the Ricci flow on a closed manifold (or any
solution where we can apply the maximum principle to the evolution equation for the scalar
curvature). Since

1
s 12 2
|Rng|g > ERQ

D ——— S L —]
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it follows that

2
Oy Ryy = ERz(t). (3.3.3)
By the maximum principle one has
m
Rg(t) > - Y (3.34)
inme Rg(O)
over M™ for all ¢ > 0. We let
Ruin (t) = /1\5(1;1 Rg(t)- (3.3.5)

‘We have

Corollary 3.2. (Finite singularity time for positive scalar curvature)

If (M™, g) is a closed Riemannian manifold with positive scalar curvature, then for any

solution g(t), t € [0,T), to the Ricci flow with g(0) = g we have

m
T< ——— . 3.
= R (0) < 00 (3.3.6)

Q©

3.3.2 Ricci flow on non-compact manifolds

Besides studying the Ricci flow on closed manifolds, we shall consider the Ricci flow on

non-compact manifolds. This will be especially important in singularity analysis.

Definition 3.1

A solution g(t), t € t, of the Ricci flow is said to be complete if for each t € t, the

Riemannian metric g(t) is complete. We say a solution of the Ricci flow is ancient if it

exists on the time interval (—oo, 0]. &
Lemma 3.3. (Ancient solutions have nonnegative scalar curvature)

If (M™,g(t)), t € (—o0, 0], is a complete ancient solution to the Ricci flow with bounded

curvature on compact time intervals, then either Ry > 0 for all t € (—00,0] or

Ricy) = 0forallt € (—o0,0]. 0

Proof. If M is closed, then we can apply the maximum principle. If M is non-compact, then
since the solution has bounded curvature on compact time intervals, we may still apply the
maximum principle to the evolution equation for Ry;). For any solution of the Ricci flow
for which we can apply the maximum principle on a time interval [0, 7], by (3.3.4), we have
Ry > —5; fort € (0, T]. Let « be any negative number. Since the solution is ancient, it
exists on the time interval [o, 0]. Then we have Ry > —% forallz € M™andt € (o, 0].
Taking the limit as @ — —oo, we conclude that Ry > 0 for all ¢ € (—oc0,0]. By Strong
maximum principle, it implies that either R ;) > 0 always or Ry;) = 0 always. In the latter

case, by the evolution equation for R ), we deduce Ry = 0. O

——————— O (D) O
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3.3.3 Heat equation and the Ricci flow

Let u be a solution to the heat equation

0w = Agu
on a Riemannian manifold (M™, g).
One has
2 .
0¢ |Vguly = Ag|Vguly — 2 |Viu|, — 2Ricy (Vgu, Vgu). (3.3.7)
If Ricy > 0, then
umax(o)
Vgul < 3.3.8
| g |g — \/2775 ( )

where Umax(0) := maxze pm u(x,0). If Ricg > —(m — 1)K for some positive constant
K, then

Vgul, < ““fr’;io)em—l)m. (3.3.9)

Hence to get decay of |V qu| g as t — 0o, we should assume K = 0, ie., Ricg is

nonnegative.

Proof. Calculate
Oy |Vgu]Z = O (gijViUVjU) = 2gijvju -OViu = 2gijVju -VilAgu,
Ay |Vgu]3 = ¢"VLV, (gijviuvju) = ¢*¢Iv, v, (ViuVju)

= 20"V (VViu-Viu) = 26" (ViVViu- V; + V,Viu - ViVju)

= 20"V Vi Vou - Viu+2 \vju}z = 2g" gV (ViViVou — RE, Vpu) Viu + 2 |V§u|z
= 299V;Ayu-Viu+2 ]Vgu\z +2R;;V'uViu.
Hence
O |Vgul2 = Ay [Vgul? = 2|V2u|” = 2R; V'uvu.

Consequently,

Oy (t ]Vgu|§ + ;UQ) =4, (t |Vgu|§ + ;UQ) —2t ‘Vgu‘z — 2RV 'uVu.
If Reg > —(m — 1)K, then

1
(0 — Ay) (t \Vgu]f] + 2u2) < 2tm—1)K ]Vgu\?]

1
S 2(m — 1)K (t ]Vgu|3 + 2U2> .

Applying the maximum principle, we deduce the required result. O
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Let u be a solution to the heat equation with respect to a metric g(t) evolving by the Ricci

flow

815’11, = Ag(t)u.

Then

2
Dy () |Vg(t)u|52;(t) = )Vz(t)u‘g(t) '

Similarly, we have
2 1 2
(0 = Agn) (t Vawulge + v ) <0
If M™ is closed, then

uma,x(o)
’Vg(t)u‘g(t) = N
)
3.4 The Einstein-Hilbert functional
[ The Einstein-Hilbert functional (A The Perelman functional
3.4.1 The Einstein-Hilbert functional
If 8591’]’ = Vij, then
1
0sdVy(s) = inth(s) (3.4.1)
where V 1= ¢¥ v;j. On the other hand, we have
059" = —g" g" Osgn. (34.2)
Consider the Einstein-Hilbert functional
E(g) := R, dV,. (34.3)
Mm
If 8592’3’ = Vij, then
d 1
gg(g(s)) = /M (—AQ(S)V + vaqqu — <’U,ch(8)>g(s) + 2RQ(S)V> dV;](S)
1
= / <U, §Rg(s)g(8) - RCg(S)> d‘/;](s). (3.4.4)
M 9(s)
The twice of the gradient flow of & is
Orgij = —2Rij + Ry 9ij- (3.4.5)

The equation (3.4.5) is not parabolic, and the short time existence is not expected as that for
the Ricci flow. Dropping the R, ;) gi; term yields the Ricci flow. The undesirable term R 4)gi;

in (3.4.5) is due to the variation of the volume form dVj, in £(g). How can we get rid of this

——————— O (D) O
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term? First, we should consider metrics up to geometric equivalence, that is, up to pull-back by

diffeomorphisms. We consider the mere general class of flows
0vgij = —2R;; — 2V;V, f, (3.4.6)

where f is a time-dependent function. The flow (3.4.6) is equivalent to the Ricci flow since

2ViV;f = (Lawsa,19),

Define a 1-parameter family of diffeomorphisms ¥ (t) : M™ — M™ by

o (t) = Vg(t)f(t), U(0) = id.

Show that g(t) := [¥(t)]*g(t) and f(t) := f o U(t) satisfy
dg(t) = —2Ricy), (3.47)
&) = |V f(t)\;(t). (3.4.8)

Since
2ig(t) = B (V" ()g(1)) = U*(t) [019(1) + Liraa, 119D

it follows that

(3.4.8) is obvious.

)
3.4.2 The Perelman functional
Now we impose the condition
0, (7 Tav,) =0 (34.9)
and consider the functional
)= / Rye~fav,. (3.4.10)
M
If asgz‘j = Vij, then
d S
gé’(g(s), / OsRy(se” )dV / (v, Ricy( (s) el )dVg(s)
+/ o RV + ViVjy) e DV == | (o, Ricg(s>>g<s> eV

[0 () 1+ 9, (70t

To cancel the undesirable term, the last integral, we introduce the Dirichlet energy-type term

2 —f(s _f(s 2
/Mm Vo F($)] 0y e PV =4 /Mm )Vg(s) (e I )/2)

q(s)

dVy(s)-

According to the assumption (3.4.9), we have

d 2 ) _ 2 1)
% A |v9(5)f(8)‘g(s)e d%(s) - /M (8 ‘vg(s ”g(s)) € d%(s)
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_ / [ V)V () + 2V )V (9 ()] € IOV,
Using 05 f(s) = %V (by (3.4.9)), we find that the above is equal to

/Mm [—vijvif(s)vjf(s)e_f(s) + VA s (e_f(s))} dV(s)-

Adding the above equations together, we obtain

d 9 _t(s
&5 o (Ro) + Vo F6)[2 ) e DV,
. 2 —f(s
= _/M <”’Rlcg(s) + Vg(s)f(3)>g(s) e TBdvy ). (3.4.11)
So if we define the Perelman functional
Fa.f)im [ (Ro+ [9,62) e fav,, a1
Mm
then the gradient flow for F, under the constraint that e~/ dVy is fixed, is
Agij = —2Ri; —2ViV,f, (3.4.13)
Of = —Ryp — Ay S (3.4.14)
Under the flow (3.4.13)—(3.4.14), we have the monotonicity formula
d . 2
7o), f(8) =2 /M ‘Rlcg(t) + V2, f(t)‘g(t) e TV, > 0. (3.4.15)

Since
/ Vofliedv, = / A,f-etav,
M M
we can rewrite F as

Flg, f)= /M (Rg +2A,f — |ng|§) e ldv,. (3.4.16)

3.5 Evolution of geometric quantities

Introduction

[ Variation of the Christoffel symbols 1 Commutator formulas

1 Variation of Ricci formula

3.5.1 Variation of the Christoffel symbols

Lemma 3.5. (Variation of Christoffel symbols)

If g(s) is a 1-parameter family of metrics with Osg;; = v;j, then

1
85Fi'cj = QQM (Vivje + Vv — Vevg;) . (3.5.1)

When we consider the Ricci flow, we have

—_— e
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Corollary 3.3. (Evolution of Christoffel symbols under the Ricci flow)

Under the Ricci flow 0;g;j = —2R;;, we have

0Ty = =g (ViRjo + VjRig — ViRy;) . (3.5.2) .

Lemma 3.6. (Evolution of Laplacian under the Ricci flow)

If (M™, g(t)) is a solution to the Ricci flow 0;9;j = —2R;;, then

O Aywy = 2R;; V'V,

where Ay is the Laplacian acting on functions. In particular, when m = 2, O;A gy =

Ry Ro(t)- 9

Proof. Calculate 0,2,y = 0; (97 ViV;) = —0igij - V'V? — gijathj - V3. But, gij(’?tI‘fj =
—gMt (29“ ViRj — VgRg(t)) = 0, where we use the contracted second Bianchi identity. (I

Ifa;gij = Vjj, then

85Ag(s) = —’U,L'jV’LVJ _ gkl <(dng(s)’U)e - §VKV) Vk. (353)

3.5.2 Variation of Ricci formula

Recall that the components of the Riemann curvature (3, 1)-tensor field are defined by

Ry = 0l — 0T + T8, Ty, — TH TS, (3.5.4)
and the Ricci tensor field is 1;; = Rgi ;= Ryijp- Then the variation of the Ricci tensor field
in terms of the variation of the connection

OuFij =V, (0.1%) = Vi (0.1, (3.5.5)
If 8sgz'j = Vij, then
1 1
85Rij = EVK (V{Uj( + Vjvig - vaij) — §V1V]V (3.5.6)
Taking the trace, we obtain the variation of the scalar curvature
63Rg(s) = Vivjvij - Ag(s)V — <1), Rng(s)>g(s) . (357)
If we introduce the Lichnerowicz Laplacian
Angvij = Agvij + 2Rkijgvu — Rikvjk — Rjkvik (3.5.8)
acting on symmetric 2-tensor fields, then (3.5.6) becomes
1 . .
83R7;j = —5 <AL,g(s)Uij + VzVJV - Vz (dlvg(s)v)j - Vj (dlvg(s)v)i> . (359)
If we set X = 1V (,)V — div(, v, then
Oy (—QRZ'J‘) = AL,g(s)Uij + Vin + Vin. (3.5.10)

——————— O (D) O
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This is related to De Turck’s trick in proving short time existence.

3.5.3 Commutator formulas

Lemma 3.7. (Commutator formula for the Hessian and the Lichnerowicz operator)

Under the Ricci flow, the Hessian and the Lichnerowicz Laplacian heat operator Up, o) =

Or — Ap g(r) commute. That is, for any function f of space and time we have

ViViOLg0f = Op g ViVl (3511)

Proof. Calculate
VYA = VIV = g (Vi - B, Y,0)
= ¢V — MR, -V f — g RE ViV, f
= gM (vkviwvj f = RY,V,V,f = R ViV, f) ~ ViR;,VPf — R;,ViVPf (3.5.12)
= "V (ViViV,f = BV, f ) = RypVPV5f = Riggp ViV f = ViR, VP f — Ry V0P
= AViVif =" ViRigjp VP f — RipVPV i f — 2Rip;py VEVP f — ViR - VP f — R,V VP f
= (AgViVyf + 2Ry, VIVES — RV, VP f — Ry ViVPS)
— V'Rigjp - VPf = ViRjp - VPf = A ViV;f — (ViRje +V,Ry — ViRi;) V' f

where we use VZRikjg = V;R;y — V R;j. Using (3.5.2), we compute

WViV,if = ViV;0uf + (ViRj + ViR — VRij) V'f. (3.5.13)

Formula (3.5.11) follows from combining the above two calculations. (I

Corollary 3.4

If g(t) satisfies the Ricci flow and f(t) satisfies the heat equation O, f(t) = Ay f(1),

then the Hessian satisfies the Lichnerowicz Laplacian heat equation

0V f() = AL g Vo F (1) (35.14)

Lemma 3.8. (Commutator of 0; + Ay, ;) and Vg( t))
Under the Ricci flow, the Hessian and the Lichnerowicz Laplacian backward heat operator

commute in the following sense

ViV (8:f(t) + Ap gy f(1) = (8 + Apgw)) ViVif(t) (3.5.15)

— 2(ViRjo + V;Ri — VeRi;) VEF (D). 0

Proof. It follows from (3.5.12) and (3.5.13). O

D ——— S L —]
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Show that under the Ricci flow, for any 1-form «

Org)Zarg(t) = g[DHﬁg(t)a]“g(t)’ Um gy == 0t — Amgat), (3.5.16)

that is,
Or.g¢) (Viag + Vja;) = Vi85 + VB, (3.5.17)
where 3 := Up 4. From
8V = Vidyoj + (ViRjx + VR — Vi Ryz) o
and
Vi (Ag05 - Ripa®) = AyyVie; +2Buie V¥l — RycVFa; — RyViok
— (ViRjk + VR, — ViRij) o

we conclude

Vi <8taj - <Ag(t)aj — Rjkak)> +V; (@ai — <Ag(t)ai - Rikak))

Orgt) (Viaj + Vjai) .

Note that A gy — Rjkozk = Apg g = Bj-

)
If (M™ g(t)) is a solution to the Ricci flow and if X is a vector field evolving by
Oy X" = R* X},
then hij == V;X; + V;X; = (.,SfXg)ij evolves by
Orghij = 0. (3.5.18)
In particular,
OgyH = 2 (Regy), h), (3.5.19)
where H := gijhij = tryp)h
Proof. If we let o := X" the dual 1-form, then the lemma immediately follows from Note
3.5. O
If X = X'0; is a Killing vector field, then
ViV;Xi + Rz Xt = 0. (3.5.20)

If X is a Killing vector field, then V; X; + V;X; = 0. Calculate
0 = Vi(V;Xi+ViX;)+V,; (ViXy + Vi Xs) + Vi (Vi X + Vi Xj)
= (ViV;X; + ViViX;) + (V;ViXy + Vi Vi X;) + (V; Ve X + ViV Xy)
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= (Vikaj = VkVin) = (VijXi + VijXi) + (ViVij = Vsz-Xk)
RkijzXZ = 2kain + RjkigXe + RijngZ = —QVijXi + 2RjingZ

where we use the first Bianchi identity. &

Lemma 3.10

If (M™, g) is oriented and closed, and the Ricci curvature is negative, then there are no

nontrivial Killing vector fields.

@
Proof. Tracing (3.5.10), we have
AgXi+ R X =0. (3.5.21)
Then
/ VX2 dV, = / Ricy (X, X)dV,.
Mm Mm
If Ricy < 0, then VX = 0. Since M™ is closed, we must have X = 0. O
Since, by the contracted second Bianchi identity
ViV;Ry — V; (divgRicg); — V; (divgRicy); =0,
equation (3.5.9) implies
Lemma 3.11. (Evolution of the Ricci tensor under the Ricci flow)
Under the Ricci flow,
O Rij = 2RpijeR* — 2Ry R;*. (35.22)

For any a € R, show that

q 2
Dg(t) (Rij - aRg(t)gij) = 2Rkij4Rke - 2RikR]‘k — 2« |R1Cg(t) ‘g(t) 9ij + 2aRg(t)gij.

3.6 De Turck’s trick and short time existence

We use De Turck’s trick to prove the short time existence for Ricci flow.

3.6.1 Symbol and Bianchi operator

Let (M™, g) be an m-dimensional Riemannian manifold, and ®27* M™ denote the vector
bundle of symmmetric covariant 2-tensor fields. From (3.5.9), the linearization of —2Ric, is

given by
(CD (—2Ricg) [U])ij = AL7g’UZ‘j + ViVjV - Vi (divgv)i - Vj (divgv)i , 3.6.1)

——————— O (D) O
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where V := g% v;;. The symbol of the linearization of the Ricci tensor is obtained by replacing

Vg4 by ¢ € C®°(M™, T* M™) in the highest-order terms. Thus,
o¢ =0 (D¢ (—2Rey)) : C®(M™,@*T* M™) — C¥(M™, O’ T*M™)  (3.62)
where ( € C°(M™, T* M™) and
oc(v)ij = |¢[Pvij + GGV — GGty — GG (3.6.3)
Assuming that (; = 0 and (; # 0 for i # 1, then for any symmetric 2-tensor field v
oc(v)ij = wvij, ,jF#1
oc(v)y = 0, j#1,
oc(v)in = Z Vkk-

2<k<m
When m = 3, o is given by
V11 0001 T1TO0 V11
V12 000 0O0O V12
v 000 O0O0OTO v
oo| 7| = 1 (3.6.4)
V22 000100 V22
V33 000 O0T1TFO V33
V23 000001 V23
In general, o is given by a nonnegative N x N matrix, where N = M Its kernel is the

m-dimensional subspace given by

Ker (o¢) = { v € C°(M™, O*T*M™) : v;; = 0 fori, j # 1 and Z vk =0

2<k<m
(3.6.5)
This kernel is due to the diffeomorphism invariance of the operator g — —2Ric,.
Define the linear Bianchi operator
B, : C®(M™, @*T*M™) — C®°(M™, T* M™) (3.6.6)
by
B, (h)y :=g¥ (vihjk — ;vkhlj> (3.6.7)
so that B, (—2Rc,) = 0. We find that
K :=Ker (6By4(¢)) =Im (0¢) C O (M™, &*T* M™)
is equal to
K={veC®M™"*T*M™) :vy; =0forj#1landviy = » wvpp. (368
2<k<m
Hence
oc| (v) = (v, o] =ICP (3.6.9)

for any ¢ € C>°(M™, T* M™).
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3.6.2 De Turck’s trick

The fundamental short time existence theorem for the Ricci flow on closed manifolds is the

following

If M™ is a closed Riemannian manifold and if g is a smooth Riemannian metric, then
there exists a unique smooth solution §(t) to the Ricci flow defined on some time interval

[0,6), § > 0, with g(0) = g.

From the previous subsection the principal symbol of the nonlinear partial differential
operator —2Ric, of the metric g is nonnegative define and has a nontrivial kernel. For this
reason the Ricci flow equation is only weakly parabolic. We search for an equivalent flow which
is strictly parabolic (i.e., where the principal symbol of the second-order operator on the RHS is
positive definite).

Given a fixed background connection V, which for convenience we assume to be the Levi-

Civita connection of a background metric g, we define the Ricci-De Turck flow by
Orgij = —2Ri; + ViW; + V; Wi, g(0) = go, (3.6.10)
where the time-dependent 1-form W (¢) is defined by

W; = girg™ (Th, —Th, ). 3.6.11)

Note 3.8

If g(s) is a 1-parameter family of metrics with g(0) = g and
Os

Ggij = Vij
s ¥ J>

then

Os Wj = —Xj + Oo(’l))j (3.6.12)

s=0

where X = %gVV — divgv and Oy(v); is the zero-order term in v given by
Op(v); = vW* = g™ (Thy —Th, ). (3.6.13)
Consequently,

s

(—QRij + VZ'W]' + VjVVz) = AL’g’UZ'j + Ol(v)ij (3.6.14)

s=0
where O1(v);; is the first-order term in v given by

(@] (U)ij = Vkvij Wk + Vi - ijk + vk - VZ'Wk

Vi (gjkqu (F];q - fl;q)) —Vj (gikqu (F];q — f’;q» . (3.6.15)
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Calculate
k Tk k Tk
85 s:OWj = ’Ujkgpq (qu - qu) - gjkqu (qu - qu)
1
+ gjkgpqigu (vaqé + qupf - Vﬂ'qu)
- 1 _
= vpWF — gjpoPd <F’;q — Flgq) - <2VjV — (legU)j> .
Hence,
o) _viw; = | _(aw; —Thw)
s=0 =0
= vi(a] _w;) - (o] _rh)w
s=0 s=0

= V; <—;VjV + (divgv),; + (’)o(v)j> — %gke (Vivje + Vv — Vo) Wy,
and
Os .
+ V; (00 (v);) + V; (Oo(v)i) — g (Vivje + Vjvie — Vvij) W.

0 (Vin + VjWi) = —ViVjV +V; (divgv)j + Vj (divgv)i

Therefore the left hand side of (3.6.14) equals
AngUij +V; (Oo(?))z) + V; (Oo(’u)j) = gké (Vﬂ)jg + Vv — V[Uij) Wy
Plugging (3.6.13) into above yields the right hand side of (3.6.14).

L]

Note 3.8 shows that the Ricci-De Turck flow is strictly parabolic and that given any smooth
initial metric g on a closed manifold, there exists a unique solution g(¢) to the Ricci-De Turck
flow. Another way of showing that the Ricci-De Turck flow is a strictly parabolic system is to
compute an expression for the modified Ricci tensor of a metric g as an elliptic operator of g
using the background metric g.

(Another proof of the strict parabolicity of the Ricci-De Turck flow) Define a tensor

~ 1 ~ ~ ~
Ab =T —TF = 59“ (v@-gﬂ + Vigi — wgl-j) . (3.6.16)

At a point (x,t) in a local coordinate system where ffj (p) =0, we have
Ry, — RYy = VAL — VAl + AR AS — AP AL (3.6.17)
From this we obtain
—2Rj;, = 2Rj, — g™V, (%gkp + Vigip — 6pgjk)
- gépﬁj (6lgkp + 6kglzp - 6m9£k> +g lrg s 659 * 659-
On the other hand, by definition of W;, we get
VW, = %gep Vi <%€gpj + Vpges — %jgfp)

1 1 1

+gxg *xg " *g *%g*%g-
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Hence

8,591']' = —2Rij + Vl-Wj + iji = g€pﬁg%pgzj + g_1 * g * §_1 * ng

1 1 1

+g*xg " *xg *xg *%9*%9‘

Hence the Ricci-De Turck flow is strictly parabolic.

&

Given a solution of the Ricci-De Turck flow, we can solve the following ODE at each point
on M™:
Orpr = —W(1) o p(t), o = id. (3.6.18)

The existence and uniqueness of (3.6.18) reduces to the harmonic map heat flow.

3.6.3 Harmonic map heat flow
Givenamap f : (M™,g) — (N, h), the map Laplacian of f is defined by
. ofe afﬁ
- o' ij (hpY v
(Ag,hf) - Ag(f ) + g ( Faﬁ © f) 3IZ 855]'
L 2 Y a B
= gY <6f_gpkaf+ (hlwﬂoj) of* of >’

(3.6.19)

Dzt 9z 4 Qxk « dzt Oxd
where f7 := 37 o f, and (2)1<j<m and (y*)1<a<n are local coordinates on M™ and N™,

respectively. Consider the map

[H(TN™) TN™

l l

Mmoo Ly
We observe that Ay j, f € C°(f*(TN™)). In M™ = N" and f is the identity map, then

(Agpidpm)F = g7 (—grfj + hrg) . (3.6.20)

For each p € M™, we have (df), : TpM™ — TyuN™ and hence (df), €
TyM™ @ Ty, N Consequently, df € C(M™, T*M™ @ f*TN™). The Levi-
Civita connections 9N and "V induce a canonical connection 9"V on the vector bundle
T*M™Q f*TN™:
IhY . C®(M™, T* M™ @ f¥*TN™) — CX(M™, T*M™ @ T*M™ @ f*TN™).
Since df € C®(M™, T* M™ @ f*TN™), it follows that
<g,hwf>j _ 0 <6ﬁ> _opr 97 <hF’yﬁ Of> ofof”

ij oxt \ OzJ 4 gk @ Oxt OxJ
Taking the trace with respect to g gives the map Laplacian of f
Agnf =trg (g’hvf) : (3.6.21)

Amap f: (M™, g) = (N, h)is called a harmonic map if A, 5 f = 0. Harmonic maps
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are critical points of the harmonic map energy

Egnlu) := /Mm dul? , dVy (3.6.22)
where 5
y ou® Ou
dul?, = ¢“h . 6.2
| u|g7h 9 has 555 (3.6.23)

In the case that A" = R, a harmonic map is the same as a harmonic function and the harmonic
energy is the same as the Dirichlet energy. If M is 1-dimensional, then a harmonic map is the

same as a constant speed geodesic.

A harmonic map is the critical points of the harmonic map energy.

Suppose that M™ is an m-dimensional manifold, (P™, k) is an m-dimensional Rieman-

nian manifold, and (N, h) is an n-dimensional Riemannian manifold. If F : (P™ k) —

(N™ h) is a map and o : M™ — P™ is a diffeomorphism, then

(ArnF) ((y) = (Apekn(F 0 9)) (), (3.6.24)
which corresponds to

(M™,0"k) —F= (P™, k) —— (N™,h).
In particular, given a diffeomorphism f : (M™, g) — (N™, h) between m-dimensional
Riemannian manifolds, we consider
m f m —1\* idprm m
(M™,9) —— N, (F71)"g) —= V™ h)

then

(Agnf) (@) = (Ap-1)sg pidn) (f(2)) € C=(M, f*TN). (3.6.25) *

If we set G(t) := }g(t), then (3.6.18) is equivalent to
~ o )
Oupr = 9" (o + Thy) 57 -t = (Bygidaem) (¢0) = Ay o
This flow is called the harmonic map heat flow. If M™ is compact, then the short-time existence

and uniqueness of this flow follow from the standard parabolic theory. Furthermore,

og(t) = ¢ (Oeg(t) ‘ (#rsg(t
= 2R1(: *g(t) + ©o; (.iﬂw() (t )) - f(¢;1)*w(t) (rg(t))

3.6.4 Complete noncompact case

For any C* complex metric g with bounded sectional curvature on a noncompact manifold
M'™, a short-time existence result for solutions to the Ricci flow was proved by W.-X. Shi in
1989.
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Definition 3.2

We say that a solution g(t), t € t, of the Ricci flow has bounded curvature (or bounded

curvature on compact time intervals) if on every compact subinterval [a,b] C t the

Riemann curvature tensor is bounded. In particular, we do not assume the curvature

bound is uniform in time on noncompact time intervals. &

Theorem 3.3. (W.-X. Shi, 1989)

13.6.8 Given a complete metric g with bounded sectional curvature on a noncompact

manifold M™, there exists a complete solution g(t), t € [0,T), of the Ricci flow on M™

with g(0) = g and bounded curvature such that either sup ym [0,y |Rimg(s)|g(r) = 00 or

T = oo. V)

Problem 3.2

Under what conditions does uniqueness hold for complete solutions to the Ricci flow on

noncompact manifolds? o

Chen and Zhu proved the uniqueness of the Ricci flow on noncompact manifolds in the case

of bounded curvature.

3.7 Reaction-diffusion equation for the curvature tensor field

In this section we discuss the evolution equation satisfied by the Riemann curvature tensor
field.

3.7.1 Evolution equation for R;;;,

Following Hamilton, we introduce the notation
Bijke == —g"" 9% RipjqRires = — 9" 9%° Rpijq Rries.- (3.7.1)

Note that
Bjiok = Bijke, Bijke = Bruij- (3.7.2)

Ifasgij = Vjj, then

1
83Rfjk = 59@ [ViVjvgp + ViVivjp — ViVpus (3.7.3)
= ViVivkp — Vi Vivip + V;Vyu]
1
= §gep (Vivk’l)jp = Vivpvjk = Vjvkv,-p + Vjvp’l)ik)
1
- 59@ <jokvqp + R’li]jpka) . (3.7.4)

——————— O (D) O
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The evolution equation of the Riemann curvature tensor field is given by
O:Rijke = 2(Bijre — Bijor + Bije — Bisji) (3.7.5)
- (RipRpij + ijRipké + RkpRijpg -+ prRijkp) .

In particular,

Ui Rijke = Rmg * Rmy + Ricy * Rmy. (3.7.6)

Proof. Use Note 3.13 and the second Bianchi identity. 0

3.7.2 Riemann curvature operator

The Riemann curvature tensor field may be considered as an operator
Rm, : A2 (M™) — A*(M™) (3.7.7)
defined by
(Rmy(a)),; := Rijrea™. (3.7.8)

7

Definition 3.3

We call Rm, the Riemann curvature operator or curvature operator. We say that
(M™, g) has positive (nonnegative) curvature operator if the eigenvalues of Rm,, are

positive (nonnegative), and we denote this by Rm,; > 0 (Rmg > 0).

&

We can define the square of Rm, by
Rm? := Rmy o Rmy : A(M™) — A*(M™). (3.7.9)
For U,V € A?(M™), we define [U, V];; := ¢* (Ui, Vij — VirUsj). Then A2(M™) = s50(m).

m(m—1)

Choose a basis (¢%),_>  of A?(M™) and let C’,ij denote the structure constants defined by

[0, 7] = C " (3.7.10)
We define the Lie algebra square
Rm/ : AZ(M™) — A*(M™) (3.7.11)
by
(R (@), = CEC (Rmy (@), (Rmy (), (3712

m(m—1)

If we choose (¢'),_;2  so that Rmy, is diagonal, then for any vector field X = X'9;, we have

(Rmf(a))ij XX = (CfeXi)Z (Rmy(a)),, (Rmy(a)),,- (3.7.13)

IfRmy > 0, then Rm¥ > 0.

We have the following nice form for the evolution equation for Rm, ;).
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The evolution equation of the curvature operator is

OiRm,() = Rm? ) + Rm’ . (3.7.14)

3.7.3 Uhlenbeck’s trick

To prove (3.7.14), we use what is known as Uhlenbeck’s trick. The idea is to choose
a vector bundle £ — M" isomorphic to the tangent bundle 7M™ — M™ and a bundle
isomorphism ¢ : £ — T M™. Pulling back the initial metric, we get a bundle metric h := t*g
on £. By using the metric g(t) to identify 7M™ and T* M™, we may consider the Ricci tensor
field Ric(;) as a bundle map

Ricy( : TM™ — TM™, X s Ricyy(X) = (Ricyy(X))' 8; (3.7.15)
where
(Ricyy (X)) := g X Ryy,. (3.7.16)
We define a 1-parameter family of bundle isomorphisms ¢(t) : € — T .M" by the ODE
%L(t) = Ricyy o u(t), ¢(0) =1 (3.7.17)

Let (e4)1<a<m be a local basis of sections of £ and let h,p, := h(eq, €). Calculate
Oty gy = O [e®ae®gis (1)
= [0, L()]gi (1) + 1(8): [00(D)]] 935 (8) + ()t (D)]0egi; (t)
= [Ricq], e(®)¥e(t)]gii (t) + [Ricoq]T e(t)ie(®)f g (t) — 20(t)iu(1)] [Ricy(p)] ;-
Hence ¢(t)*g(t) = h is independent of ¢. Using the bundle isomorphisms ¢(¢), we can pull

back tensor fields on M™. In particular, we consider ¢(t)*Rmg, which is a section of

©2EY = A2EY ®g A2EV. Let Rypeq be the components of t(t)*Rmg ), and

Buped = hPhI R Ry (3.7.18)

One has

(8 — An()) Rabed = 2 (Babed — Bavde + Bachi — Badbe) - (3.7.19)

Proof. By the definition, we have
OtRapea = O <L3LgL§LfIRiW)
= Lzbiblg LgatRiij + Rapprcd + Rprapcd + chRabpd + deRabcp~
Therefore, (3.7.19) follows from (3.7.5). ]

Later, we will show that (3.7.19) is equivalent to (3.7.14).
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Definition 3.4

A Riemannian manifold has 2-positive curvature operator if
A1 (Rmyg) + X2 (Rmyg) > 0. (3.7.20)

That is, the sum of the lowest two eigenvalues of Rmy is positive at every point.

&

Haiwen Chen showed that if (M™, g) is a closed Riemannian manifold with 2-positive
curvature operator, then under the Ricci flow g¢(¢), with the initial metric g(0) = g, has 2-

positive curvature operator for all ¢ > 0.

3.7.4 The curvature operator in dimension 3

In dimension 3, s0(3) = R3. The Lie algebra structure is [U, V] = U x V, namely, the

cross product. This implies Rmzf is the adjoint of Rm,. If we diagonalize, i.e.,

A0 0
Rmy=| 0 p 0 |, (3.7.21)
0 0 v
then
A2+ v 0 0
Rm} + Rm} = 0  w+x 0 (3.7.22)
0 0 V2 4+ A\

Chose an orthonormal frame {ey, s, e3} and its dual orthonormal coframe {w',w?, w3}
such that the 2-forms ¢! := w? A w3, ? := w3 A w?, 3 1= w! A w? are eigenvectors of Rm,.

In this case

A = 2Rmg(es,e3,e3,€2) = 2Secy(ea,e3),
p = 2Rmg(er,e3,e3,e1) = 2Secy(er,es),
v = 2Rmg(er,ea,e2,€1) = 2Secy(e1,ea).

If m > 3 and g has constant sectional curvature, then
Ry
oy — m(giegjk — Gikgje)-

Hence, for any o € A%(M™), we have

__ NN (R
(ng(a))z’j - m(m — 1) (057,] a]z) = m(m — 1)01”.
Thus Rimg = —215id 42 (v gm).
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4.1 Hamilton’s theorem

Introduction

'd The normalized Ricci flow (1 Hamilton’s theorem

4.1.1 The normalized Ricci flow
The evolution equation of the volume form for the Ricci flow
8tg(t) = —2Rng(t)
is
OdVy(r) = —Ry(ydVy(r)-

Then the volume evolves by

d
2 Ve =~ /Mm Rye) dVy(e).

Given a solution g(t), t € [0,T), of the Ricci flow (4.1.1), we consider the metrics

g(t) := c(t)g(t),

o(t) = exp (i /0 th(T)dT), (1) = /O ey

By = / ng(t)dVg(t)/ V()

Then g(¢) satisfies the normalized Ricci flow

- . 2 _
Org(t) = *2R1Cg(t3 + Eﬂg(i)g(f)-

where

and

“4.1.1)

4.1.2)

(4.1.3)

4.1.4)

(4.1.5)

(4.1.6)

4.1.7)

Hence solutions of the normalized Ricci flow differ from solutions of the Ricci flow only by

rescalings in spaces and time.
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Since

dt de(t)
dt c(t), dt  m™Y

it follows that
dt

o) = agH)z = [Oec(t) - g(t) — 2c(t)Ricy)] - ot)
2 : . 2 _
mBa9(t) — 2Ricg) = —2Ricgq) + — Ry (?).

Thus we prove (4.1.7).

4.1.2 Hamilton’s theorem

The remainder of this chapter will be devoted to proving the following

Theorem 4.1. (Hamilton, 1982)

Let (M3, g) be a closed Riemannian 3-manifold with positive Ricci curvature. Then there

exists a unique solution g(t) of the normalized Ricci flow with g(0) = g for all t > 0.
Furthermore, as t — oo, the metric g(t) converge exponentially fast in every C k_norm to

a C'*° metric goo with constant positive sectional curvature.

Q@

4.2 The maximum principle for tensor fields

Introduction

[ Hamilton’s maximum principle for served

tensor fields (1 Ricci pinching is preserved

[ Nonnegative Ricci curvature is pre-

4.2.1 Hamilton’s maximum principle for tensor fields

Theorem 4.2. (Hamilton’s maximum principle for tensor fields)

Let g(t) be a smooth 1-parameter family of Riemannian metrics on a closed manifold

M™. Let a(t) be a symmetric 2-tensor field satisfying
Ui > Vxpa+ 8
where X (t) is a time-dependent vector field and
Blx,t) = Bla(z,t),g(x,1))

is a symmetric (2,0)-tensor field which is locally Lipschitz in all its arguments. Suppose

that 3 satisfies the null-eigenvector assumption rhat if A;; is a nonnegative symmetric

——————— O (D) O
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2-tensor at a point (z,t) and if V is such that A;;V7 = 0, then
Bij (A, g)V'VI > 0.

If a(0) > 0, then a(t) > 0 for all t > 0 as long as the soluton exists.

Proof. Suppose that (1, 1) is a point where there exists a vector V such that (o;;V7) (z1,t1) = 0
for the first time so (c;; W W7)(x,t) > 0 for all W € T, M™ and t < t;. Choose V' to be

constant in time. We then have at (z1,t1)

0y (i VIVI) = (9y0i) VIV > (Ayyaij) VIV + XF (Viay;) VIV
WE extend V' in a neighborhood of z; by parallel translating it along geodesics, with respect to
the metric g(¢1), emanating from z1. It is clear than V() V|, = 0 and Ay V|, = 0. Thus

we have

O (i VIVT) > XV (i VIV > 0.

This shows that when « attains a zero eigenvalue for the first time, it wants to increase in the
direction of any corresponding zero eigenvector. We can make the above argument rigorous
by adding in an € > 0 just as for the scalar maximum principle. We can then show that there
exists > 0 such that & > 0 on [0, 6] by applying the above argument to the symmetric 2-tensor
Ac(t) := af(t) + €(0 + t)g(t) for € > 0 sufficiently small and then letting ¢ — 0: We compute

e Ac(t) > XV A(t) + B(e(t), g(t)) + €(6 + ) Drg(t) + eg(t).

On any compact time interval, there exists C' < oo suchthat9;g(t) > —Cyg(t) and S(«(t), g(t))—
B(Ae(t),g(t)) > —Ce(d +t)g(t). Thus

hA(t) > XFVLAL() + B(Ac(t), g(t), te€[0,4],

by choosing § < 1/4C. Hence we can conclude that A.(¢) > 0 on [0, d]. Taking ¢ — 0 implies
a(t) > 0on [0, §]. Continuing this way, we conclude that c(t) > 0 on all of 1. O

4.2.2 Nonnegative Ricci curvature is preserved

Recall that the evolution equation of the Ricci tensor field is given by

6tR,~j = AL,g(t)Rij = Ag(t)Rz‘j + 2RkingM — 2RikRjk. “4.2.1)
When m = 3, the Weyl tensor field vanishes so that
R
Rijre = Rigjr + Rjkgie — Rixgje — Rjegix — 79 (9iegjx — gikgje) - (4.2.2)
If m = 3, then under the Ricci flow we have
. 2
CuRij = 3Ry Rij — 6RipBy? + (2 |Ricyqo | — By ) 035 4.2.3)
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Proof. Using (4.2.1) and (4.2.2) yields
. 2
QR]W']'ERM = 2 ‘Rlcg(t) ’g(t) gij + 2Rg(t)Rij — 4RikRkj — Rg(t) (Rg(t)gij — Rikgk])

= 2[Reg(p|y ) 9ij + 3R Bij — ARi"* Rij — Ry g5

2
) ‘g(t)
which implies (4.2.3). 0

If (M3,g(t)), t € [0,T) is a solution to the Ricci floe on a closed 3-manifold with
Ricy(o) > 0, then Ricyy > 0 forall t € [0,T).

Proof. Let
. 2
ﬁw = SRg(t)R’LJ — GRZpRJp + (2 ‘Rlcg(t){g(t) — R;(t)) g”
If at a point and time Ric,) has a null-eigenvector V' = V'19;, then one of eigenvalues of Ricgp

is zero so that 2 |Ricg(t) ‘z(t) R? o) > 0 and

. 2
Bi VIV = (2 |Ricg() |,y — Ry ) Vi
Therefore /3 satisfies the null-eigenvector assumption with respect to R;;. Applying Theorem

4.2 to this case, Ricg(t) > 0 as long as Ricg(o) > 0. O

4.2.3 Ricci pinching is preserved

Recall the Einstein tensor field

1
Ein, = Ricy — §Rgg. 4.2.4)
In general, we consider the e-Einstein tensor field
Eing . := Ricy — eRyg. 4.2.5)

In particular, Eing’% = Eing. Using (2.3.1) and (4.2.3) we have
O (Rij — Ryt 9i5) = 3Ry Rij — 6RPRjp + (2 ‘ch(t)‘ g(t)) Yij
— 2¢|Regq ’g(t) 9ij + 26 Ry () Rij-
Suppose
. 2 2
Bij = 3Rg(t)Rij — GRipij + (2 ‘Rlcg(t) ‘g(t) - Rg(t)) 9ij

— 2 ‘Ricg(t) |z(t) gij + 2Ry Rij
and (R;j — Ry1)9ij) V7 = 0. Then
BiViIVI = 3RypRiV'VI —6RPR;,VIVI + (2 |Ric,() \j( o~ B ) VI
= 2¢ [Ricy ) VI3 + 2Ry Ry V'V

.2
= [(35 —1—4e)R2 ) + (2 2¢) }Rlcg(t)‘g(t)} Ve



4.3 Curvature pinching estimates - 221 —

Since one on eigenvalues of Ricy(y) is eRg ), it follows that other eigenvalues Ay + A3 satisfy
A2 + A3 = (1 — &) Ry(4). By the elementary inequalities

(A2 + A3)?

5 <A+ A2 < (Mo +03)?

we conclude that

(1-¢)?
5 Ry S AN+ A < (1-9)’RY,

and hence

If e < 1, then
i1/j 2 2 (1—e)? 2 2
= (1 =32) Ry [Vlge

Hence when 0 < ¢ < ;, we have [3;; ViVJ3 > 0. On the other hand,

B, ViV = ((25 —2) [Ricyp) ,, + (4€® = 3e + 1)R2, ) V3

o
If e > 1, then
Vi s Jeeon (24 0T fae ey 1%

*ﬂz] = (5*) 5+T +4e” —de+ g(t| ‘g(t)
If 0 <e <1,then

—Bi V'V > [4e® —3e+ 1)+ (26 —2)(e + (1 —¢)*)| R? o) |V]2(t)

1
B <€ B 2) (4 = 22 + 2R} [V 5

In this case, —BijViVj > 0 provided € > %

Given an n € [1/2,+00). If (M3,g(t)), t € [0,T), is a solution to the Ricci flow on a
closed 3-manifold with Eing ) , < 0, then Eing, , < 0 forall t € [0,T).

Givenane € [0,1/3]. If (M3, g(t)), t € [0,T), is a solution to the Ricci flow on a closed
3-manifold with Eingg) , > 0, then Eing, , > 0 for all t € [0,T).

If (M3,g(t)), t € [0,T), is a solution to the Ricci flow on a closed 3-manifold with
3R4(0)9(0) < Ricy) < 3Ry0)9(0), then 3R 1g(t) < Ricyyy < SRymyg(t) for all
te[0,T).
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4.3 Curvature pinching estimates

Introduction

1 Maximum principle for systems [ Ricci pinching is preserved

[ Nonnegativity of scalar, sectional [ Ricci pinching improves

curvature, and Ricci are preserved

4.3.1 Maximum principle for systems

Recall that Rm, is a section of the bundle 7 : £ — M™, where £ := NT*M™ ®g

AZT* M™. The Ricci tensor field Rm, can be also considered as an operator

Rm, : C® (A T* M™) — C®(N*T* M™).
The bundle £ has a natural bundle metric and Levi-Civita connection induced by the Riemanian
metric and Levi-Civita connection on TM™. Let £, := 7 !(p) be the fiber over p. For each

p € M™, consider the system of ODE on &, corresponding to the PDE (3.7.14) obtained by

dropping the Laplacian term:

M) = M2(1) + MF(0), (43.1)

where (M(t)),, € &, is a symmetric N x N matrix, where N = % = dim(so(m)).
Actually,

M) (X AY,WAZ)=(Rmyy(XAY),ZAW) (4.3.2)

g9(t) "

A set K in a vector space is said to be convex if forany X, Y € K, wehave sX +(1—s)Y €
K for all s € [0,1]. A subset K of the vector bundle £ is said to be invariant under parallel
translation if for every path y : [a,b] — M™ and vector X € K N &,(,), the unique parallel
section X (s) € &), s € [a,b], along (s) with X (a) = X is contained in K.

Theorem 4.3. (Maximum principle applied to the curvature operator)

Let g(t), t € [0,T), be a solution to the Ricci flow on a closed m-manifold M™. Let
IC C & be a subset which is invariant under parallel translation and whose intersection
K, = KN &, with each fiber is closed and convex. Suppose the ODE (4.3.1) has the
property that for any M(0) € K, we have M(t) € K for all t € [0,T). If Rmyg) € K,
then Rmy,y € K forallt € [0,T).

Corollary 4.5

If (M™,g(t)), t € [0,T), is a solution to the Ricci flow on a closed m-manifold with
Rm, () > 0, then Rmy ;) > 0 forall t € [0,T).

Q©

——————— O (D) O
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4.3.2 Nonnegativity of scalar, sectional curvature, and Ricci are preserved

In dimension 3, if M(0) is diagonal, then M(¢) remains diagonal for all ¢ € [0,7"). Let
A (M(t)) < A2(M(t)) < A3(M(t)) be the eigenvalues of M(¢). Under the ODE the ordering

of the eigenvalues is preserved and we have

CMM(D) = M (M) + (M) As(M(1), 4.33)
%/\Q(M(t)) = )\2(M<t))2+)\1<M(t)))\3(M(t), (4.3.4)
EOsMD) = A(M()? + A (M) Ao (M(1)). 43.5)

With this setup, we can come up with a number of closed, fiberwise convex sets A, invariant
under parallel translation, which are preserved by the ODE. Each such set corresponds to an a
priori estimate for the curvature Rm,,.

The following sets KC C £ are invariant under parallel translation and for eachp € M™, IC,
is closed, convex and preserved by the ODE.

(1) Lower bound of scalar is preserved: Given Cy € R, let
K={M:A(M)+ (M) + A3(M) > Cp}.

The trace (A1 (M), + (A2(M)),+(A3(M)),, : £, — Risalinear function, which implies
that K, is closed and convex for each p € M™. That K is preserved by the ODE follows

from

% (AL(M(E)) + Aa(M(1) + A3 (M(2)))

= % [(AL(M(1)) + A2(M(£)))? + (AL(M(1)) + As(M(2)))?
+(A2(M(1)) + As(M(1)))?]
> 2 (M) + Xa(M(5) + As(M(D) > 0.
Therefore, if R4y > Co for some Cp € R, then
Ry > Co (4.3.6)

forallt > 0.
(2) Nonnegative sectional curvature is preserved: Let K = {M : X\;(M) > 0}. Each K,
is closed and convex since (A\;(M)), : £, — R is a concave function. We see that £ is

preserved by the ODE since

SAM() = M (M) + Xa(M()As(M(0) 2 0

whenever A;(M(t)) > 0 (Since A;(M(0)) > 0, it follows that 4|,_oA;(M(t)) > 0.
Thus A;(M(t)) > 0 for ¢ sufficiently close to 0. By continuity, A;(M(¢)) > 0 for all
t > 0). This implies

Rm, ) > 0 43.7)

forall ¢ > 0 provided Rmy ) > 0.



4.3 Curvature pinching estimates — 224 —

(3) Nonnegative Ricci is preserved: Let /IO = {M : A\;(M) + A2(M) > 0}. Since A\; + A2

is concave, K is closed and convex. From

D O0M0) + D) = M M)+ Aa(M(D)?

dt
+ (A (M(2)) + A2(M(2))) As(M(t)) > 0
whenever \; (M(t)) + A\2(M(t)) > 0, we see that /C is preserved by the ODE. From this

we see that

RCg(t) > 0 (438)

forallt > 0if ch(o) > (0, since the smallest eigenvalue of ch(t) is
1
5 PBmyg) + A (Rmyq)]

(see below).

4.3.3 Ricci pinching is preserved

Recall that

MM)= min MUAV,UAV), XA3(M)= max MUAV,UAV). (43.9)
|UAV |g=1 [UAV|g=1

Hence, A1 is concave, A3 is convex, and A1 + A2 is concave. To compute the eigenvalues for Reg,

we chose an orthonormal frame {e1, e2, e3} and its dual orthonormal coframe {w!, w?, w3} such

that the 2-forms

AM(Rmy) = 2Rmg(es,e3,€3,¢€2),
)\2 (ng) = 2ng(€1, €3, €3, 61),
A3(Rmy) = 2Rmg(eq, e2,e2,€1).

The Ricci tensor Ric, gives rise to an operator
Rc, : A'(M3) — AN (M3) (4.3.10)
given by
(Reg(@); = g7 Ryjau. 43.11)

Hence its eigenvalues are

Aj (Ricy) = Z (Rmg(ej, e5)ei, €5),, = Z Rmy(ej, e, €, €5).

1<i<3 1<i<3
Explicitly,
M (Rey) = 5[ (Rmy) + X (Rmy)],
X (Reg) = 3 D (Rmy) + X (Rmy)],
Xs(Reg) = 5 [\ (Rmg) + s (Rmy)].
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Since A\; (Rmy) < Ay (Rmy) < A3 (Rmy), it follows that A3 (Rc,) is the smallest eigenvalue
of Rc,. Meanwhile, A\; (Rcy) is the largest eigenvalue of Rc,.
Given C' > %, let

K= {M: A\3(M) < C[M(M) + Ao(M)]}.

Then C,, is convex for all p € M™. That each K, is preserved by the ODE follows from
d
g PsM)() = C (M M)(1) + A2(M)(2))]

= As(M(5) Ps(M)(1) — € (A (M(B)) + Ao (M(1)))]
—C M (M) — EA (M) A(M(D)) + Aa(M(1))?]

C
Since C' > % it follows that
0 (1)~ € uI(D) + A1)

< A3(M(1)) [As(M)(¢) — C (A (M(2)) + A2(M(2)))] -
Set
f(#) == A3(M)(t) — C (M (M)(2) + A2(M)(2)) -

By assumption, f(0) = 0. If f(¢;) > 0 for some time ¢;, then there exists a time ¢ so that
f(to) =0and f(t) < O0ont € (ty — ,to) for some small number § > 0. However, at the time

to, we have
d

— < 0.
dt lt=t, -

consequently, f(¢) > 0 on some small neighborhood of ¢y3. This is a contradiction. Hence
f(t) <Oforallt > 0.
Suppose Rey gy > 0. Then Rey(yy > 0 forall times ¢ > 0. Since M is compact, there exists
C > % such that
As(Rimy () < C [M(Rmy()) + do(Rmyg))]

That is Rmg ) C K. By the maximum principle for tensor fields, Rm,;) € K and hence
Az (Rmyp)) < C (M (Rmy() + Ao (Rmy())]
holds for all ¢ > 0. Therefore

Regr) = Az (Reg) 9(t) = < 2

A3 (ng(t)) Ry(r)
> ———2 2 q(t) > t
> 5o I = 59)
+ Ao (ng(t)) + A3 (ng(t)) = Rgy(;). From the assumption that C' > 1

M (Rmy) + Ao (ng@))) o)

@,
=
@]
o
>~
>
—
=

IN 2
=Y
o~
N

Rey(r) 2 eRy(9(t), n=3 (4.3.12)

for any € € (0,1/3], is preserved under the Ricci flow.
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Consider the same K. Suppose that Rm ) C K and
[\ (Rmygp)) (2) + Az (Rmyp)) ()]

for some (zq,t0) € M3 x [0,T).
(1) We claim that \ (ng(t)) =X (ng(t)) = A3 (ng(t)) at (130, to). Indeed, at

<0

(I,t)Z(CEQ,to)

the point (xg, to), we have

Az (Rmy(p)) — Ay (Rmy) )

CA1 (Rmy(p) ) + Chg (Rmy( ) — A (Rmy,)

O3 (Rmypy) + (C —1)A; (Rmyy)

C (A3 (Rmy(p) ) — A1 (Rmy())) + (20 = DA (Rmy)) -

INIA

On the other hand, we note that
Az (Rmy)) < C (A1 (Rmygp) ) + Ao (Rmy(y)) <0
at the point (xg,ty). Therefore when C > 1, we obtain
Az (Rmy(p)) — A (Rmy()) < 0;
consequently, \q (ng(t)) =X (ng(t)) = )3 (ng(t)) = X < 0at (o, o).
When % < C < 1, we have
Az (Rmy(e)) — A (Rmy) < C (A3 (Rmy()) — A (Rmyg ) ;
consequently,

Az (Rmy(p) ) = M (Rmy)) <0

and \ (ng(t)) = X\ (ng(t)) = A3 (ng(t)) =A< 0at ((L‘o, t()).
(2) But, in both cases, A\ < 2C\ so that (2C — 1)\ > 0. From this, we deduce that

A > 0when C > %, a contradiction. Therefore, Rmy) C K implies

A (Rmy) + A2 (Rmyy) >0 (4.3.13)

forall t € [0,T) provided C > 3.

(3) C = % In this case, we have
1
A= §Rg(t0)($0)'

Since
A (Rmy () + A2 (Rmy) <0

holds in a neighborhood of xq at time ty, we must have
1
At (Rmy () = e (Rmy)) = A3 (Rmy)) = 3Ry

in U. By the contacted Bianchi identity, we then have that R is constant on U.
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Since M is connected, it follows that
1 1
— §Rg(t) — §R

on all of M x [0,T), where the scalar curvature Ry is a negative constant R.

A (Rmy() = A2 (Rmy)) = A3 (Rmy,)

Thus, if Rmyq,) C K (where C' = %) for some to and if g(ty) does not have

constant negative sectional curvature, then Ricyy > 0 fort € [0,T).

&

There is an interesting question related to (4.3.12).

Problem 4.1. (Hamilton)

If (M3, g) is a complete Riemannian 3-manifold with Rey > eRyg, where R, > 0 and
e > 0, then M3 is compact. N

Chen and Zhu proved that if (M3, g) is a complete Riemannian 3-manifold with bounded
nonnegative sectional curvature and Rcy, > eRyg with € > 0, then M is either compact or flat.

A related question is

Problem 4.2

If (M3, g(t)) is a complete solution to the Ricci flow on a 3-manifold with nonnegative
Ricci curvature which is bounded on compact time intervals, can one prove a trace

differential Harnack inequality? o

Note that a result related to Problem 4.1, due to Hamilton, is

Theorem 4.4. (Hamilton, 1994)

If M™ C R™ 1 is a C™ complete, strictly convex hypersurface with hij > eHg;; for

some € > 0, then M™ is compact. ©

Problem 4.3

Does there exist a Harnack inequality for solutions to the mean curvature flow with

nonnegative mean curvature and second fundamental form which is bounded on compact

.. 5
time intervals P

4.3.4 Ricci pinching improves

Given Cy > 0, C; > %,
A3(M) = A (M) — Ca [A1(M) + Ao(M) + As(M)]' ™ < 0,
K={M: A3(M) < C1 [A1(M) + Ao (M)], . (4314

A(M) + A2(M) + A3(M) > Co

Cy>0and0 <0 <1,let

K is a convex set since A3 — A\ — Co(A1 + Ao + )\3)1_5 is a convex function for Cy > 0.
If M € K, then

Co < A (M) + A2(M) + C1 [M(M) + Ao (M)]

——————— O (D) O



4.3 Curvature pinching estimates — 228 -

so that

Co
A1 (M Ao (M) > .
1(M) + Ao )_1+C1>0

We have proved (omit M) that the inequalities A\; + A2 + A3 > Cp and A3 < C1(A\; + Ag) are
preserved under the ODE. We need only to check the first inequality is also preserved under the

ODE. Since Cy > 0,

K (A
dt ()\1 + Ao + )\3)1—6
B uy+&+xgl5(1< A3 — A\ )

A3 — A1 . % (/\1+)\2+)\3)1_6
B )\% + Ao — )\% — A2 )3
- A3 — A1
e (/\2 A2 A2+ A3+ dods + A2)
A+ Ag+Ag TR '
Note that
M AZ A2 A3+ Az A
= (M F+X) 2+ (A2 — A1)+ )\% + (M — /\3)2 - )\%.
Therefore

f ()

dt ()\1 + Ay + )\3)1_6

AL+ A2)A2 + (A2 — A1) Az + A3
A+ As + Ag ’

= 5()\14-/\3—)\2)—(1—5)(

Because \; + Ao > 0, we have A3 > Ao > 0 and hence

G (e
dt (A1 4+ Aa+ Ag)1 =9

)\2
< M+ —N)—-(1—-0)—2
- ( ! 3 2) ( )/\1 4+ Ao+ A3
Note that ) N
1+A2
A+ Ay + A3 33 63 6C,
and

AL+ A3 — A2 < A3 < Cr1(A1 + A2) <2C1 .
Combining those inequalities yields
d A3 — A1 1—90
— (1 < | 20C) — A2.
dt(n(>q+)\2+/\3)15> B ( ! 6C > 2

If we chose § € (0, 1) small enough so that 1‘%5 < 102 < i), then
1

12

Dy M <0,
dt ()\1 + Ao + )\3)1_5
Thus, K is preserved by the ODE provided Cy > 0, C; > %, Cy >0,0< 6 <1, and
s 1
5 = 12C%°
Since the largest eigenvalue of R,y is 2 Ao (M(8) 4+ A3 (M(1))] < A3 (M(t)); mean-
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while, the eigenvalue of %Rg(t)g(t) is
5 Dhr (M) + 0 (M(2)) + g (M(£))] 2 As (M(1)
Thus,

< A3 (M(t)) — Ay (M()).

1
’ch(t) — 2Ry 9(t)
g(t)

3

Suppose M3 is a closed 3-manifold and go has positive Ricci curvature. There exist
constants C > 0 and § € (0, %] such that
1

Reg(r) — 3R 9(t)

holds for all time where the Ricci flow exists.

(1) The 2-tensor ch := Rey — %Rg g is the trace-free part of the Ricci tensor Rcy and

12 s 1
“Reg| =IRegl; — 2R (4.3.16)
g

1-6
< CRy; (4.3.15)
g(t)

‘ch —

3 37
which vanishes everywhere exactly when g is Einstein. Indeed,
. g 1 1
tI"gRCg = g” <R¢j — 3Rggij> = Rg - gRg -3 = Rg — Rg =0.
The formula (4.3.16) can be seen as follows:

0|2 ] 1 o o ; j 1 1
[Reg|, = g 9 RGRY, = g™¢" (Rij - 3Rggz'j> (RM - 3Rggu>

L 1 1 1
= g*g" (Rinké = 5By Ruegij — 3 RgRijgne + 9R§gijgke>
1

2 1o 1.5 1., 2 2
= [Regl, — 5 R5— gRg+ Rg-3 = [Regly — SR
(2) We also have
1 2 1 2
‘ng — gRgidAz(Mg) =4 ‘ch — gRgg 4.3.17)
g g
Since
A0 0
Rmg=1] 0 X 0 |, RBy=A+X+As,
0 0 A3
we have
1 2 6
Rm, — gRgidA2(M3) =9 (AT + 23+ 23— Aida — Mz — dods) .
g
Meanwhile,
)\2;/\3 0 0
ch = 0 % 0
0 0 bk
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and
Re —ER 2_ )\2+/\3_)\1+)\2+)\3 2+ )\1+)\3_>\1+/\2+)\3 2
9739 T2 3 2 5
A1+ A AL+ X+ A 1
+< L tod 3> = < (84234 X3 = Mde — Ads — dadg).
So we verified (4.3.17). &

Let [0,7") denote the maximum time interval of existence of our solution. Recall that

1
Rmin t 2 .
( ) ]%min(o)_1 - %t

If we assume that the initial metric gy has positive Ricci curvature, then Ry,in(0) > 0 and we

conclude that 7' < %Rmm(O)*1 < 00. In later, we shall prove that

sup |Rm = 00. (4.3.18)

Mx[0.T) g(t) ‘g(t)

Intuitively speaking, we are in good shape now. Since the Ricci curvature is positive under the
Ricci flow, the metric is shrinking: J;g(t) = —2Ricyy) < 0. If we can show an appropriate
gradient estimate for the scalar curvature, then we could conclude that lim; ,7 Rpin(t) = 0.

Assuming this, we then would have
1

1
—— Ric, — —g(t)] <CR}
Rg(t) g(t) 3

9(t)’
9(t)
which tends to 0 as ¢ — T uniformly in . To finish the proof of Theorem 4.1, we need to
further show that the solution g(%) to the normalized Ricci flow exists for all time and the scalar
invariant quantity | 51— 7 R1c 3@ — 3g( )5 decays exponentially to zero as £ — oc. After that,
we shall show that under the normalized Ricci flow the curvature tends to a constant. Finally we
prove the long time existence and exponential convergence of the solution to a constant sectional

curvature metric.

4.4 Gradient bounds for the scalar curvature

Introduction

[ Gradient estimate [ [ Global scalar curvature pinching

(1 Gradient estimate II 1 Global sectional curvature pinching

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. For any ¢ > 0, there

exists C(e) depending only on € and g such that

2
|v9(t)Rg(t AR 5Ri(ﬂ + C(e)Ryr)

>|g<>

as long as the solution to the Ricci flow with initial metric g exists.
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4.4.1 Gradient estimate I

Let (M™, g) be an m-dimensional Riemannian manifold. We decompose V; R, into

ViR == Eiji + Fiji

where
m— 2
Eijk = Dm+2) (ViRg - gik + ViR - gij)
m
iRy gin
T =D m g 2) Y e ik

For any m > 3, one has

(Eijk, Fijk), = 0,

Im — 2

Bl = 2

Bkl 2(m —1)(m + 2) VoRgly

.2 3m —2 9

>

|VQR1C9|Q = Q(m— 1)(m+2) ’ngg|gv
o2 1 2 (m —2)? 2
R > .
[VgRicg|g m IVoRyl, = 2m(m — 1)(m + 2) Vo Ryl

Proof. Calculate
(Eiji, ViRjk), = 97 g7 g* B,V Rys

m— 2

4.4.1)

(4.4.2)

_ 1 2 1 9 m 9
o 2(m— 1)(m+2) (2 |v9Rg|g + 9 ’ngg’g> + (m — 1)(m+2) |V9Rg|g

3m—2 2
 2(m—1)(m+2) VoRgly
and
Eiin? = m—2 2(2 \VR!2+2|VR\2)
iklg = \o(m —1)(m+2)) \TIVellg 919lg
2
m 9 m(m — 2) 9
2
T o nrm e Vellls o T 2 Veltaly
 (m—2)2(m+ 1) +2m? + 4m(m — 2) VR, 2
N 2(m —1)2(n + 2)2 97919
3Im—2)(m—1)(m+2 3m — 2
= ( )( )( )‘nggyz = |ngg|§-

2(m —1)2(m + 2)?
The rest inequalities follows immediately.

2(m — 1)(m + 2)

When m = 3, Lemma 4.2 gives
7
.2 2
’ngICg’g 2 20 ‘V9R9‘9~
If we use the inequality
2
>
g

L

3 ViRygjk

. 1
‘VQRICQ@ 3 ’VgRg’?, = |ViRjx —

1
div, (ch — 3Rgg>

W =

2

g
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and the contracted second Bianchi identity, we have a worse constant

IV, Ric,|? > wRy

9_108

Let Ugyy == 0r — Dy If f and h are functions of space and time and if p,q € R, then

J? Pt fp fp—2 )
o) (hq> = P Oy f — irys Ogeyh — p(p — W‘vg(t)ﬂg(t)
2 frt
)W Vol + 200571 (Vaw f Vawh) {43

In particular, taking p = q = 1, we obtain

f 1 f 2 ¥
Dg(t) <h> = EDg(t)f - ﬁljg(t)h oty E <Vg(t)h, Vg(t) (h>> " 5 (4.4.4)
9

Proof. Calculate

—q(g+1

fp _ pfP~t. 0 f -h? — fP.qhi~1 . Ok _ fpf fP o,
ha - h24 - Ocf = hq+1
Ir f” ! Ir
A()<hq = V! thf q+1Vh
— 1) fpP— thvz _ p—lhq—lvzh p—l
_ plp=1f hf2q paf Verpf Ayorf
pafP IV f — (g + 1) fPRIV'R f”
_ < 13412 Vih+q hq+1 Ag(t)h
fp—2 9 fp—l
= plp—1) = ha | g(t)f’g(t) —2pg Ra+1 (Vo £ Vg(t)h>g(t)
fpfl fP 9 fP
+ 5 B f +ala+ 15553 [Vawhl o) — 45720 b
Combining those equations gives (4.4.3). O

As a consequence, we have

Vo) Ry(o)5e) 1 2
Og(e) (Rg " = Ry Vot Ry 1)

\Vg<t>Rg<t>|§(t>D . Q\ngRg(t)'?;(t)
—Rz—() g(6)*t(t) — R‘z()

Since g4y Ry = 2[Ric (t)’ (1)> We compute the first term [] o) Vg Ryt )| a0

Vo) Roto) |

O |V Row ey = —0u9ii - V' Ry(y V7 Ryqr) + 297V Ry() Vi Ry
= 2R;VIRy VI Ry + 2V Ry - Vi <Ag(t)R ) + 2 |Ricy P(ﬂ)
= 2R;jV'RyyV/ Ryt + 2V Ry(y) Vil gy Ryr) + 4V Ry - Vi [Ricy( ‘3(75) ’
and

2 i ij kb
Ay Vg By [,y = Doy (97ViBew)ViRew) = 2979 Vi (VeViRgw) - ViRgw)

.. 2
= 2¢7gM (VkVZ-VgRg( Vi Rg(t +2 ‘Vg(t (t)‘g(t)
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.. 2
= 2g”gk€ (Vz‘kazRg( 1) — RWPV R —|— 2 ’Vz g(t)’ o)

. . 2
= Vil Ry V' By + 2Rip VI Ry() - V' Ryqr) +2 ‘Vﬁ(t) Rg(t)‘

g(t)
Hence
2 ) 2
Oy [ Vo Ryt = 4 (Vo ot Vo) [Ricyo | (t>>g(t)—2(Vg(t)Rg<t>(g(t)- (4:4.5)
Using (4.4.5) we obtain
Vg Ryr) ’2(t) )
Oy | —=—22 (4.4.6)
g(t) ( Rg(t)
2
= ’Rgmvng ) ~ Vot Ry @ Vg(ng(t)’ ”
4 ) |RIC o) o 2
T R <V 0 R(t)) V()| Ricy( >|g(t>>g(t) 7R2(t) Lo Boo o

Proof of Proposition 4.1. The assumption that Ricg) > 0 yields that Ricyy > 0 for
€ [0,T) where T is the maximal time. Hence |Ricy()|q(:) < Ry(;)- On the other hand, from

1 2
VawRicow|, 0 = 5 Voo Rl
we obtain
Vo) Roto)] yy < V3 IVgRicen) ) < 2V Ricy] -
Therefore, (4.4.6) becomes
|V g(t)’ g(t)
N - v I
o ( Ry
[Ricg 5
= |Vg(t)R g(t ’vg(t) |Ricg(y)] (t)’g(t) RQ() Wg(t (t)‘g(t)
4
S g ” +2[ Vg Ricg() ’ [2Ricg(p - |V g Ricgq | g(t)
|R1C9(t)‘ (t) 2
- 7}22() Vot Byo) 0
[Ricg () ’g(t) 2
< 16|V Ricy) ) — 27}22() Voo Byo)] 0,
g(t
It is clear that
2 2 . 2
OBty = =2V o) Botw) |y + 4Ro0e) [Rico(n) gy - (44.7)
Using (4.4.7) yields for any € > 0
Vg Byt ’2(t) Ricy 2
Oy | — 2= —eR2y | < 16|V, Ricy 7v .
g(t) ( Ry g(t) ’ )| R2(t) ’ Ry( )’g(t)
2 . 2
— & (=2 |y Ry [y + 4Rgte) [Ricg 2 )
. 2 4
<16 [V g Ricyp| ) — !Vgu)Rg(t)! + 26 [V Byt 0y — 35 R0
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. 2 1 2 4 3
=16 Wg(t)Rng(t)}g(t) +2 (5 - 3> |v9(t)R9(t)|g(t) - geRg(ty

Ifo<e< %, then the above inequality reduces to

Wg(t)Rg(t)’?;(t) 2 4 3
Dg(t) (Rg(t) — ERg(t) < 16 ‘V Rng(t)‘ () gERg(t);

ife > %, then

Voo Bowlowy o 4 _ps
Dg(t) <% — ERg(t) < <16 +6 (5 — )) ‘V RIC t)| — ggRg(t)

. 2
= (6c +14) [Vy(y Ricy ()|

4 3
o) ~ 3550

In both cases, we derive

SN ACCLTOL TR IR R 4438
g(t) Ry g(t) | = | g(t) M Cy(1) ‘ g(t) — 5 g(t)" (4.4.8)
To deal with the “bad” term [V ) Ric 4 |§( 1) We consider the evolution equation for [Regs |§ o

%Rﬁ( - Calculate using Lemma 4.1,

0 | Ricy — 5 (gikgﬂRinM) — 20,9 RVRF; + 2RO, R,

2
) ‘g(w
= 4Ry R R™ 4+ 2R (A Rij + 3Ry Rij — 6RippR;®) + 2R (2 |Ricg( \j = Rg(t))

. .
= 2RYAypRij — 2R}y + 10Ry ) ‘R’lcg(t)‘g(t)

where trg(t)Ric ) = g’pgkrgesRikRpgRrs. Meanwhile,

— 8tr ( )Rlcg(t)

7 i . 2
Ay |Ricyp | o =9 kIt gPIV Vg (RijRie) = 20y Rij - R + 2 Vg Ricy(o] ) -
Hence
. 2 . 2 3
Oy [Ricgny [,y = =2V Ricgn] 0 — 2Ry
. 2
+ 10Ry () [Ricy(p| ) — 8trg(nRicyq), (4.4.9)
and
O Ric, (|2 — L R2 = —2(|v,»R LY R 2
o | IRicowl oy = 3B ) = —2(I icgt) o)~ 5 Vo Rato] o

20

— 2Ry + 5 Ry [Ricgq) \z(t) — 8tig(q) Ricfyst. 10)

From (4.4.2) for m = 3 and the assumption that Ric ( ) > 0, we have

. 1
Uy <|Rlcg(t)‘j(t) - 3R§(t)> < ‘V yRicg t)’

+4Rg(t)<\R1c }g(t) 3R9<t))' (44.11)

For any positive constant a we obtain

|V t)Rg t)|§( 9
Oyt (RM — Ry (|R1C|g<t> Rg(t>>

2 2 32
< (65 + 14 — 21‘1) | Vg0 Ricy(r) ‘g( +R 4aC — 7€Rg(t)
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where we use the estimate (4.4.8). If we pick a = 21(3¢ + 7), then

Vo) ot 5y . aRY, s 4eR2,
Dg(t) (1%9(9 — €R§(t) +a ’Rlc‘g(t) — 39 S R3 2

84(3 +7)C — Tg()

" g(t)

When 84(3e +7)C — %‘C:R?;((;t) < 0, the right side is negative; when 84(3¢ +7)C — %5R§?t) >0,

we have R;‘(St) < 63(3e + 7)C/e so that the right side is bounded by a constant depending on C'

and ¢. In both case, it follows that

Voo Bowloey 1,
Dg(t) (Rg(t) —¢R g(t) <|R1C| — 3Rg(t)> < C(«E)

By the maximum principle, we deduce that

V) Ryt [0
IO < (e + eR?
Ry) ®

as long as the solution exists.

4.4.2 Gradient estimate II

The paths toward obtaining various estimates are often/usually not unique.

Let (M3, g) be a closed 3-manifold with positive Ricci curvature and ¢(t) is the solution
to the Ricci flow with initial metric g. We have the following variant of the gradient of
scalar curvature estimate. There exists a constant § € (0,1/4] depending only on g(0)
such that for any 3 > 0
Vo) Rov [0
R
where C(3) < +oo depends only on 3 and g(0).

< BR G +C(B)R, (44.12)

Proof. Let )
V= W +a (\Ricgu)!f,(t) - ;,sz(w) : (4.4.13)
where a is a positive constant. By previous calculus we get
Og)V = _Rg(t) ‘Rﬂﬂvﬁu)Rg(t) ~ Vo o) ®V9(t)R9“)E(t>
+ Rj(t) <V 0 Ro(t): Vi) [Regr)] >g(t) MR;J Vo Roto) |
—2a <|V Ricg ()5 — % Wg(t)Rg(t)‘z(t)>

26 . 2 .3
— Ry ’Rlcg(t)‘g(t) — 8trg(t)R1Cg(t)>

_ 2a
9(t) 21

+a <—2R2(t) +

8|Ricy(s)lg(r)

IN

WgtR ‘ W Rlcg(t)‘ Wfi(t)Rng(t)‘2

Ry 9

26 . 2 .
a <_2R2(t) + ERg(t) ’R]Cg(t)‘g(t) — 8trg(t)R1C2(t)) .
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Since

26 o 50 , 1,
~2Rg0) + S Ry [Ricyn[ ) — Btrg(nRicgn < 5 Ry <|RIC o~ 3Rg<t>>’

and % < Beswla < L Ve Reywlgw) < ﬁyvg(t)ch(t)\g(t), and the pinching estimate

- Ry
[Rege) — %Rg(t) gy < C’Rl(_f for some ¢ € (0, %], it follows that
50a 1,325
t)V < (8\/>— N) ‘V t)RlC ()‘ 9(t) + ?CRg(t) .
We choose a satisfying
8V/3 \[ < -1
thus,
f (8\f + 1)
For example, we may choose a = 37 (8\/§ + 1), and hence
Do)V < = Vg Ricym | ) + ORI (4.4.14)

From Oy Ry(r) = 2/Reg(y |2 ;) we have
o (R) = C-9RGaR,
= (2- 5)Rg(;) (Ag(t)Rg(t) +2 ‘Ricg(t) ‘z(t)> ’
Ay (Rj(tf) = Vi ((2 - 5)R;(—tfviRg(t))
= (2-9) <(1 = )R |V Rotw) |y + Rf;(}fﬁg(t)Rg(t))
= (2= )R} ) Dy Ry + (2= )1 = )R [Vyi Ry |,
Therefore
Oy Rog) = —(1=0)2 = )R ) [V Ry ) +2(2 = R [Ricyqp 7,
Now, the evolution inequality of V' — R2(§ is
O (V — BRES ) — |V Ricy 2,
+ BL=8)(2= 6B Vo) Ry o) Rig?‘; 26(2 — )R}, [Ricy(y E](t)
Since Ry > 0 and M?3 is compact, we have Ry) = ¢ := minys Ry) > 0 and hence
Rg(t) > ¢. Calculate

W yRicy(r) ‘ +B(1— —9) Wg(t)Rg(t)‘z(t)
< |-z + B(1—6)(2—0)c’ |v9(t)R9(t)|52;(t)
If 8 € [0, Bo], where Sy := W then
— |V Ricyn| ) + B =8)(2 = 8) [V Ry ) <0
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On the other hand,
3—28 1—6 .

CR);° —28(2 = )R |Ricy(s

2(2 J)

}2
g(t)

3—-20 0
RS 0~ 22~ 5)8RY,

3—26 _
< CRy o = B

If Ry > (26?26;6)) /9, then the right 51de is less than zero; if Ry < (2 6)) 1/9  then the

right side is less than C' [9C/25(2 — §)] & "% . Hence in both cases, we have

3—26 1-6
CR);° —28(2 - 0)Ry, \Rlc |(t)<0’(5)

for some constant C’(3) depending only on 3 and ¢(0). Combining the above two estimates

yields
)
Oy (V = BEZE) < C(8)

for any 5 € [0, Bo]. By the maximum principle, we conclude that

V —BR2° < C+C'(B)t < C(B) (4.4.15)

9(t)

holds for any 3 € [0, fo], since t < Tipax < l. However, when 8 > (3, from

V —BRLS =V = bR} + (Bo — B)R(,’

the inequality (4.4.15) is valid. Finally by the definition of V' we prove (4.4.12). g
The function
[Ricgn 50 — 5850)
= P (4.4.16)
9(t)
satisfies
2(1-9)
o L (Vo Ryt Vor F') 4
2 2
~ R | Ry ViRjk — ViR - Ril (4.4.17)
9(t)
(5(]. — 5) < . 2 2 > 2
— —— | |Ric ‘ = fR ‘V ‘
= | [Ricg) o(t)
Rg(t) gt) 379t g(t)
2 . 2 1,
T pis {5 |Ricy(t ‘ g(t) <|Rlcg(t)‘g(t) - 3R9(t)> B ‘]}
where

J = 2|Ricygp|:

2 = Botr | iy — 5By [Ricgqo

-3
2o At Ricky | (4418)

Proof. Using (4.4.3) yields

!chm@(t) - %Rz(t) 1 . 2 1 o
o) ( R = m25-a) (’Rlcg(t)|g(t) - 3Rg<t>>
o(t) )

[Ricgmlo0 — 5850
- (2-9) P33 Hot) Byt
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2(2 — §) o 1,
T TR <Vg(t) <\Rlcg(t>’g(t)—3Rg<t))an<t>Rg<t)>
o(t)

Applying the evolution equation (4.4.10) to above, we obtain

g(t)

Dg(t)F =A+ B

where
_ 2 . 2 1 2
A = Ry [VowRicow] o) = 3 Voo Rotw] o0
g(t
[Ricg(o |50 = 5B50) 2
—(2-6)(3-4) g Vot Ry o)
Rg(t)

1 . 2
+22-90)—— <V ( Ric — fR ) Vo R >
Rz( 55 g(t) ‘ 9(t) ‘g(t) 379 g(t)tg(t) o0

are the gradient terms and

1 3 26 . 2
B = —— (—2Rg(t) + ?Rg(t) ‘Rlcg(t)‘g(t) — 8try )Rlcg(t)>
9(t)
[Ricg ) |2 R; 5
2(2 —6) R3( ? lec )}g(t)
are the curvature terms. Simplifying A and B, we prove (4.4.17). 0

Let (M3, g) be a closed 3-manifold with positive Ricci curvature and g(t) is the solution
to the Ricci flow with initial metric g. Then there exists constants C = C(g(0)) < 400
and § € (0, %] such that

< CRYJ.
) g(t)

, 1
‘Rlcga) = 3Re99(®)

Proof. Since M? is closed, we can always find a positive constant ¢ € (0, 5] so that Ricq) >

eRy(0)g(0). (4.3.12) tells us that Ricy) > eRyyg(t) for t € [0, Tinax]. Note that

2 2 1 9
J =22 ‘ch(t)‘g(t) <|R’C9(t)’g(t) - 3R9(t)> :
If we choose § < 2¢2 % % then from (4 4.17) we get
2(1—
Oyt F < D (% 0 By Vo F Dott)
therefore the estimate immediately follows from the maximum principle. O

4.4.3 Global scalar curvature pinching

In this subsection we apply the gradient estimate and the Bonnet-Myers theorem to show
that the global pinching of the scalar curvature tends to 1 as we approach the singularity time.

For any solution g(t) of the Ricci flow, we set

Rmax(t) = mMagcR (t)> Rmin<t) = I/I\l/gl Rg(t)'
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Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that g(t),

t € [0, Tinax) Is the solution to the Ricci flow with initial value g. Then we have
Rmin
- ®) _
t—Tmax Rmax ()
In fact, there exist constants C' < +oc0 and v > 0 depending only on go such that
Rpin(t) > 1 C

4.4.19)

1> >1-— . (4.4.20)
Rmax (t) R;ynax (t)
Note 4.4
In later we will prove lim;_,r, ., max s [Rmgylgp) = +oo. In our case m =

3, Ricgyy > 0 since Ricg, > 0, and Ryyy > |Ricyylge), we must have
limy 7., Rmax(t) = +o0. Together (4.4.20) we prove (4.4.19). Meanwhile,

, liTm Rpin(t) = +o0.
—
max *

Proof. By (4.4.12) and limy_,7, . Rmax(t) = 400, there exist constants C' < +oo and § > 0
such that
3.5
Vot Rato)] ) < € Romax(t)?

on M3 for all t € [0, Tiax). Given t € [0, Thax) there exists x; € M3 such that Ryax(t) =

Ry (x¢). Given n > 0, to be chosen sufficiently small later, for any point

x € By (e, 1/nV/ Rimax(t))

max 3 Vo Byl  C 1-5
we have Riax(t) — Ry () < Mn\/;max(:) £ < & Rmax(t)"°. So that

Rg(t) (l’) > Rmax(t) <1 - 2Rmax(t)_6> (4.4.21)

for all x € By (24, 1/1v/ Ruax(t)). We claim that this ball is all of M?. Since

lim  Rpyax(t) = +o0,

t—Tmax
by (4.4.21), there exists 7 < Tiax such that for ¢ € [T, Ti,ax) We have

Ry (z) > Rmax(t)(1 —n)
for all z € By (7, 1/my/ Rmax(t)). Now the Bonnet-Myers theorem and the pinching es-
timate Ricyy) > eRy4)g(t), where ¢ > 0, show that for > 0 sufficiently small M3 =

Bg(t)(mt,l/n\/Rmax(t))- O

4.4.4 Global sectional curvature pinching

The Rauch-Klingenberg-Berger topological sphere theorem states that if (M™, g) is a
complete, simply-connected m-dimensional Riemanian manifold with % < Secy < 1, then M™
is homeomorphic to the m-sphere. In particular, if m = 3, then M™ is diffeomorphic to the

3-sphere (since in dimension 3, the differential and topological categories are the same).
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Lemma 4.6. (Global sectional curvature pinching)

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that g(t),

t € [0, Tinax), s the solution to the Ricci flow with initial value g. For every € € (0,1),
there exists T(g) < Tmax such that for all t € [7(g), Tmax) the sectional curvatures of

g(t) are positive and

min At (Rmy)) > (1 - ) max As (Rmy)

The Rauch-Klingenberg-Berger topological sphere theorem and Lemma 4.6 implies that
if (N3, g) is a simply-connected Riemannian manifold satisfies

. 1
i A1 (Rmyg) > e = A3 (Rmy)

then (N3, g) is diffeomorphic to the 3-sphere. Hence the universal cover (M3, §(t)) of
(M3, g(t)) is diffeomorphic to the 3-sphere for t sufficiently closed to Tyax.

&

Proof. Recall A; (Rmy(;)) < g (Rmy;y) < A3 (Rmy ). By (4.3.15), there exist C' < 400
and ¢ € (0, 1/4] such that

A (Rm Rl
M >1— C¢ >1— 3CRmin(t)_6
Az (Rmy ) As (R )
onxz € M3 fort € [0, Tinax). Hence for any € > 0, there exists 7(¢) < Tiayx such that for all

t € [7(g), Tmax) We have

A1 (Rmygy) > (1 —e)As (Rmyy)) (4.4.22)
on M?3. Hence, by (4.4.20),
1—¢ (1—¢)?
/\1 (ng(t)) ($) Z (1 — 6))\3 (ng(t)) (.CL') Z TRg(t) Z 3 Rmax(t) (33)
1— 2 1— 2
> ( 36) Ryn(y) = ( 36) (A1 (Rmypy) (y) + A2 (Rmy) (y) + Az (Rmyyy) (y)]
1— 2
> ( 38) [As (Rmyg)) (y) +2(1 — e)As (Rmyg)) (v)] = (1—¢)*A3 (Rmy,) (y).
Thus proves the lemma. O

4.5 Exponential convergence of the normalized Ricci flow

Introduction

[ Degree of tensor fields fields
[ Maximum and average scalar curva- (1 Higher derivatives of the curvature
tures under the Ricci flow and the proof of Theorem 4.1

[ Interpolation inequalities for tensor

——————— O (D) O
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Now we return back to the normalized Ricci flow
. 2
dg(t) = —2Ricyy + gﬁg(t)g(t)

where R = f m BotydVye) / f a1 @Vy(¢) 18 the average of the scalar curvature. Since the

volume is preserved by the normalized flow, it follows that

1
By =57 | s To0 Vo

Vg—/dV

with

4.5.1 Degree of tensor fields

Let (M™, g) be an m-dimensional Riemannian manifold. We say that a tensor quantity o
depending on the metric g has degree k in g if
Qeg = ckocg 4.5.1)

for any ¢ > 0.

Note 4.6

ngg’l) has degree 0, ng4,0) has degree 1, Ricy has degree 0, R, has degree —1, and

dVy has degree 5 2

If an expression X ) formed algebraically from the metric and the Riemann curvature

tensor by contractions has degree k and if under the Ricci flow
Ogy Xg() = Y(0): (4.5.2)
then the degree of Yy is k — 1 and the evolution under the normalized Ricci flow
_ . 2 B
79(t) = —2Ricgq) + — By 9(f)
ofXg(g) is given by
2
HsoXg@ = Ys@) + 5 Bay Xg(0)- 4.5.3)

The above lemma also holds when the equalities in (4.5.2) and (4.5.3) are replaced by

inequalities going the same way.

L]

Proof. Itis clear that the degree of Y is k — 1. Recall that g(t) = c(t)g(t), where

ot _exp< /R dT> i) = Otc(T)dT.

dt 1
0r X g = 8th@.d7t_ = O ([C(t)]ng(t)>@

Then
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= i (FeI x4 100

_ 42
= [ (Ag X + Yo + Rl — Ry X()

2
= BgnXgm + Yo + ke Xg)

where we use the fact that Eg(g) = Tlt)Eg(t)'

4.5.2 Maximum and average scalar curvatures under the Ricci flow

Next we study the maximum and average scalar curvatures under the Ricci flow.

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that ¢(t),

t € [0, Twax), is the solution to the Ricci flow with initial value g. Then

1
Rmax (t)

2 ST — ) >y

and in particular

Tmax
/ Runax(t)dt = +00. 4.5.5)
0 v

Proof. We have
R/

max

. 2 2
< <
(t) < sj\ljl1;)2 ’RICg(t)|g(t) < 2Rmax(t)”

Because lim; 7, Rmax(t) = oo, we have Rpax(t) > m (4.5.5) is an immediate
consequence of (4.5.4). |
Note 4.8
If [0, Tmax) is the maximal time interval of existence of the normalized Ricci flow, then
Tmax _
0
Indeed, -
to _ to N df to
R dt = t) "R, —dt = R, dt.
/0 By /0 )" By /O Ry
Lemma 4.5 and Lemma 4.8 imply
Tmax
0 L)
Lemma 4.9. (Estimates for the normalized Ricci flow)
Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that §(t),
t € [0, Thmax), is the solution to the normalized Ricci flow with initial value g. Then there

——————— O (D) O
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exist constants C' < +o0o and 6 > 0 such that

. Rmax(f)
lim = 1, 4.5.6
t—T max Rmin(a ( )
Ricgp > ORyna(), 4.5.7)
Ruas(d) < C, diam(Mg(0) > & @458
Tmax = +00, (4.5.9)
Ruin(f) > % diam(M3,g(f)) < C,  (4.5.10)
. 1 _ 57
Ricgq — sRapg(f)| < Ce™™, 4.5.11)
g(t) i
Ruax(t) — Ruin(f) < Ce™, (4.5.12)
. 1 _ 57
Ricyq — s Bgpa()| < Ce™™. (4.5.13)
g(t)
In particular, there exists a constant C' < +o00 such that
1
£900) < g(t) < Cg(0) (4.5.14)

Jorallt € [0, 00), and the metrics G(t) converge uniformly on compact sets to a continuous

metric g(+00) as t — +oo.

Proof. (4.5.6) and (4.4.15) immediately follow from the corresponding results for the un-
normalized Ricci flow and the scalar-invariant properties.
Since under the normalized Ricci flow the volume is invariant, we have Vg@ 1S constant.
On the other hand, applying the Bishop-Gromov volume comparison theorem to our case that
Ricg@ > 0, we have
Vo < C [diam(M?, §(D)]°

for some universal constant C. Byproduct we have diam(g(¢)) > C > 0. Since Rcyp >

€Rax(t)g(t) for some £ > 0, by the Bonnet-Myers theorem, we have
C

. 3 _
diam(M”, §(t)) < TR®

and we conclude Ry« (f) < C. (4.5.8) implies
1
R :/ R dVzm < C.
(%) Vo) s g(t) 4Va(®)

If Tax < 400, then Note 4.8 shows that +00 < CTyay, a contradiction. Hence Thyax = —+00.
By Klingenberg’s injectivity radius estimate and replacing (M3, g(f)) by their universal

covering Riemannian manifolds (M3, g(t)), we have
1n.]§(ﬂ > 6]%mam(a_l/2
for some universal constant € > 0. Since Secé@ < C Rpax(t), this implies

Vﬁ(ﬂ > eRmax (E) —3/2
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for some other constant € > 0. Hence we have

Vi) 2 0 Runax(£) %/
where &' > 0 depends also on |m(M?3)| < 4o00. Hence Rpax(f) > % and the same es-
timate holds for Ry,in(t) by (4.5.6). Note that we also obtained a uniform upper bound for
diam(M?, (1)).

Let ) L .
— . [Ricgp — 3Rs09(D)15
g(t)

Then f(t) satisfies the following equation
O /(B) = 2 <V§(t') In Ry(s), Vg f(8)) 4¢p

’R g)v (‘)RIC @ — Vg(g)R @ ®RIC g)‘ +4]5(ﬂ

D4
R )
where
L |15, a1, o
P(t) = R3(D) |2 Ry gy [Ricgip | ) — 2Rs(otramRich — 5 Ryqp — [Ricgm |
We claim that ‘ , .
F(f) < _§2 ‘RICE(E) B §R§(f)g(ﬂ‘g(f)

Rg()
Let A1 > A2 > A3 denote the eigenvalues of Rcf( B Then
RE@F@ =3 ()\1 + X2+ A3)” (AT + AT+ A3)
1
=200+ de +28) (AT A3 A8) — 5 O+ e 29)t = (AT A3+ A3)°
= — (= 2" AT+ O+ A2) (o = Aa)] = A3 (M= As) (A2 — Xg)

< =)= M0 A < =R [ =20 + (e — M)
< —52R2(g) 3 [(/\1 — )2+ (A= A3)P + (Ae — )\3)2}
. 1 P
= —0°Rq |Ricgp — 3Ra09(0)|
()

Plugging this estimate into the evolution equation of f(f) yields

Oaf(®) < 2(Va@ In Ryw), Vg [(B) 5 — 40" Ry f ()

. 462
< 2(Va In Ry, Va@ [(0) ) — 1O

The maximum principle shows that f(#) < Ce~% for some unlversal constant C'. From (4.5.8)
we derive (4.5.11).
(4.4.6) and (4.4.11) imply that

IV Ry 0y e 1,
Y(t) = T Ry + 168 <|R1C9(t)‘g(t) Rg(t)>

satisfies, under the un-normalized Ricci flow

2
Oyny(t) < 672R,( (}RIC ‘g(t) - §R§( ))
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Hence, for the normalized Ricci flow, the corresponding quantity (), since v has degree —2,

satisfies
Oy (f) < 672Ry (!Rng@)E@ - ;R%) § U(f) < Ce™™ = 819 (7)
for some 9; € (0, §]. We can conclude that
Oyep (e"0(0) = CT) <0
and hence 1(f) < Ce (1 + 1) < Ce %! for some d, € (0,d;]. This gives us the gradient

estimate

Vo R, i) = Ce %2t
Since the diameters of g(¢) are uniformly bounded, we obtain (4.5.12) by integrating the gradient
estimate along minimal geodesics. Calculate

1 1
< [Ricgp — 3Ry g f)’ +3 ‘Rg@ - Ry

. 1
Ricg(@) = 3R59(?) -

a(?)

=+ % [RmaX(ﬂ - Rmin(a] .
g(t)

It is clear that (4.5.13) follows from (4.5.11) and (4.5.12). The last result will be proved later. [

1
< ‘Rlcg(f) Ry9(t)

4.5.3 Interpolation inequalities for tensor fields

Let T = (T}, ...;,) denote a /-form or a covariant tensor of degree ¢, on a compact Riemma-

nian manifold (M™, g) of dimension m. The LP-norm is denoted by || - ||z» 4
1/p
s = ([ 1Bav,)
Mm

Suppose

1 1

S4-=2, r2>1

p qg r
Then

2
IVgT||Zar 5 < (2r =2+ m) || VLT | pryg Tl o - (4.5.15)

Proof. Calculate
/Mm VT[> dV, = /vaiijTyng@”dvg
j 2r—2
_ _/MmTVJ (ViT 9,712 %) av,
- / T (AT VTR 4 VT VTR )
Since
j 2r—2 j r=1 2r—4 —j
A L v (<ng,ng>g) = (r— 1) |V,T VI (V,T,V,T),
= 2(r = )(VIV,T,V,T) |V, T,
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it follows that
/ VT2 dVy = —/ TAST |V, T2 72 dV,
M M
j 2r—4
—2(r—1) /M (T,V;T), (VT V'V T) VT dVy.
Now

TAT|, < m|T|, VT

g7

(T,V,T), (V T, VIV, T) < |T|, [V, var|,

and therefore
/Mm |V9T‘§T dVy < (2r —2+m) /Mm T, |V§T}g |V9T‘3T_2 dv.

We can estimate the last integral using Holder inequality with
1 1 r—=1
+ -+ =

P q r

L,

and we get

- 2
/ VT2 dV, < (2r—2+m) </ VT, dvg>
Mm Mm

1/q ) 1-1
( /Mm \T|ngg) - ( /M T dVg> .

Simplifying above inequality yields the required result. O

Ifp > 1 then

2
IVeT 1o g < (20 — 2+ 1) max Tl - || V2T ]Lp’g : (4.5.16)
Next we need a result on convexity, which is geometrically obvious.

Let f(i) be real-valued function of the integer k fori = 0,1,--- k. If

N fG-1)+ f(i+1)
(i) < e

i=1,---,k—1.
then

1) < <1 - k) £O)+ L F (). (45.17)

Thus, the value f (i) is determined by the values of f at the endpoints.

Proof. Set . .
7 = 10~ (1- 1) £0 - 10

and g(i) := f(i) — f(i — 1) fori = 1,--- ,n. We can check that the hypothesis for f also holds

for f: . ,
Fa—1)+fa+1) = fi—1) - (1—:1)]“(0)— zzlf(’f)
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wri+n - (1- 52 10 - S w)

— =D+ s+ - (2= ) 10 - T 1w

>21) -2 (1- 1) £0) - 310 = 2700,
Moreover f(0) = 0 = f(k), and g(i) < g(i + 1). Therefore we can choose an integer j so that

g(1) < <g() <0< g(G+1) <--- < g(k).

For any 1,

1<0<i i+1<e<k
When ¢ < j, the first representation is negative and when 7 > j the second is. This proves
f(i)y<0for0<i<k. O

If f(i) satisfies

Proof. Let
g(i) :== f(i) + Ci2.

Then 2¢(i) < g(i — 1) + g(i + 1). Lemma 4.10 implies

o)< (1= 1) 90+ fo®

that is the desired result. OJ

If f(i) is nonnegative and satisfies

F@) < Cfi —D)Y2 13+ 1)/?

for some positive constant C' > 0, then

£(5) < G (0)1 % f (k).

Proof. Without loss of generality, we may assume f (i) > 0 for all 7. Set

g(@) :=In f(2).

Hence
gi—1)+g(i+1)

2 +InC.

g9(i) <
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By Corollary 4.10, g(i) < (1 — £) g(0) + £g(k) + InC - i(k — i). O

For any k € N there exists a constant C = C(k, m) depending only on k and m such
that for any tensor field T
(1) ifj=1,---  k—1, then

, } 2(£-1 2
/ Vi) dVQSC(kz,m)max|T|g<’ )/ )v’;T( dv,.
m g Mm M g

Here we can choose C(k,m) = (2k — 2+ m)?*
(2) ifj=0,--- K, then
i

P12 ]2 i ) =%
/ VAT v, < C(k,m) (/ )ng( dvg) (/ |Tygdv;,) .
M'm m g Mm

Here we can choose C(k,m) = m2¥”.
Proof. Pick p = 2%, q= #5.andr = £ > 1in Theorem 4.5. Then

. 2k
il < (5 -2m) |

| N
Litl g Li-1g
For ¢ = 1, we use Corollary 4.8 to get
VTN < (26— 2+ m) max |7, || V2T,
Let
So f(i) < Cf(i 4+ 1)Y2f(i — 1)}/2. By Corollary 4.10,
F(i) < G0 F(0)1F (k)R
Thus,
V)] o < (2K =24 m) (maxmg)
L g Mm L27g
For (2), we choose p = ¢ = 2 and » = 1 in Theorem 4.5 and obtain
VT2 g = m VG Tl 2y [V T 2
Applying Corollary 4.10 to above implies
Vi), < mi®D T}
This completes the proof. O

4.5.4 Higher derivatives of the curvature and the proof of Theorem 4.1

Next we study the higher derivatives of the curvature. It is easy to see that (or see later)
2 2
Oy | Ve ng(t)’ < —2|VEiRm, t)‘

9(t)
+C0§<k(vg(t)}{m ’g(t ’v’g(tme ‘ ‘vg(t ()‘g(t)
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Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that §(t),
t € [0, 400), is the solution to the normalized Ricci flow with initial value go. Then there

exists positive constants C and § depending on k and n such that

(v’g@Ricg@)g@ < Qe % (4.5.18)
forall k € N.

Proof. First we consider the un-normalized Ricci flow. Calculate
d & 2
a / ALCLTO (g(t) @WVo(r) +2 /M3

°2 L

0<e<k

2
k+1
Vot Rimg(e) ‘g(t) dVy(e)

IN

v4 k—¢
V(o Rimg() ‘g@) VE Ry ’g(t) Vo Rmg(e) |, Vo

2 2
o0 dVg(t>>

(],

, 2% 2% 1-L
Vg(t) ng(t) dV, (t)) < C' max |ng(t) }

?
Vg Rmy )

AN

Q

™
—
%\

4

kLR, k%dv Q_k
Vo Bmgw]| ) Vo

</M3 g(t)

By Lemma 4.11, we have

(.

N 9 1/2
V(o Rmg(t) ’g(t) d‘@(t)) :

A

9(t) 9 M3 g(t)

(.

£
2k

2
k
V(o Rimg() ‘g(t) d%(t))

k—¢
2k 2k ¢
k—¢ k—L z
( /M3 Voo Ry dVg(t)) < Cmax|Rmg g,
/ vk Rm ‘2 o) "
s |9 O 9(t)
Therefore
4 vk R LV < -2 VAR L oav
dt J g(t) " My(t) o(®) gty = = e |9 Wy (t) () 9(t)
2
k
+ Cmax [Rmy| /MS Vg<t>ng(t>‘g(t) dVy(r)-

Lemma 4.7 and (4.5.8), together with above inequality, shows that

4 VE Ric.n|  dvig < —2 VI Ric. o | dv,;
di Jys |30 GD |5y TVa@ = o |50 0[5 “Ye®
2
k .
+0 | ViR, Vi

M3
where we use the fact that in dimension three Rm is equivalent to Ricy. For any k£ > 0 we have

2 R.
ERi e (Ric.. — Za
‘%@RI%@L@ = ’Vg@ (Rlcg@ -3 g(ﬂ)

2
g(?) '
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Applying Lemma 4.11 to the tensor Ricgp) — 2 (D g(t) yields

L

ks 2 k+1 h
Vg({)Rlcg(g) ) dVg(f) < C VZE (D Ric- a a
M3 g(®) M3
1

E+1

(/Mg Ricg(p) — go 9( dVa@) -
Now we claim that for any z,y,e > 0,
1
"y < ex"tl 4 E—ny”“. (4.5.19)

The proof of (4.5.19) is based on the following elementary inequality t* < ¢"*! + 1 for any
t > 0. Picking t = ex/y implies (4.5.19). For simplicity, we define

, 2
fi(t) = /MS ‘Vg(i)Rlcg(t‘)’g(t-) dVp)-

Using (4.5.19), we have, choosing ¢ = %,

d C , Rypy _|? e
djt—fk:(f) < =2fp1(t) + Ce fra (1) + o /M ’Rlcg(f) - g@g@ Vg < Ce™

g(?)

for some § > 0. Hence
d

= ( 5, 5)) < C + 5

which implies fj(t) < C for some uniform constant C' depending on k and n. We can apply

Lemma 4.11 again to obtain

2k

" dVap < Cmax

L

- By |25
-2

2
k .
VamRicg@ ’ a0 WVa

forany j = 1,--- ,k — 1. Hence, given j,p € N, we may choose k = pj to conclude
j 2P g Z) (pfl)
VigRicgn| | dVym < Cmax|Ricq -
/M3 a@Ricam| o Vo < Cmax Ricgp 9(t)

L

for some C' < +oo and § > 0, depending on j and p. Since all metrics g(f) are uniformly

o .
ngaRlcg@\g@d%@ < Ce™™

equivalent for ¢ € [0, +00), the Sobolev constant is uniformly bounded and it follows from the
Sobolev inequality that for any & € N, there exists C' < +oc and § > 0, depending on & and n,
such that

Vg Ricyp| < Ce”
’ g(?) 1€5(2) g — €
that completes the proof. O

From the above lemma and the fact that we can estimate the derivatives of the metrics in
terms of the estimates for the derivatives of the Ricci tensor, we can finish the proof of Theorem
4.1:

Proof of Theorem 4.1. By (4.5.14) the metrics g(¢) are uniformly equivalent and converge

uniformly on compact sets to a continuous metric g(oo) as ¢ — +oo. On the other hand, the
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estimates (4.5.18) imply the exponential convergence in each C*-norm of g(f) to g(co). This

implies g(oo) is C*°. By (4.5.13) we conclude
R

Ricg(oo) — 7géoo)g(oo) =0.
g(o0)
That is, g(co) has constant positive sectional curvature.
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