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Chapter 1 Differential manifolds

Introduction

h Manifolds

h Tensors and forms

h Integration on manifolds

1.1 Manifolds

Introduction

h Differential manifolds h

The function ri : Rm → R defined by

ri(x) := xi,

where x = (x1, · · · , xm) ∈ Rm, is called the i-th canonical coordinate function on Rm. The

canonical coordinate function on R will be denoted by r. If f : X → Rm is a function on some

set X , then we let

f i := ri ◦ f,

where f i is called the i-th component function of f . If f : R → R and x ∈ R, then we denote

the derivative of f at x by
d

dr

∣∣∣∣
x

(f) =
df

dr

∣∣∣∣
x

= lim
h→0

f(x+ h)− f(x)

h
.

If f : Rm → R, 1 ≤ i ≤ m, and x = (x1, · · · , xm) ∈ Rm, then we denote the partial
derivative of f with respect to ri at x by

∂

∂ri

∣∣∣∣
x

(f) =
∂f

∂ri

∣∣∣∣
x

= lim
h→0

f(x1, · · · , xi−1, xi + h, xi+1, · · · , xm)− f(x)

h
.

If α = (α1, · · · , αm) is a m-tuple of nonnegative integers, then we set

|α| =
∑

1≤i≤m
αi, α! =

∏
1≤i≤m

αi!,
∂α

∂rα
=

∂|α|

∂(r1)α1 · · · ∂(rm)αm
.

If x ∈ Rm, then Bm
r (x) = Bm(x, r) will denote the open ball of radius r about x. Write

Bm
r := Bm(0, r). Cr will denote the open cube with sides of length 2r about the origin in Rm.

That is

Cr := {(x1, · · · , xm) ∈ Rm : |xi| < r for all 1 ≤ i ≤ m}.
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1.1.1 Differential manifolds

Let U ⊂ Rm be open and let f : U → R. We say that f is differentiable of class Ck on
U , where k ∈ N ∪ {0,∞} ∪ {ω},

(i) (k ∈ N ∪ {0}) if the partial derivatives ∂αf/∂rα exist and are continuous on U for

|α| ≤ k;

(ii) (k = ∞) if f is Ck for all k ≥ 0;

(iii) (k = ω) if f is locally given by convergent power series.

If f : U → Rn, then f is differentiable of class Ck if each of the component functions

f i = ri ◦ f is Ck.

Definition 1.1. (Topological manifolds)

♣

A topological manifold M of dimension m is a Hausdorff space for which each point

has a neighborhood homeomorphic to an open subset of Rm. If ϕ is a homeomorphism

of a connected open set U ⊂ M onto an open subset U := ϕ(U) ⊂ Rm, ϕ is called a

coordinate map, the functions xi := ri ◦ ϕ are called the coordinate functions, and the

pair (U , ϕ) or (U , x1, · · · , xm) is called a coordinate system.

(a) A coordinate system (U , ϕ) is called a cubic coordinate system if ϕ(U) is an open

cube about the origin in Rm.

(b) If p ∈ U and ϕ(p) = 0, then the coordinate system is said to be centered at p.

Definition 1.2. (Differentiable structure)

♣

A differentiable structure F of classCk, where k ∈ N∪{∞}, on a topological manifold

M of dimension m, is a collection of coordinate systems (Uα, ϕα)α∈A satisfying

(a) M = ∪α∈AUα;

(b) ϕα ◦ ϕ−1
β is Ck for all α, β ∈ A;

(c) the collection F is maximal with respect to (b), that is, if (U , ϕ) is a coordinate

system such that ϕ ◦ ϕ−1
α and ϕα ◦ ϕ−1 are Ck for all α ∈ A, then (U , ϕ) ∈ F .

If F0 := {(Uα, ϕα) : α ∈ A} is any collection of coordinate systems satisfying properties

(a) and (b), then there is a unique differentiable structure F containing F0. Namely, let

F :=
{
(U , ϕ) : ϕ ◦ ϕ−1

α and ϕα ◦ ϕ−1 are Ck for all ϕα ∈ F0

}
. (1.1.1)

Hence, to find a differentiable structure on Mm, we need only to find such a F0. Without loss of

generality, we may say a differentiable structure is a collection of coordinate systems satisfying

(a) and (b).

Replacing Ck by Cω in Definition 1.2, we can define a differentiable structure of class
Cω. For a complex analytic structure on a 2n-dimensional topological manifold, one requires

that the coordinate systems have range in Cn and overlap holomorphically.
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Definition 1.3. (Differentiable manifolds)

♣

Am-dimensional differentiable manifold of classCk is a pair (M,F ) consisting of an

m-dimensional, second countable, topological manifold M together with a differentiable

structure F of class Ck.

Unless we indicate otherwise, all manifolds are smooth manifolds or differentiable manifold

of class C∞. If X is a set, by a manifold structure on X we shall mean a choice of both a

second countable topological manifold for X and a differentiable structure.

Example 1.1. (Some classical examples of differentiable manifolds)
(a) Rm. The standard differentiable structure on Rm is (Rm,1), where 1 : Rm → Rm

is the identity map.

(b) Finite dimensional real vector spaces. Let V be a finite dimensional real vector space.

Then V has a nature manifold structure. If e := (ei)1≤i≤m is a basis of V , the dual basis

e∗ := (e∗i )1≤i≤m gives a global coordinate system on V :

ϕe : V −→ Rm, ϕe(v) := (e∗1(v), · · · , e∗m(v)) , v ∈ V.

If ẽ := (ẽi)1≤i≤m is another basis of V with

ẽ∗i =
∑

1≤j≤m
aije

∗
j , a := (aij)1≤i,j≤m ∈ GL(m,R),

we have ϕẽ = aϕe. Consequently, this differentiable structure is independent of the

choice of basis.

(c) Cn. As a real 2n-dimensional vector space, Cn has a natural manifold structure. If

(ei)1≤i≤n is the canonical complex basis, then

e1, · · · , en,
√
−1e1, · · · ,

√
−1en

is a real basis for Cn, and its dual basis is the canonical global coordinate system on Cn.

(d) The m-sphere is the set

Sm :=

a = (a1, · · · , am+1) ∈ Rm+1 :
∑

1≤i≤m+1

(ai)2 = 1

 .

Let N := (0, · · · , 0, 1) and S := (0, · · · , 0,−1). Then the standard differentiable

structure on Sm is

(Sm \N, pN ), (Sm \ S, pS),

where pN and pS are stereographic projections from N and S respectively.

(e) (Open submanifolds) An open subset U of a differentiable manifold (M,F ) is itself

a differentiable manifold with differentiable structure

FU := {(Uα ∩ U , ϕα|Uα∩U ) : (Uα, ϕα) ∈ F}.

(f) (Product manifolds) Let (M1,F1) and (M2,F2) be differentiable manifolds of
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♠

dimensions m1 and m2 respectively. Define

ϕα × ψβ : Uα × Vβ 7−→ Rm1 ×Rm2 , (x, y) 7−→ (ϕα(x), ψβ(y)),

where F1 = (Uα, ϕα)α∈A and F2 = (Vβ, ψβ)β∈B . Then

F = (Uα × Vβ, ϕα × ψβ)(α,β)∈A×B

is a differentiable structure of M1 ×M2. amd dim(M1 ×M2) = m1 +m2.

(g) Let Tm = S1 × · · · × S1 (m times). It is called the m-dimensional torus.
(h) The general linear groupGL(m,R) is the set of allm×m nonsingular real matrices.

Define

GL(m,R) −→ Rm2
, A = (aij)1≤i,j≤m 7−→ (a11, · · · , a1n, · · · , am1, · · · , amm).

Then the determinant can be considered as a function of Rm2:

det : Rm2 −→ R, (a11, · · · , a1n, · · · , am1, · · · , amm) 7−→ det


a11 · · · a1n
... . . . ...

am1 · · · amm

 .

It is clear that det is a continuous function and Ker(det) is a closed subset of Rm2 .

Consequently,

GL(m,R) = Rm2 \Ker(det)

is an open subset and then a differentiable manifold.

(i) Let T (m,n) be the space of allm×n real matrices. Then T (m,n) can be regarded as

Rmn and therefore is a real analytic (Cω) manifold. Let T (m,n; k) denote the space of

all m× n real matrices of rank k (where 0 < k ≤ min(m,n)) with the induced topology

of T (m,n). Then T (m,n; k) is a real analytic manifold of dimension k(m+ n− k). In

fact, let X0 ∈ T (m,n). If rankX0 ≥ k, there are permutation matrices P and Q such

that

PX0Q =

A0 B0

C0 D0


where A0 is a nonsingular k × k matrix. There is an ε > 0 ( depending on A0) such that

if ||A−A0||matrix < ε, then A is nonsingular.

Definition 1.4. (Smooth functions)

♣

Let U be an open subset of a manifold M of dimension m. We say that f : U → R is a

C∞-function on U (denoted f ∈ C∞(U)) if f ◦ ϕ−1 is smooth for each coordinate map

ϕ on Mm.

A continuous map ψ : M → N between two manifolds of dimensions m and n respec-

tively, is said to be of class C∞, denoted ψ ∈ C∞(M,N ), if g ◦ ψ is a smooth function

on ψ−1(domain of g) for all smooth functions g defined on open sets in N .
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Note that the continuous map ψ : M → N is smooth if and only if ϕ ◦ ψ ◦ τ−1 is smooth

for each coordinate mapτ on M and ϕ on N , dimM = m and dimN = n.

M ψ−−−−→ N

τ

y yφ
Rm −−−−−−→

φ◦ψ◦τ−1
Rn

Clearly that the composition of two smooth maps is again smooth. Observe that a mapping

ψ : M → N is smooth if and only if for each x ∈ M there exists an open neighborhood U of x

such that ψ|U is smooth.

1.1.2 Partition of unity

A collection {Uα}α∈A of subsets of a topological space X is a cover of a set W ⊂ X if

W ⊂ ∪α∈AUα.

(i) It is an open cover if each Uα is open.

(ii) A subcollection of the cover {Uα}α∈A which stills covers is called a subcover.

(iii) A refinement {Vβ}β∈B of the cover {Uα}α∈A is a cover such that for each β there is an

α = α(β) such that Vβ ⊂ Uα.

A collection {Uα}α∈A of subsets of X is locally finite if whenever x ∈ X there exists a

neighborhood Ux of x such that Ux ∩ Uα 6= ∅ for only finitely many α.

A topological space is paracompact if every open cover has an open locally finite refinement.

Definition 1.5. (Partition of unity)

♣

A partition of unity on X is a collection {ϕi}i∈I of smooth functions on X such that

(a) The collection of supports {supp(ϕi)}i∈I is locally finite,

(b) 0 ≤ ϕi ≤ 1 on X for all i ∈ I , and

(c)
∑

i∈I ϕi = 1 on X .

A partition of unity {ϕi}i∈I is subordinate to the cover {Uα}α∈A if for each i there exists

an α such that supp(ϕi) ⊂ Uα. We say that it is subordinate to the cover {Ui}i∈I with
the same index set as the partition of unity if supp(ϕi) ⊂ Ui for each i ∈ I .

Proposition 1.1

♥

LetX be a topological space which is locally compact (each point has at least one compact

neighborhood), Hausdorff, and second countable. Then X is paracompact. In fact, each

open cover of X has a countable, locally finite refinement consisting of open sets with

compact closures.

Proof. (1) There exists a sequence {Gi}i∈N of open sets such that

Gi is compact, Gi ⊂ Gi+1, X =
⋃
i∈N

Gi.
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Lindelöf’s theorem1 says that any open cover of a second countable topological space has a

countable subcover. Since open sets with compact closure consists of an open cover of X , it

follows that there is a countable basis {Ui}i∈N of the topology of X , where Ui is an open set

with compact closure. Let G1 := U1. Assume that Gk = U1∪ · · · ∪Ujk . Let jk+1 be the smallest

positive integer greater then jk such that

Gk ⊂
⋃

1≤i≤jk+1

Ui.

Define

Gk+1 :=
⋃

1≤i≤jk+1

Ui.

Then we get a countable sequence {Gi}i∈N satisfying that Gi is compact, Gi ⊂ Gi+1, and

X ⊂
⋃
i∈N

Ui ⊂
⋃
i∈N

Gi ⊂
⋃
i∈N

Gi ⊂ X .

Therefore X = ∪i∈NGi.
(2) Let {Uα}α∈A be an arbitrary open cover. The set Gi \ Gi−1 is compact and contained

in the open set Gi+1 \ Gi−2. For each i ≥ 3, we choose a finite subcover of the open cover

{Uα∩(Gi+1\Gi−2)}α∈A ofGi\Gi−1 and choose a finite subcover of the open cover {Uα∩G3}α∈A
of the G2. This collection of open sets is countable, locally finite refinement of the open cover

{Uα}α∈A. In fact, let Wi := Gi \ Gi−1. Since X is locally compact, it follows that there exists a

finite subcover (Uij)1≤j≤mi of the open cover {Uα ∩ (Gi+1 \ Gi−2)}α∈A of Wi. Set

Vij := Uij ∩ (Gi+1 \ Gi−2), 1 ≤ j ≤ mi.

Similarly, we can define Vij for i = 1, 2. Hence (Vij)1≤j≤mi is an open subcover of Wi and⋃
i∈N

⋃
1≤j≤mi

Vij =
⋃
i∈N

Wi = X .

If Σ := {Uα}α∈A and Σ0 := {Vij}i∈N,1≤j≤mi , then Σ0 is a refinement of Σ; moreover,

Wi ∩
∏

1≤j≤mi

Vkj = ∅

for k 6= i− 2, i− 1, i, i+ 1, i+ 2, which implies that Σ0 is a locally finite.

Consider the function

f(t) :=

 e−1/t, t > 0,

0, t ≤ 0
(1.1.2)

which is nonnegative, smooth, and positive for t > 0. Then the function

g(t) :=
f(t)

f(t) + f(1− t)
(1.1.3)

is nonnegative, smooth and takes the value 1 for t ≥ 1 and the value 0 for t ≤ 0. Set

h(t) := g(t+ 2)g(2− t) (1.1.4)

1See: Li, Yi. Topology I, Theorem 1.17.
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which is a nonnegative smooth function on R which is 1 on [−1, 1] and zero outside of (−2, 2).

Finally, define

ϕ := (h ◦ r1) · · · (h ◦ rm). (1.1.5)

In general, we can show that there exists a nonnegative smooth function ϕ on Rm which equals

1 on the closed cube C1 and zero on the complement of the open cube C2.

Theorem 1.1. (Existence of partitions of unity)

♥

LetM be a manifold of dimensionm and {Uα}α∈A an open cover ofM. Then there exists

a countable partition of unity {ϕi}i∈N subordinate to the cover {Uα}α∈A with supp(ϕi)

compact for each i. If one does not require compact supports, then there is a partition of

unity {ϕα}α∈A subordinate to the cover {Uα}α∈A ( that is, supp(ϕα) ⊂ Uα with at most

countably many of the ϕα not identically zero).

Proof. Let the sequence {Gi}i∈N cover M as in Proposition 1.1 and set G0 = ∅. For x ∈ M
let ix be the largest integer such that x ∈ M\Gix . Choose an αx ∈ A such that x ∈ Uαx and let

(V, τ) be a coordinate system centered at x such that

V ⊂ Uαx ∩ (Gix+2 \ Gix), τ(V) ⊂ C2.

Define

ψx :=

 ϕ ◦ τ, on V,
0, otherwise

where ϕ is the function given by (1.1.5). Then ψx is a smooth function on M which has the

value 1 on some open neighborhood Wx of x, and has compact support lying in V . Since

{Gi}i∈N is locally finite, for each i ≥ 1, we can choose a finite set of points x in M whose

corresponding Wx-neighborhoods cover Gi \ Gi−1. Order the corresponding ψx functions in

a sequence {ψj}j∈N. The supports of the ψj form a locally finite family of subsets of M.

Therefore the function

ψ :=
∑
j∈N

ψj

is a well-defined strictly positive smooth function on M. For each i ∈ N define

ϕi :=
ψi
ψ
.

Then the functions {ϕi}i∈N form a partition of unity subordinate to the cover {Uα}α∈A with

supp(ϕi) compact.

Let ϕα be identically zero if no ϕi has support in Uα and be the sum of the ϕi with support

in Uα. Then {ϕα}α∈A is a partition of unity subordinate to the cover {Uα}α∈A with at most

countably many of the ϕα not identically zero. Note that the support of ϕα lies in Uα and observe

that the support of ϕα is not necessarily compact. □
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Corollary 1.1

♥

Let U be open in a manifold M of dimension m and let E be closed in M with E ⊂ U .

Then there exists a smooth function ϕ : M → R such that

(a) 0 ≤ ϕ ≤ 1 on M,

(b) ϕ ≡ 1 on E , and

(c) supp(ϕ) ⊂ U .

Proof. Consider an open cover (U ,M\E). By Theorem 1.1, we have a partition of unity (ϕ,ψ)

subordinate to (U ,M\ E) with supp(ϕ) ⊂ U and supp(ψ) ⊂ M\ E . Since

ϕ+ ψ ≡ 1 on M,

it follows that ϕ ≡ 1 on E .

1.1.3 Tangent vectors

If V = (V 1, · · · , V m) is a vector at a point p and f is differential on a neighborhood of p,

we define

V (f) :=
∑

1≤i≤m
V i ∂f

∂ri

∣∣∣∣
p

= 〈V , ∂f〉 |p (1.1.6)

called the directional derivative of f in the direction V at p.

Definition 1.6. (Germs)

♣

Let x be a point of a manifold M. Smooth functions f and g defined on open subsets

containing x are said to have the same germ at x if they agree on some neighborhood of

x.

If Uf denotes an open subset of a smooth function f containing x, we set

F := {(f,Uf ) : x ∈ Uf}. (1.1.7)

Definition 1.6 introduces an equivalence relation on F :

(f,Uf ) ∼ (g,Ug) ⇐⇒ f = g on U ⊂ Uf ∩ Ug (1.1.8)

for some open subset U containing x. The set of equivalence classes is denoted by

F̃x := F/ ∼= {[f ] : (f,Uf ) ∈ F}. (1.1.9)

The equivalence class [f ] is also written as f . Define

F̃x −→ R, f 7−→ f(x) := f(x). (1.1.10)

It is clear that the mapping (1.1.10) is well-defined.

Let

Fx := {f ∈ F̃x : f(x) = 0} (1.1.11)

and F k
x be the k-th power of Fx.
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Proposition 1.2

♥

Fx is an ideal in F̃x, and F k
x is an ideal of F̃x consisting of all finite linear combinations

of k-fold products of elements of Fx. These form a descending sequence of ideals

F̃x ⊃ Fx ⊃ F 2
x ⊂ F 3

x ⊃ · · · .

Definition 1.7. (Tangent vectors)

♣

A tangent vector V at the point x ∈ M is a linear derivation of the algebra F̃x. That

is, for f , g ∈ F̃x and λ ∈ R,

V (f + λg) = V (f) + λV (g),

V (f · g) = f(x)V (g) + g(x)V (f).

TxM denotes the set of tangent vectors to M at x and is called the tangent space to M
at x.

Let M be an m-dimensional manifold. For V,W ∈ TxM and λ ∈ R, we define

(V +W )(f) := V (f) + λW (f), λV (f) := λV (f). (1.1.12)

In this way, TxM becomes a real vector space. We will show in Theorem 1.2 that

dimTxM = dimM = m.

If c is the germ of a function with the constant value c on a neighborhood of x. For

V ∈ TxM, we have

V (c) = V (c1) = cV (1),

V (1) = V (1 · 1) = 1V (1) + 1V (1) = 2V (1).

Consequently,

V (c) = 0. (1.1.13)

Lemma 1.1

♥TxM is naturally isomorphic to (Fx/F 2
x )

∗.

Proof. Define

ϕ : (Fx/F
2
x )

∗ −→ TxM, ` 7−→ Vℓ,

where

Vℓ(f) := `([f − [f(x)]]), f ∈ F̃x.

This is well-defined, since f − [f(x)] ∈ Fx.

For any f , g ∈ F̃x and λ ∈ R, compute

Vℓ(f + λg) = Vℓ([f + λg]) = `([[f + λg]− [(f + λg)(x)]])

= `([f + λg − [f(x)]− λ[g(x)]]) = Vℓ(f) + λVℓ(g)
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and

Vℓ(f · g) = Vℓ([fg]) = `([[fg]− [(fg)(x)]])

= `([(f − [f(x)])(g − [g(x)])

+ [f(x)](g − [g(x)]) + [g(x)](f − [f(x)])])

= [f(x)]Vℓ(g) + [g(x)]Vℓ(f) +A

where

A = `([(f − [f(x)])(g − [g(x)])]) = 0

because of (f − [f(x)])(g − [g(x)]) ∈ F 2
x .

Conversely, define

ψ : TxM −→ (Fx/F
2
x )

∗, U 7−→ ψ(U),

where

ψ(U)([f ]) := U(f + [f(x)]), f ∈ Fx.

Compute

(ϕ ◦ ψ(U))(f) = ϕ(ψ(U))(f) = ψ(U)([f − [f(x)]])

= U(f − [f(x)] + [f(x)]) = U(f),

(ψ ◦ ϕ(`))([f ]) = ψ(ϕ(`))([f ]) = ϕ(`)(f + [f(x)])

= `([f + [f(x)]− [f(x)]]) = `([f ]).

Thus ψ is the inverse of ϕ, and hence TxM is isomorphic to (Fx/F 2
x )

∗.

Theorem 1.2

♥dimFx/F 2
x = dimM.

Proof. The proof is based on the following

Lemma 1.2. (Taylor’s expansion)

♥

If g is of class Ck (k ≥ 2) on a convex open set U about p in Rm, then for each q ∈ U ,

g(q) = g(p) +
∑

1≤i≤m

∂g

∂ri

∣∣∣∣
p

(ri(q)− ri(p)) (1.1.14)

+
∑

1≤i,j≤m
(ri(q)− ri(p))(rj(q)− rj(p))

∫ 1

0
(1− t)

∂2g

∂ri∂rj

∣∣∣∣
p+t(q−p)

dt.

Let (U , ϕ) be a coordinate system about x with coordinate functions x1, · · · , xm. For any

f ∈ Fx, we have, for any q ∈ ϕ(U),

(f ◦ ϕ−1)(q) = (f ◦ ϕ−1)(ϕ(x)) +
∑

1≤i≤m

∂(f ◦ ϕ−1)

∂ri

∣∣∣∣
φ(x)

(ri(q)− ri(ϕ(x)))

+
∑

1≤i,j≤m
(ri(q)− ri(ϕ(x))(rj(q)− rj(ϕ(x)))h(q)
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by (1.1.14), where

h(q) :=

∫ 1

0
(1− t)

∂2(f ◦ ϕ−1)

∂ri∂rj

∣∣∣∣
tq+(1−t)φ(x)

dt

is a smooth function near ϕ(x). Composing with ϕ yields

f(q) = f(x) +
∑

1≤i≤m

∂(f ◦ ϕ−1)

∂ri

∣∣∣∣
φ(x)

((ri ◦ ϕ)(q)− (ri ◦ ϕ)(x))

+
∑

1≤i,j≤m
((ri ◦ ϕ)(q)− (ri ◦ ϕ)(x))((rj ◦ ϕ)(q)− (rj ◦ ϕ)(x))(h ◦ ϕ)(q).

Thus

f =
∑

1≤i≤m

∂(f ◦ ϕ−1)

∂ri

∣∣∣∣
φ(x)

(xi − xi(x)) +
∑

1≤i,j≤m
(xi − xi(x))(xj − xj(x))(h ◦ ϕ).

Consequently,

f =
∑

1≤i≤m

∂(f ◦ ϕ−1)

∂ri

∣∣∣∣
φ(x)

(xi − [xi(x)]) mod F 2
x

and hence ([xi − [xi(x)]])1≤i≤m spans Fx/F 2
x . Suppose now that∑

1≤i≤m
ai(x

i − [xi(x)]) ∈ F 2
x

for ai ∈ R. Since ∑
1≤i≤m

ai(x
i − xi(x)) ◦ ϕ−1 =

∑
1≤i≤m

ai(r
i − ri(ϕ(x))

it follows that ∑
1≤i≤m

ai(r
i − [ri(ϕ(x))]) ∈ F 2

φ(x)

which implies

0 =
∂

∂rj

∣∣∣∣
φ(x)

 ∑
1≤i≤m

ai(r
i − ri(ϕ(x)))

 =
∑

1≤i≤m
aiδij = aj , 1 ≤ j ≤ m.

Thus dimFx/F 2
x = m.

Corollary 1.2

♥For any x ∈ M, we have dimTxM = dimM.

If f is smooth function defined on a neighborhood of x ∈ M and V ∈ TxM, we define

V (f) := V (f). (1.1.15)

Thus V (f) = V (g) whenever f and g agree on a neighborhood of x, and

V (f + λg) = V (f) + λV (g), V (fg) = f(x)V (g) + g(x)V (f).

This shows that we can treat tangent vectors as operating on functions rather than on their germs.

F̃x
V−−−−→ Rx

C∞(x)
V−−−−→ R
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Definition 1.8. (Natural tangent vectors)

♣

Let (U , ϕ) be a coordinate system with coordinate functions x1, · · · , xm and let x ∈ U .

For each i ∈ {1, · · · ,m}, we define a tangent vector (∂/∂xi)|x ∈ TxM by(
∂

∂xi

∣∣∣∣
x

)
(f) =

∂f

∂xi

∣∣∣∣
x

:=
∂(f ◦ ϕ−1)

∂ri

∣∣∣∣
φ(x)

(1.1.16)

for each function f which is smooth near x.

Note 1.1

♣

((∂/∂xi)|x)(f) depends only on the germ of f at x, and (∂/∂xi)x is a tangent vector at

x.

(a) ((∂/∂xi)|x)1≤i≤m is a basis of TxM and dual to [xi − [xi(x)]]1≤i≤m. Indeed,(
∂

∂xi

∣∣∣∣
x

)
(xj − xj(x)) =

∂(rj − rj(ϕ(x)))

∂ri

∣∣∣∣
φ(x)

= δj .

(b) If V ∈ TxM, then

V =
∑

1≤i≤m
V (xi)

∂

∂xi

∣∣∣∣
x

.

Indeed, witting V =
∑

1≤i≤m a
i(∂/∂xi)|x we get

V (xj) = V (xj − xj(x)) =
∑

1≤i≤m
ai
(
∂

∂xi

∣∣∣∣
x

)
(xj − xj(x)) =

∑
1≤i≤m

aiδij = aj .

(c) Suppose that (U , ϕ) and (V, ψ) are coordinate systems about x with coordinate

functions x1, · · · , xm and y1, · · · , ym respectively. Then
∂

∂yj

∣∣∣∣
x

=
∑

1≤i≤m

(
∂

∂yj

∣∣∣∣
x

)
(xi)

∂

∂xi

∣∣∣∣
x

=
∑

1≤i≤m

∂xi

∂yj

∣∣∣∣
x

∂

∂xi

∣∣∣∣
x

.

In particular, if x1 were equal to y1, then
∂

∂y1

∣∣∣∣
x

=
∂

∂x1

∣∣∣∣
x

+
∑

2≤i≤m

∂xi

∂y1

∣∣∣∣
x

∂

∂xi

∣∣∣∣
x

6= ∂

∂x1

∣∣∣∣
x

.

(d) When M = Rm with the canonical coordinate system (Rm,1, r1, · · · , rm), we

obtain (
∂

∂ri

∣∣∣∣
x

)
(f) =

∂(f ◦ 1−1)

∂ri

∣∣∣∣
1(x)

=
∂f

∂ri

∣∣∣∣
x

.

Thus the tangent vectors defined above are the ordinary partial derivative operators

(∂/∂ri). In particular, TxRm ∼= Rm.

(e) We defined Fx and F k
x in theC∞ case and shows that it is finite. However, Fx/F 2

x

is always infinite dimensional in the Ck case for 1 ≤ k < ∞. There are lots of

ways to define tangent vectors in the Ck case so that dimTxM = dimM (all of

which work in the C∞ case too).

Let F : M → N be a smooth map between two manifolds of dimensions m and n

respectively, and x ∈ M. The differential of F at x is the linear map

F∗,x : TxM −→ TF (x)N , V 7−→ F∗,x(V ) (1.1.17)
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defined as follows: for any smooth function g defined on a neighborhood of ψ(x), we define

F∗,x(V )(g) := V (g ◦ F ). (1.1.18)

Clearly that F∗,x is a linear map of TxM into TF (x)N . The map F is called nonsingular at x
if F∗,x is nonsingular, that is, ker(F∗,x) = 0. The dual map

F ∗
x : T ∗

F (x)N := (TF (x)N )∗ −→ T ∗
xM := (TxM)∗, ω 7−→ ψ∗

x(ω) (1.1.19)

defined by

ψ∗
x(ω)(V ) := ω(ψ∗,x(V )), V ∈ TxM. (1.1.20)

If f is a smooth function on M, and if V ∈ TxM and f(x) = r0, then

gradx(f) := f∗,x : TxM −→ Tf(x)R ∼= R, V 7−→ gradx(f)(V ).

we have

gradx(f)(V ) = (gradx(f)(V ))(r)
d

dr

∣∣∣∣
r0

= V (r ◦ f) d
dr

∣∣∣∣
r0

= V (f)
d

dr

∣∣∣∣
r0

. (1.1.21)

Hence gradx(f) can be viewed as an element of T ∗
xM. More precisely, define

dfx : TxM −→ R, V 7−→ V (f). (1.1.22)

The natural isomorphism ∂r0 : Tf(x)R → R given by ∂r0(a d
dr |r0) = a implies

(∂r0 ◦ gradx(f))(V ) = ∂r0

(
V (f)

d

dr

∣∣∣∣
r0

)
= V (f) = dfx.

If ωr0 is the basis of the one-dimensional space T ∗
r0R dual to d

dr |r0 , we arrive at

f∗x(ωr0)(V ) = ωr0(f∗,x(V )) = ωr0

(
V (f)

d

dr

∣∣∣∣
r0

)
= V (f)ωr0

(
d

dr

∣∣∣∣
r0

)
= V (f) = dfx(V ).

Thus

dfx = f∗x(ωf(x)). (1.1.23)

Note 1.2
(a) Consider a smooth map F : M → N between two manifolds of dimensions m and n

respectively, and x ∈ M. Let (U , ϕ, x1, · · · , xm) and (V, ψ, y1, · · · , yn) be coordinate

systems about x and F (x) respectively. Then

F∗,x

(
∂

∂xj

∣∣∣∣
x

)
=

∑
1≤i≤n

F∗,x

(
∂

∂xj

∣∣∣∣
x

)
(yi)

∂

∂yi

∣∣∣∣
F (x)

=
∑

1≤i≤n

(
∂

∂xj

∣∣∣∣
x

)
(yi ◦ F ) ∂

∂yi

∣∣∣∣
F (x)

=
∑

1≤i≤n

∂(yi ◦ F )
∂xj

∣∣∣∣
x

∂

∂yi

∣∣∣∣
F (x)

by Note 1.1 (c). The matrix (∂(yi ◦ F )/∂xj)1≤i≤n,1≤j≤m is called the Jacobian of F .

(b) If (U , x1, · · · , xm) is a coordinate system on M and x ∈ U , then {dxi|x}1≤i≤m is the

basis of T ∗
xM dual to {∂/∂xi|x}1≤i≤m by (1.1.23). If f is a smooth function, then

dfx =
∑

1≤i≤m

∂f

∂xi

∣∣∣∣
x

dxi|x. (1.1.24)
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♣

In fact,

dxi|x
(

∂

∂xj

∣∣∣∣
x

)
=

∂

∂xj

∣∣∣∣
x

(xi) = δij .

Since dfx ∈ T ∗
xM, we can write dfx =

∑
1≤i≤m aidx

i|x. Then

∂f

∂xj

∣∣∣∣
x

=
∂

∂xj

∣∣∣∣
x

(f) = dfx

(
∂

∂xj

∣∣∣∣
x

)
=

∑
1≤i≤m

aiδij = aj .

(c) Chain rule. Let F : M → N and G : N → P be smooth maps. Then

(F ◦G)∗,x = F∗,G(x) ◦G∗,x. (1.1.25)

For any smooth function g near F (G(x)) and V ∈ TxM, we have

(F ◦G)∗,x(V )(g) = V (g ◦ ϕ ◦G) = V ((g ◦ F ) ◦G) = G∗,x(V )(g ◦ F )

= F∗,G(x)(ψG,x(V ))(g) = (F∗,G(x) ◦G∗,x)(V )(g).

(d) If F : M → N and f : N n → R are smooth, then

d(f ◦ F )x = F ∗
x (dfψ(x)). (1.1.26)

For any V ∈ TxM, we obtain

(F ∗
x (dfF (x)))(V ) = dfF (x)(F∗,x(V )) = F∗,x(V )(f) = V (f ◦ F ) = d(f ◦ F )x(V ).

(e) A smooth mapping σ : (a, b) → M is called a smooth curve in M. Let t ∈ (a, b).

Then the tangent vector to σ at t is the vector

σ̇(t) := σ∗,t

(
d

dr

∣∣∣∣
t

)
∈ Tσ(t)M. (1.1.27)

If V is any nonzero element of TxM, then

V = ϕ−1
∗,0

(
∂

∂r1

∣∣∣∣
0

)
(1.1.28)

for some coordinate system (U , ϕ) centered at x. Hence V is the tangent vector at 0 to

the curve σ(t) := ϕ−1(t, 0, · · · , 0).
Two smooth curves σ and τ in Mm for which σ(t0) = τ(t0) = x have the same tangent

vector at t0 if and only if
d(f ◦ σ)
dr

∣∣∣∣
t0

=
d(f ◦ τ)
dr

∣∣∣∣
t0

for all functions f which are smooth on a neighborhood of x.

If σ : (a, b) → Rm is a curve in Rm, then

σ̇(t)(f) = σ∗,t

(
d

dr

∣∣∣∣
t

)
(f) =

d

dr

∣∣∣∣
t

(f ◦ σ) =
∑

1≤i≤m

∂f

∂rj

∣∣∣∣
σ(t)

dσj

dr

∣∣∣∣
t

=

 ∑
1≤j≤m

dσj

dr

∣∣∣∣
t

∂

∂rj

∣∣∣∣
σ(t)

 (f);

thus

σ̇(t) =
∑

1≤j≤m

dσj

dr

∣∣∣∣
t

∂

∂rj

∣∣∣∣
σ(t)

.
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If we identify this tangent vector with the element(
dσ1

dr

∣∣∣∣
t

, · · · , dσ
m

dr

∣∣∣∣
t

)
of Rm, then we arrive at

σ̇(t) = lim
h→0

σ(t+ h)− σ(t)

h
.

Consequently, with this identification out notion of tangent vector coincides with the geometric

notion of a tangent to a curve in Euclidean space.

Theorem 1.3

♥

Let F : M → N be a smooth mapping and M be connected. If F∗,x ≡ 0 for every

x ∈ M, then ψ is a constant map.

Proof. Let y ∈ F (M) and x ∈ F−1(y) (notice that ψ−1(y) is closed). Choose coordinate

systems (U , x1, · · · , xm) and (V, y1, · · · , yn) about x and y respectively so that F (U) ⊂ V . For

x′ ∈ U ,

0 = F∗,x′

(
∂

∂xj

∣∣∣∣
x′

)
=
∑

1≤i≤n

∂(yi ◦ F )
∂xj

∣∣∣∣
x′

∂

∂yi

∣∣∣∣
F (x′)

, 1 ≤ j ≤ m

by Note 1.1 (a), implying that
∂(yi ◦ F )
∂xj

≡ 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Thus yi ◦ F are constant on U and hence ψ(U) is constant. Since F (x) = y, it follows that

F (U) = y and F−1(y) = U that is open.

BecauseF−1(y) is open and closed in a connected manifoldM, we must haveψ−1(y) = M.

Thus F (M) = y.

Let M be a smooth manifold with differentiable structure F . Let

TM :=
⋃
x∈M

TxM, T ∗M :=
⋃
x∈M

T ∗
xM. (1.1.29)

There are natural projections:
TM π−−−−→ Mxπ∗

T ∗M
where

π(V ) = x if V ∈ TxM, π∗(V ) = x if V ∈ T ∗
xM. (1.1.30)

Let (U , ϕ) ∈ F with coordinate functions x1, · · · , xm. Define ϕ̃ : π−1(U) → R2m and

ϕ̃∗ : (π∗)−1(U) → R2m by

ϕ̃(V ) =
(
x1(π(V )), · · · , xm(π(V )), dx1(V ), · · · , dxm(V )

)
,

ϕ̃∗(τ) =

(
x1(π∗(τ)), · · · , xm(π∗(τ)), τ

(
∂

∂x1

)
, · · · , τ

(
∂

∂xm

))
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for all V ∈ π−1(U) and τ ∈ (π∗)−1(U).
We now construct a topology and a differentiable structure on TM.

(a) If (U , ϕ), (V, ψ) ∈ F , then ψ̃ ◦ ϕ̃−1 is smooth.

(b) The collection {
ϕ̃−1(W) : W open in R2m, (U , ϕ) ∈ F

}
forms a basis for a topology on TM which makes TM into a 2m-dimensional, second

countable topology manifold.

(c) Let F̃ be the maximal collection containing{
(π−1(U), ϕ̃) : (U , ϕ) ∈ F

}
.

Then F̃ is a differentiable structure on TMm. Note that π−1(U) ∼= U ×Rm ⊂ R2m.

The construction for T ∗M goes similarly. TM and T ∗M with these differentiable struc-

tures are called respectively the tangent bundle and the cotangent bundle of M. Note that ϕ̃

and ϕ̃∗ are both one-to-one maps onto open subsets of R2m. We prove here only for ϕ̃.

π−1(U) φ̃−−−−→ U ×Rmy ∥∥∥
ϕ(U)×Rm ϕ(U)×Rm

,

Vy
(x1(π(V )), · · · , xm(π(V )), dx1(V ), · · · , dxm(V ))

Define ψ̃ : U ×Rm → π−1(U) by

ψ̃(x,v) :=
∑

1≤j≤m
vj

∂

∂xj

∣∣∣∣
x

and
U ×Rm ψ̃−−−−→ π−1(U)∥∥∥ x

ϕ(U)×Rm ϕ(U)×Rm

,

(x,v)y
(x1(x), · · · , xm(x),v)

Compute

(ϕ̃ ◦ ψ̃)(x,v) = ϕ̃

 ∑
1≤j≤m

vj
∂

∂xj

∣∣∣∣
x

 =

(
π

 ∑
1≤j≤m

vj
∂

∂xj

∣∣∣∣
x

 ,

dx1

 ∑
1≤j≤m

vj
∂

∂xj

∣∣∣∣
x

 , · · · , dxm
 ∑

1≤j≤m
vj

∂

∂xj

∣∣∣∣
x

)
= (x, v1, · · · , vm) = (x,v),

(ψ̃ ◦ ϕ̃)(V ) = ψ̃(π(V ), dx1(V ), · · · , dxm(V )) =
∑

1≤j≤m
dxj(V )

∂

∂xj

∣∣∣∣
x

=
∑

1≤j≤m
V (xj)

∂

∂xj

∣∣∣∣
x

= V

since dxj(V ) = V (xj).

It will sometimes be convenient to write the points of TM as pairs (x, V ) where x ∈ M
and V ∈ TxM ( and similarly for T ∗M).
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If F : M → N is a smooth map, then the differential of F defines a mapping of the tangent

bundles

F∗ : TM −→ TN (1.1.31)

where

F∗(x, V ) := (F (x), F∗,x(V )), (x, V ) ∈ TM. (1.1.32)

Note that F∗ is a smooth map.

1.1.4 Submanifolds

Let F : M → N be smooth.

(a) F is an immersion if F∗,x is nonsingular for each x ∈ M (that is, F∗,x is one-to-one).

(b) The pair (M, F ) is a submanifold of N if F is a one-to-one immersion.

(c) F is an imbedding if F is a one-to-one immersion which is also a homeomorphism into;

that is, F is open as a map into F (M) with the relative topology.

(d) F is a diffeomorphism if F maps M one-to-one onto N and F−1 is smooth.

Clearly that

imbedding ⊂ submanifold ⊂ immersion.

Example 1.2

♠

(a) Consider F : R → R2 given by

F (t) :=
(
2 cos

(
t− π

2

)
, sin 2

(
t− π

2

))
.

Then F is an immersion. Note that

F∗,t

(
d

dr

∣∣∣∣
t

)
=
dF (t)

dt
=
(
−2 sin

(
t− π

2

)
, 2 cos 2

(
t− π

2

))
.

(b) Consider G : R → R2 given by

G(t) :=
(
2 cos

(
2 tan−1 t− π

2

)
, sin 2

(
2 tan−1 t− π

2

))
.

Then G is a submanifold but not an imbedding. Since lim|t|→∞G(t) = (0, 0) and

G(0) = (0, 0), it follows that a neighborhood of (0, 0) on G(R) is of the form (−a, b) ∪
(A,+∞) ∪ (−∞,−B) for some a, b, A,B > 0.

(c) Consider H : R → R2 given by

H(t) := (t, 1).

Then H is an imbedding.

The composition of diffeomorphisms is again a diffeomorphism. Let

M := {smooth manifolds}.

We write M ∼ N in M if there exists a diffeomorphism F : M → N . It is clear that ∼ is an

equivalence relation on M .
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Note 1.3

♣

(1) Consider the real line R and take F to be the maximal collection containing the

identity map 1. Let ϕ : R → R given by t 7→ t3, and F ′ be the maximal collection

containing ϕ. Hence (R,F ) and (R,F ′) both are smooth manifolds. Since

1 ◦ ϕ−1(t) = 1(t1/3) = t1/3,

it follows that 1 ◦ ϕ−1 is not smooth at t = 0 and then F 6= F ′. Define

f : (R,F ) −→ (R,F ′), t 7−→ t1/3.

Since

ϕ ◦ f ◦ 1−1(t) = t, 1 ◦ f−1 ◦ ϕ−1(t) = t,

the map f must be diffeomorphic.

(2) Milnor (1956) showed that S7 possesses non-diffeomorphic differentiable structures,

and Kervaire (1961) found a topology manifold that possesses no differentiable structures.

If F : M → N is a diffeomorphism, then F∗,x is an isomorphism. Conversely, whenever

F∗,x is an isomorphism, we can show that F is a diffeomorphism on a neighborhood of x.

Definition 1.9

♣

A set {fj}1≤j≤k of smooth functions defined on some neighborhood of x in a manifold M
is called an independent set at x if the differentials df1,x, · · · , dfk,x form an independent

set in T ∗
xM.

Theorem 1.4. (Inverse function theorem)

♥

Let U ⊂ Rm be open and let f : U → Rm be smooth. If the Jacobian matrix(
∂(ri ◦ f)
∂rj

)
1≤i,j≤m

is nonsingular at r0 ∈ U , then there exists an open set V with r0 ∈ V ⊂ U such that f|V
maps V one-to-one onto the open set f(V ), and f−1

|V is smooth.

Corollary 1.3

♥

Assume that F : M → N is smooth, that x ∈ M, and that F∗,x : TxM → TF (x)N is

an isomorphism. Then there is a neighborhood U of x such that F : U → F (U) is a

diffeomorphism onto the open set F (U) in N .

Proof. Since F∗,x is isomorphic, it follows that m = dimM = dimTxM = dimTxN =

dimN = n. Choose coordinate systems (V, ϕ) aboutx and (W, ψ) aboutF (x)withF (V) ⊂ W .

Let ϕ(x) = p and ψ(F (x)) = q. Consider the map f := ψ ◦ F ◦ ϕ−1 : V := ϕ(V) → W :=

ψ(W). Observe that V,W ⊂ Rm and

d(f|V )p = d(ψ ◦ F|V)φ−1(p) ◦ d(ϕ−1
|V )p = d(ψ|F (V))F◦φ−1(p) ◦ d(F|V)φ−1(p) ◦ d(ϕ−1

|V )p.
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Hence f|V is nonsingular at p and, by Theorem 1.4, there is a diffeomorphism α : Ũ → α(Ũ)

on a neighborhood Ũ of p with Ũ ⊂ V = ϕ(V). Then α = ψ ◦ F ◦ ϕ−1 on Ũ ; in particular,

F = ψ−1 ◦ α ◦ ϕ on U := ϕ−1(Ũ).

Corollary 1.4

♥

If f1, · · · , fm is an independent set of functions at x0 ∈ M, then {fi}1≤i≤m forms a

coordinate system on a neighborhood of x0.

Proof. Suppose that fi : U → R for 1 ≤ i ≤ m, andx0 ∈ U . Define a smooth mapψ : U → Rm

by

ψ(x) := (f1(x), · · · , fm(x)), x ∈ U .

Consider

ψ∗
x0 : T ∗

ψ(x0)
Rm −→ T ∗

x0U

and observe that

ψ∗
x0(dr

i
ψ(x0)

) = d(ri ◦ ψ)x0 = dfi,x0 .

Because df1,x0 , · · · , dfm,x0 is a basis of T ∗
x0U , we conclude that ψ∗

x0 is an isomorphism on

T ∗
ψ(x0)

Rm and then its dual ψ∗,x0 is also an isomorphism. By Corollary 1.3, ψ is a diffeomor-

phism on a neighborhood V ⊂ U of x0.

Now (V, ψ, y1, · · · , ym) is a coordinate system of x0, where yi := fi.

Corollary 1.5

♥

If f1, · · · , fk, k < m, is an independent set of functions at x ∈ M, then they form part of

a coordinate system on a neighborhood of x.

Proof. Choose a coordinate system (U , ϕ, x1, · · · , xm) about x. Then (dxix)1≤i≤m is a basis of

T ∗
xMm. Since f1, · · · , fk is an independent set of functions at x, we can choosem− k of the xi

so that df1,x, · · · , dfk,x, dxi1x , · · · , dx
im−k
x is basis of T ∗

xMm. Then apply Corollary 1.4. □

Corollary 1.6

♥

Let F : M → N be smooth and assume that F∗,x : TxM → TF (x)N is surjective. If

x1, · · · , xn form a coordinate system on some neighborhood ofF (x), then x1◦F, · · · , xn◦
F form part of a coordinate system on some neighborhood of x.

Proof. Consider

F∗,x : TxM −→ TF (x)N , F ∗
x : T ∗

F (x)N −→ T ∗
xM.

If F ∗
x (ω1) = F ∗

x (ω2) for ω1, ω2 ∈ T ∗
F (x)N , then, for any V ∈ TxM, we have

(ω1 − ω2)F∗,x(V ) = 0.
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The surjectivity of F∗,x implies that F∗,x(V0) 6= 0 for some V0 ∈ TxM and then ω1 = ω2. Thus

F ∗
x is injective.

We now can prove that the functions {xi ◦ F}1≤i≤n are independent of x. Indeed, let∑
1≤i≤n

ai(x
i ◦ F )∗,x = 0, ai ∈ R.

Since (xi ◦ F )∗,x = F ∗
x (dx

i
F (x)), it follows that

F ∗
x

 ∑
1≤i≤m

aidx
i
F (x)

 = 0.

The injectivity of F ∗
x implies

∑
1≤i≤m aidx

i
x = 0 and then a1 = · · · = an = 0. Finally, the

result follows from Corollary 1.5.

Corollary 1.7

♥

If f1, · · · , fk is a set of smooth functions on a neighborhood of x ∈ M such that T ∗
xM

is spanned by df1, · · · , dfk, then a subset of the fi forms a coordinate system on a

neighborhood of x.

Proof. Observe that k ≥ m. Then there exist fi1 , · · · , fim so that there form a basis of T ∗
xM.

Now the result follows from Corollary 1.4. □

Corollary 1.8

♥

Let F : M → N be smooth and assume that F∗,x : TxM → TF (x)N is injective. If

x1, · · · , xn form a coordinate system on a neighborhood of F (x), then a subset of the

functions {xi ◦ F}1≤i≤n forms a coordinate system on a neighborhood of x.

Proof. Consider

F∗,x : TxM −→ TF (x)N , F ∗
x : T ∗

F (x)N −→ T ∗
xM.

If U = F∗,x(V ), we define F−1
∗,x (U) := V . Since F∗,x is injective, it follows that F−1

∗,x is

well-defined. For ω ∈ T ∗
xM, define

τ := ω ◦ (F∗,x)
−1 ∈ T ∗

F (x)N .

Hence F ∗
x (τ)(V ) = τ(F∗,x(V )) = ω(v); thus, F ∗

x is surjective.

Since T ∗
F (x)N is spanned by {dxi|x}1≤i≤n, the surjectivity of F ∗

x implies that T ∗
xM is

spanned by {F ∗
x (dx

i|x)}1≤i≤n = {d(xi ◦ F )x}1≤i≤n. Now the result follows from Corollary
1.7.

Suppose one has a smooth mapping F : M → N factoring through a submanifold (P, G)
of M. That is, F (N ) ⊂ G(P), whence there is a uniquely defined mapping F0 of N into P
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such that G ◦ F0 = F .

N F //

∃!F0

!!

M

P

G

OO

The problem is: When is F0 smooth? This is certainly not always the case. Let (R, F ) and

(R, G) both be figure-8 submanifolds with precisely the same image sets, but with the difference

that as t → ±∞, F (t) approaches the intersection along the horizontal direction, but G(t)

approaches along the vertical. Suppose also that F (0) = G(0) = (0, 0). Then F0 is not even

continuous since

F−1
0 (−1, 1) = F−1(G(−1, 1)) = (−∞,−α) ∪ (α,∞) ∪ {0}

for some α > 0.

Theorem 1.5

♥

Suppose that F : N → M is smooth, that (P, G) is a submanifold of M, and that F

factors through (P, G), that is, F (N ) ⊂ G(P). Since G is injective, there is a unique

mapping F0 of N into P such that G ◦ F0 = F .

(a) F0 is smooth if it is continuous.

(b) F0 is continuous if G is an embedding.

Proof. (b) is obvious, since F0 = G−1 ◦F . So we may assume that F0 is continuous. It suffices

to show that P can be covered by coordinate systems (U , ϕ) such that the map ϕ ◦ F0 restricted

to the open set F−1
0 (U) is smooth.

Let x ∈ P and let (V, ψ) be a coordinate system on a neighborhood of G(x) in M. Since

(P, G) is a submanifold, it follows that G∗,x is injective. By Corollary 1.8, there is a projection

π : Rm → Rp such that the map ϕ := π ◦ψ ◦G is a coordinate system on a neighborhood U of

x. Then

ϕ ◦ F0|F−1
0 (U) = π ◦ ψ ◦G ◦ F0|F−1

0 (U) = π ◦ ψ ◦ F|F−1
0 (U)

is smooth.

Submanifolds (N1, F1) and (N2, F2) of M will be called equivalent if there exists a

diffeomorphism G : N → N such that F1 = F2 ◦G.

N1
F1 //

∃G
!!

M

N2

F2

OO

Observe that dimN1 = dimN2. This is an equivalence relation on the collection of all

submanifolds of M.

(i) Each equivalence class ξ has a unique representative of the form (A, i) where A is a subset

of M with a manifold structure such that the inclusion i : A → M is a smooth immersion.
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Proof. For any (N , F ) ∈ ξ, let (A, i) := (F (N ), i), where the manifold structure on A
is induced from the diffeomorphism F : N → F (N ) and i : F (N ) ↪→ M is the natural

inclusion. Clearly that (A, i) is equivalent to (N , F ).

If (B, j) is another representative of ξ, then j = i◦H for some diffeomorphismH : B → A.

Hence B admits a manifold structure such that the inclusion j : B → M is a smooth

immersion. □

(ii) The conclusion of some theorems in the following sections state that there exist unique

(uniqueness means up to equivalence. In particular, if the submanifolds of M are viewed

as subsets A ⊂ Mm with manifolds structures for which the inclusion maps are smooth

immersions, then uniqueness means unique subset with unique second countable locally

Euclidean topology and unique differentiable structure) submanifolds satisfying certain

conditions.

In the case of a submanifold (A, i) of M where i is the inclusion map, we shall often drop

the i and simply speak of the submanifold A ⊂ M.

(iii) Let A be a subset of M. Then generally there is not a unique manifold structure on A such

that (A, i) is a submanifold of M, if there is one at all. However we have the following

two uniqueness theorems which involve conditions on the topology on A.

(a) Let M be a differentiable manifold and A a subset of M. Fix a topology on A. Then

there is at most one differentiable structure on A such that (A, i) is a submanifold of

M, where i is the inclusion map.

(b) Let M be a differentiable manifold and A a subset of M. If in the relative topology,

A has a differentiable structure such that (A, i) is a submanifold of M, then A has a

unique manifold structure (that is, unique second countable locally Euclidean topol-

ogy together with a unique differentiable structure) such that (A, i) is a submanifold

of M.

1.1.5 Implicit function theorem

Recall the following implicit function theorem in calculus.

Theorem 1.6. (Implicit function theorem)
Let U ⊂ Rm−n ×Rn be open, and let f : U → Rn be smooth. We denote the canonical

coordinate system on Rm−n × Rn by (r1, · · · , rm−n, s1, · · · , sn). Suppose that at the

point (r0, s0) ∈ U , f(r0, s0) = 0, and that the matrix(
∂f i

∂sj

∣∣∣∣
(r0,s0)

)
1≤i,j≤n

is nonsingular. Then there exists an open neighborhood V of r0 in Rn−m and an open

neighborhood W of s0 in Rn such that V ×W ⊂ U , and there exists a smooth map
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♥

g : V →W such that for each (p, q) ∈ V ×W

f(p, q) = 0 ⇐⇒ q = g(p). (1.1.33)

Theorem 1.7

♥

Assume thatF : M → N is smooth, that y is a point ofN , thatP := F−1(y) is nonempty,

and thatF∗,x : TxM → TF (x)N is surjective for all x ∈ P . ThenP has a unique manifold

structure such that (P, i) is a submanifold of M, where i is the inclusion map. Moreover,

i : P → M is actually an imbedding and the dimension of P is dimM− dimN .

By Corollary 1.6, m = dimM ≥ n = dimN .

Proof. By above remarks, it suffices to prove that in the relative topology, P has a differentiable

structure such that (P, i) is a submanifold of M of dimension p := m − n. It is sufficient to

prove that if x ∈ P , then there exists a coordinate system on a neighborhood U of x in M for

which P ∩ U is a coordinate system of the correct dimension. Let y1, · · · , yn be a coordinate

system centered at y in N . Since F∗,x : TxM → TyN is surjective, it follows from Corollary
1.6 that the collection of functions (xi := yi ◦ F )1≤i≤n forms part of a coordinate system about

x ∈ M. Complete to a coordinate system x1, · · · , xn, xn+1, · · · , xm on a neighborhood U of x.

Then P ∩ U = {x1 = · · · = xn = 0}. By Theorem 1.6, P ∩ U is a submanifold of dimension

p = m− n.

Theorem 1.8

♥

Assume that F : M → N is smooth and that (O, G) is a submanifold of N . Suppose that

whenever x ∈ F−1(G(O)), then

TF (x)N = F∗,xTxM+G∗,G−1(F (x))TG−1(F (x))O (1.1.34)

(not necessarily a direct sum). Then if P := F−1(G(O)) is nonempty, P can be given a

manifold structure so that (P, i) is a submanifold of M, where i is the inclusion map with

dimP = dimM− (dimN − dimO). (1.1.35)

Moreover, if (O, G) is an imbedded submanifold, then so is (P, i), and in this case there

is a unique manifold structure on P such that (P, i) is a submanifold of M.

Example 1.3
(a) Define the function f : Rm+1 → R by

f(p) :=
∑

1≤i≤m+1

[ri(p)]2, p ∈ Rm+1.

Then f−1(1) has a unique manifold structure for which it is a submanifold of Rm+1 under

the inclusion map. This is nothing but the unit m-sphere.

(b) We define a map F from the general linear group GL(m,R) to the vector space of all
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♠

real symmetric m×m matrices by

F : GL(m,R) −→ Sym(m,R), A 7−→ AAT ,

whereAT stands for the transpose ofA. For them×m identity matrix Im, letO(m,R) :=

F−1(Im). O(m,R) is a subgroup of GL(m,R) under matrix multiplication called the

orthogonal group. We shall check that O(m,R) has a unique manifold structure such

that (O(m,R), i) is a submanifold of GL(m,R) and that in this manifold structure i is

an embedding and O(m,R) has dimension

dimO(m,R) = m2 − m(m+ 1)

2
=
m(m− 1)

2
.

By Theorem 1.7, we suffice to show that F∗,σ : TσGL(m,R) → TF (σ)Sym(m,R)

is surjective for all σ ∈ O(m,R). Define the right translation Rσ : GL(m,R) →
GL(m,R) by Rσ(τ) := τσT . Observe that Rσ is a diffeomorphism. For any σ ∈
O(m,R), we have

F ◦Rσ(τ) = F (τσT ) = τσT (τσT )T = τσTστT = F (τ).

Thus F ◦Rσ = F and then

F∗,σ = (F ◦Rσ)∗,σ = F∗,I ◦ (Rσ)∗,σ.

Hence we need only to check that F∗,I : TIGL(m,R) → TISym(m,R) is surjective.

Since GL(m,R) and Sym(m,R) can be viewed as submanifolds of a large Euclidean

space, it suffices to check that F is surjective. For a symmetricm×m real matrix A with

rank r, we have

A = B

Ir 0

0 0

BT = B

Ir 0

0 0

 ·

B
Ir 0

0 0

T

= F

B
Ir 0

0 0


for some matrix B ∈ GL(m,R).

1.1.6 Vector fields

A mapping σ : [a, b] → M is a smooth curve in M if σ can be extends to be a smooth

mapping of (a − ε, b + ε) into M for some ε > 0. The curve σ : [a, b] → M is said to be

piecewise smooth if there exists a partition

a = α0 < · · · < αk = b

such that σ|[αi,αi+1] is smooth for i = 0, · · · , k − 1.

(a) Piecewise smooth curves are necessarily continuous.

(b) If σ : [a, b] → M is a smooth curve in M, then its tangent vector

σ̇(t) := σ∗,t

(
d

dr

∣∣∣∣
t

)
∈ Tσ(t)M

is well-defined.
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Definition 1.10. (Vector fields)

♣

A vector field X along a (smooth) curve σ : [a, b] → M is a mapping X : [a, b] →
TM which lifts σ, that is,

π ◦X = σ, (1.1.36)

where π : TM → M is the natural projection. A vector field X is called a smooth
vector field along σ if the mappingX : [a, b] → TM is smooth. A vector field X on an
open set U in M is a lifting of U into TM, that is, X : U → TM such that

π ◦X = 1U = identity map on U . (1.1.37)

A vector field X is called a smooth vector field on an open set U if the mapping

X : U → TM is smooth (written as X ∈ C∞(U , TM)).

The set C∞(U , TM) of smooth vector fields over U forms a vector space over R and a

module over the ring C∞(U) of smooth functions on U .

IfX is a vector field on U and x ∈ U , thenXx := X(x) ∈ TxM. If f is a smooth function

on U , we define

X(f) : U −→ R, x 7−→ X(f)(x) := Xx(f). (1.1.38)

Thus X(f) is a function on U .

Proposition 1.3

♥

Let X be a vector field on M. Then the following are equivalent:

(a) X is smooth.

(b) If (U , x1, · · · , xm) is a coordinate system on M, and if (ai)1≤i≤m is the collection

of functions on U defined by

X|U =
∑

1≤i≤m
ai

∂

∂xi
,

then ai ∈ C∞(U).
(c) Whenever V is open in M and f ∈ C∞(V), then X(f) ∈ C∞(V).

Proof. (a) ⇒ (b): If X is smooth, then X|U is also smooth. Since dxi : π−1(U) → R is

smooth, it follows that

dxi ◦X|U =
∑

1≤j≤m
ajdxi ◦ ∂

∂xj
=

∑
1≤j≤m

ajδij = ai

which is smooth on U .

(b) ⇒ (c): Let (U , x1, · · · , xm) be a coordinate system on M with U ⊂ V . By (b), we

arrive at

X(f)|U =
∑

1≤i≤m
ai
∂f

∂xi

and ai are all smooth on U . Hence X(f) is smooth on U .
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(c) ⇒ (a): It suffices to prove that X|U is smooth where (U , x1, · · · , xm) is an arbitrary

coordinate system on M. To prove thatX|U is smooth, we need only to check thatX|U composed

with the canonical coordinate functions on π−1(U) (for TM) are smooth functions. Because

xi ◦ π ◦X|U = xi, dxi ◦X|U = X(xi),

we conclude that X|U is smooth.

If X,Y are smooth vector fields on M, we define the Lie bracket of X and Y by

[X,Y ]x(f) := Xx(Y f)− Yx(Xf) (1.1.39)

where x ∈ M and f is any smooth function near x.

Proposition 1.4

♥

Suppose X,Y, Z are smooth vector fields on M.

(a) [X,Y ] is a smooth vector field on M.

(b) If f, g ∈ C∞(M), then

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X. (1.1.40)

(c) (Jacobi identity) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

(d) [X,Y ] = −[Y,X].

A vector space V with a bilinear operation [·, ·] satisfying (c) and (d) is called a Lie algebra.

Consequently, C∞(M, TM)) together with the Lie bracket is a Lie algebra. In part (b), fX is

a smooth vector field on M defined by

(fX)x := f(x)Xx, x ∈ Mm. (1.1.41)

Proof. (a) By Proposition 1.3, [X,Y ] is smooth.

(b) If f, g ∈ C∞(M), then

[fX, gY ]x(h) = (fX)x((gY )(h))− (gY )x((fX)(h)), x ∈ M,

for any smooth function h near x. Using the fact that

(gY )(h)(p) = (gY )p(h) = g(p)Yp(h) = g(p)(Y (h))(p) = (g · Y (h))(p),

we arrive at

[fX, gY ]x(h) = (f(x)Xx)(g · Y (h))− (g(x)Yx)(f ·X(h))

= f(x) (g(x)Xx(Y (h)) + Y (h)(x)Xx(g))

− g(x) (f(x)Yx(X(h)) +X(h)(x)Yx(f))

= f(x)g(x) [Xx(Y (h))− Yx(X(h))]

+ f(x)(Y (h)(x))Xx(g)− g(x)(X(h)(x))Yx(f)

= (fg)(x)[X,Y ]x(h) + f(x)Yx(h)Xx(g)− g(x)Xx(h)Yx(f)

= (fg[X,Y ])x(h) + (f(Xg)Y )x(h)− (g(Y f)X)x(h).
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Thus [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X .

(c) It follows from part (b).

(d) For any x ∈ M and any function f smooth near x, we have

([X,Y ] + [Y,X])x(f) = (Xx(Y f)− Yx(Xf)) + (Yx(Xf)−Xx(Y f)) = 0.

Thus [X,Y ] = −[Y,X].

Definition 1.11. (Integral curves)

♣

Let X be a smooth vector field on M. A smooth curve σ in M is an integral curve of X
if

σ̇(t) = Xσ(t) (1.1.42)

for each t in the domain of σ.

Let X be a smooth vector field on M and x ∈ M. A smooth curve γ : (a, b) → Mm is an

integral curve of X if and only if

γ∗,t

(
d

dr

∣∣∣∣
t

)
= Xγ(t), a < t < b. (1.1.43)

Suppose that 0 ∈ (a, b) and γ(0) = x. Choose a coordinate system (U , ϕ) with coordinate

functions x1, · · · , xm about x. By Proposition 1.3,

X|U =
∑

1≤i≤m
f i

∂

∂xi
(1.1.44)

where the f i are smooth functions on U . Moreover, for each t such that γ(t) ∈ U , we get

γ∗,t

(
d

dr

∣∣∣∣
t

)
=

∑
1≤i≤m

d(xi ◦ γ)
dr

∣∣∣∣
t

∂

∂xi

∣∣∣∣
γ(t)

. (1.1.45)

Thus, from (1.1.45) and (1.1.44), the equation (1.1.43) becomes∑
1≤i≤m

d(xi ◦ γ)
dr

∣∣∣∣
t

∂

∂xi

∣∣∣∣
γ(t)

=
∑

1≤i≤m
f i(γ(t))

∂

∂xi

∣∣∣∣
γ(t)

. (1.1.46)

Hence, γ is an integral curve of X on γ−1(U) if and only if
d(xi ◦ γ)

dr

∣∣∣∣
t

= f i(γ(t)), 1 ≤ i ≤ m, t ∈ γ−1(U). (1.1.47)

If we define γi := xi ◦ γ = ri ◦ ϕ ◦ γ, then γ(t) = ϕ−1(γ1(t), · · · , γm(t)) and the equation

(1.1.47) becomes
dγi

dr

∣∣∣∣
t

= f i ◦ ϕ−1(γ1(t), · · · , γm(t)), 1 ≤ i ≤ m, t ∈ γ−1(U). (1.1.48)

Observe that equation (1.1.48) is a system of first order ordinary differential equations.

Theorem 1.9
LetX be a smooth vector field on a manifoldM. For eachx ∈ M there exists a(x), b(x) ∈
R ∪ {±∞} and a smooth curve

γx : (a(x), b(x)) −→ M (1.1.49)

such that
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♥

(a) 0 ∈ (a(x), b(x)) and γx(0) = x.

(b) γx is an integral curve of X .

(c) If µ : (c, d) → M is a smooth curve satisfying conditions (a) and (b), then

(c, d) ⊂ (a(x), b(x)) and µ = γ|(c,d).

For each t ∈ R, we define a transformation Xt with domain

Dt := {x ∈ M : t ∈ (a(x), b(x))} (1.1.50)

by

Xt(x) := γx(t). (1.1.51)

Theorem 1.10

♥

Let X be a smooth vector field on a manifold M and γx be obtained from Theorem 1.9.

(d) For each x ∈ M, there exists an open neighborhood V of x and an ε > 0 such that

the map

(t, p) 7−→ Xt(p) (1.1.52)

is defined and is smooth from (−ε, ε)× V into M.

(e) Dt is open for each t.

(f) ∪t≥0Dt = M.

(g) Xt : Dt → D−t is a diffeomorphism with inverse X−t.

(h) Let s and t be real numbers. Then the domain of Xs ◦ Xt is contained in but

generally not equal to Ds+t. However, the domain of Xs ◦Xt is Ds+t in the case

in which s and t both have the same sign. Moreover, on the domain of Xs ◦Xt we

have

Xs ◦Xt = Xs+t. (1.1.53)

Proof. Let (a(x), b(x)) be the union of all the open intervals which contain 0 and which are

domains of integral curves of X satisfying the initial condition that the origin maps to x.

(f) Since (a(x), b(x)) 6= ∅, it follows that ∪t≥0Dt = M.

(d) By the differentiability of the solutions of (1.1.48).

(h) Let t ∈ (a(x), b(x)). Then s 7→ γx(t + s) is an integral curve of X with the initial

condition 0 7→ γx(t) and with maximal domain (a(x) − t, b(x) − t). By the uniqueness, we

obtain

(a(x)− t, b(x)− t) = (a(γx(t)), b(γx(t))), (1.1.54)

and for s in the interval (1.1.54)

γγx(t)(s) = γx(t+ s). (1.1.55)

If x belong to the domain of Xs ◦Xt, then t ∈ (a(x), b(x)) and s ∈ (a(γx(t)), b(γx(t))), so by

(1.1.54), s+ t ∈ (a(x), b(x)). Thus x ∈ Ds+t.
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The following example shows that the domain of Xs ◦ Xt is generally not equal to Ds+t.

Consider the vector field ∂/∂r1 on M := R2 \ {0} with s = −1 and t = 1.

If s and t both have the same sign and if x ∈ Ds+t, that is, s + t ∈ (a(x), b(x)), then

t ∈ (a(x), b(x)) (in fact, if s, t > 0, then t < s + t < b(x); if t ≤ a(x), we must have t < 0,

a contradiction. Hence t ∈ (a(x), b(x)). Similarly, we can prove the same conclusion when

s, t < 0) and, by (1.1.54), s ∈ (a(γx(t)), b(γx(t))). Hence x is in the domain of Xs ◦Xt.

Part (e) and (g) are trivial if t = 0, so we may assume that t > 0 and that x ∈ Dt. By part (d)

and the compactness of [0, t], there exists a neighborhood W of γx([0, t]) and an ε > 0 such that

the map (1.1.52) is defined and is smooth from (−ε, ε)×W into M. Choose a positive integer

k so that t/k ∈ (−ε, ε). Let α1 := Xt/k|W and let W1 := α−1
1 (W). Then for i = 2, · · · , k we

define

αi := Xt/k|Wi−1
, Wi := α−1

i (Wi−1).

Observe that αi is a smooth map on the open set Wi−1 ⊂ W (where W0 := W). It follows that

Wk is an open subset of W , that Wk contains x, and that by part (h),

α1 ◦ α2 ◦ · · · ◦ αk|Wk
= Xt|Wk

. (1.1.56)

Consequently, Wk ⊂ Dt; hence Dt is open.

(g) Since 0 ∈ (a(x), b(x)), it follows that

−t ∈ (a(x)− t, b(x)− t) = (a(γx(t)), b(γx(t)))

by (1.1.54). Thus Xt is a map of Dt to D−t. Using (1.1.53), we see that the inverse of Xt is

X−t. The smoothness of Xt follows from (1.1.56). Hence Xt is a diffeomorphism from Dt to

D−t.

Definition 1.12. (Complete vector fields)

♣

A smooth vector fieldX on M is complete if Dt = M for all t (that is, the domain of γx is

R for each x ∈ M). In this case, the transformationsXt form a group of transformations

of M parametrized by the real numbers called the 1-parameter group of X .

In the case that M is compact, any smooth vector field on M is complete. If X is not

complete, the transformations Xt do not form a group since their domains depend on t. In this

case, we shall refer to the collection of transformationsXt as the local 1-parameter group of X .

Example 1.4

♠

An example of non-complete vector field is the vector field ∂/∂r1 on R2 \ {0}. If a > 0,

the domain of the maximal integral curve through (a, 0) is (−a,∞).

Definition 1.13. (Local smooth extensions)
LetF : M → N be smooth. A smooth vector fieldX alongF (that is,X ∈ C∞(M, TN )

and π ◦ X = F ) has local smooth extension in N if given x ∈ M there exist a



1.1 Manifolds – 30 –

♣

neighborhood U of x and a neighborhood V of F (x) such that F (U) ⊂ V , and there also

exists a smooth vector field X̃ on V such that

X̃ ◦ F|U = X|U . (1.1.57)

Note 1.4

♣

(1) If F : M → N is an immersion, then any smooth vector field along F has local

smooth extension in N .

(2) If F is not immersion, such extensions may not exist. Let

α : R −→ R, t 7−→ t3

and let

X(t) := α̇(t) = α∗,t

(
d

dr

∣∣∣∣
t

)
.

Since α is a homeomorphism, there is a vector field X̃ on R so that the following diagram

commutes.

TR1 dα // TR1

R

d
dr

OO

α
//

X

;;wwwwwwwwww
R

X̃

OO

Now,X is a smooth vector field along α, but X̃ is not a smooth vector field on R. Indeed,

letting u := t3 yields

X̃u = X̃α(t) = X(t) = α∗,t

(
d

dr

∣∣∣∣
t

)
=
dα

dr

∣∣∣∣
t

d

dr

∣∣∣∣
α(t)

= 3t2
d

dr

∣∣∣∣
u

= 3u2/3
d

dr

∣∣∣∣
u

.

Thus X̃(t) = 3t2/3 d
dr |t and the function t2/3 is not differentiable at the origin.

Proposition 1.5

♥

Let x ∈ M and letX be a smooth vector field onM such thatX(x) 6= 0. Then there exists

a coordinate system (U , ϕ) with coordinate functions x1, · · · , xm on a neighborhood of

x such that

X|U =
∂

∂x1

∣∣∣∣
U
. (1.1.58)

Proof. Since Xx = X(x) 6= 0, we can choose a coordinate system (V, ψ) centered at x with

coordinate functions y1, · · · , ym such that

Xx =
∂

∂y1

∣∣∣∣
x

.

From Theorem 1.10 (d), there exists an ε > 0 and a neighborhood W of the origin in Rm−1

such that the map

σ(t, a2, · · · , am) := Xt

(
ψ−1(0, a2, · · · , am)

)
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is defined and is smooth for (t, a2, · · · , am) ∈ (−ε, ε)×W ⊂ Rm. Since

σ∗,0

(
∂

∂r1

∣∣∣∣
0

)
= Xx =

∂

∂y1

∣∣∣∣
x

, σ∗,0

(
∂

∂ri

∣∣∣∣
0

)
=

∂

∂yi

∣∣∣∣
x

, 2 ≤ i ≤ m,

it follows that σ is nonsingular and that ϕ := σ−1 is a coordinate map on some neighborhood

U of x. Let x1, · · · , xm denote the coordinate functions of the coordinate system (U , ϕ). Then

since

σ∗,(t,a2,··· ,am)

(
∂

∂r1

∣∣∣∣
(t,a2,··· ,am)

)
= Xσ(t,a2,··· ,am),

we have X|U = ∂
∂x1

|U . In fact, for any p ∈ U , we write ϕ(p) = σ−1(p) = (t, a2, · · · , am) and

hence

Xp = σ∗,φ(p)

(
∂

∂r1

∣∣∣∣
φ(p)

)
=

∑
1≤i≤m

∂

∂r1

∣∣∣∣
φ(p)

xi
∂

∂xi

∣∣∣∣
p

=
∑

1≤i≤m
δ1i

∂

∂xi

∣∣∣∣
p

=
∂

∂x1

∣∣∣∣
p

.

Since p were arbitrary, we obtain the desired result.

Definition 1.14. (F -related vector fields))

♣

Let F : M → N be smooth. Smooth vector fields X on M and Y on N are called

F -related if F∗ ◦X = Y ◦ F .

M F−−−−→ N

X

y yY
TM −−−−→

F∗
TN

If x ∈ M, then

YF (x) = F∗,x(Xx).

Proposition 1.6

♥

Let F : M → N be smooth. LetX1 andX2 be smooth vector fields on M and let Y1 and

Y2 be smooth vector fields on N . If X1 is F -related to Y1 and if X2 is F -related to Y2,

then [X1, X2] is F -related to [Y1, Y2].

Proof. For any x ∈ M and f ∈ C∞(N ), we have

F∗,x([X1, X2]x)(f) = [X1, X2]x(f ◦ F )

= (X1)x(X2(f ◦ F ))− (X2)x(X1(f ◦ F ))

= (X1)x((F∗ ◦X2)(f))− (X2)x((F∗ ◦X1)(f))

= (X1)x((Y2 ◦ F )(f))− (X2)x((Y1 ◦ F )(f))

= (X1)x(Y2(f) ◦ F )− (X2)x(Y1(f) ◦ F )

= F∗,x((X1)x)(Y2(f))− F∗,x((X2)x)(Y1(f))

= (Y1)F (x)(Y2(f))− (Y2)F (x)(Y1(f)) = [Y1, Y2]F (x)(f),

where we used (Yi ◦ F )(f) = Yi(f) ◦ F .
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1.2 Tensors and forms

Introduction

h Tensor and exterior algebras

h Tensor fields and differential forms

h Lie derivatives

1.2.1 Tensor and exterior algebras

Throughout this subsection,U, V,W are finite dimensional real vector spaces, andV ∗ stands

for the dual space of V .

Definition 1.15

♣

Let F (V,W ) be the free vector space over R whose generators are the points of V ×W .

That is, F (V,W ) consists of all finite linear combinations of elements of V ×W . Let

R(V,W ) be the subspace of F (V,W ) generated by the set of all elements of F (V,W )

of the following forms:

(v1 + v2, w)− (v1, w)− (v2, w), (v, w1 + w2)− (v1, w1)− (v1, w2)

and

(av, w)− a(v, w), (v, aw)− a(v, w)

whenever v, v1, v2 ∈ V , w,w1, w2 ∈W , and a ∈ R.

The quotient space

V ⊗W := F (V,W )/R(V,W ) (1.2.1)

is called the tensor product of V and W . The coset of V ⊗W containing (v, w) is denoted by

v ⊗ w. Clearly that

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

a(v ⊗ w) = av ⊗ w = v ⊗ aw.

Proposition 1.7. (Universal mapping property)
Let ϕ : V ×W → V ⊗W denote the bilinear map (v, w) 7→ v ⊗ w. Then whenever U

is a vector space and ` : V ×W → U is a bilinear map, there exists a unique linear map
˜̀ : V ⊗W → U such that the following diagram commutes:

V ⊗W
ℓ̃

##
V ×W

φ

OO

ℓ
// U

The pair (V ⊗W,ϕ) is said to solve the universal mapping problem for bilinear maps
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♥

with domain V ×W . Moreover, (V ⊗W,ϕ) is unique with this property in the sense

that if X is a vector space and ϕ̃ : V ×W → X a bilinear map with the above universal

mapping property, then there exists an isomorphismα : V ⊗W → X such thatα◦ϕ = ϕ̃.

Proof. Define
˜̀ : V ⊗W −→ U, v ⊗ w 7−→ `(v, w).

Since ` is bilinear, the above mapping is well-defined and ˜̀ ◦ ϕ = `. On the other hand,

there exists a unique bilinear map ¯̀ : F (V,W ) → U , because F (V,W ) is a free mod-

ule. Hence R(V,W ) ⊂ ker(¯̀) and then there exists a unique bilinear map ˜̀ : V ⊗ W =

F (V,W )/R(V,W ) → U .

If X and ϕ̃ are above, consider

V ⊗W
∃!α

##
V ⊗W

φ

OO

φ̃ // X

X
∃!β

&&
V ×W

φ̃

OO

φ // V ⊗W

where

α ◦ ϕ = ϕ̃, β ◦ ϕ̃ = ϕ.

Since

α ◦ β ◦ ϕ̃ = α ◦ ϕ = ϕ̃, β ◦ α ◦ ϕ = β ◦ ϕ̃ = ϕ,

it follows from the uniqueness that α ◦ β = 1X , β ◦ α = 1V⊗W . So α is an isomorphism.

Note 1.5
(a) V ⊗W is canonically isomorphic to W ⊗ V .

Proof. Consider

V ⊗W
f̃

%%
V ×W

φ

OO

f //W ⊗ V

the bilinear map f(v, w) := w ⊗ v. By Proposition 1.7, there exists a unique linear map

f̃ : V ⊗W →W ⊗ V such that f̃ ◦ ϕ = f (and then f̃(v ⊗ w) = w ⊗ v.

Similarly, there exists a linear map g̃ :W ⊗ V → V ⊗ V with g̃(w ⊗ v) = v ⊗ w. Then

g̃ ◦ f̃(v ⊗ w) = g̃(w ⊗ v) = v ⊗ w

f̃ ◦ g̃(w ⊗ v) = f̃(v ⊗ w) = w ⊗ v.

Thus g̃ ◦ f̃ = 1V⊗W and f̃ ◦ g̃ = 1W⊗V .

(b) V ⊗ (W ⊗ U) is canonically isomorphic to (V ⊗W )⊗ U .

Proof. We first claim that there exists a bilinear map Φ : (V ⊗W )⊗U → V ⊗ (W ⊗U).
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For any u ∈ U , define

fu : V ×W −→ V ⊗ (W ⊗ U), (v, w) 7−→ v ⊗ (w ⊗ u).

Then fu is a bilinear map and, by Proposition 1.7, we have a unique bilinear map

f̄u : V ⊗W → V ⊗ (W ⊗ U) such that

f̄u(v ⊗ w) = v ⊗ (w ⊗ u).

On the other hand, define

g : (V ⊗W )× U 7−→ V ⊗ (W ⊗ U),

(∑
i∈I

vi ⊗ wi, u

)
7−→ f̄u

(∑
i∈I

vi ⊗ wi

)
.

Then g is a bilinear map and there exists a bilinear mapΦ : (V ⊗W )⊗U → V ⊗(W⊗U)

such that

Φ

((∑
i∈I

vi ⊗ wi

)
⊗ u

)
=
∑
i∈I

vi ⊗ (wi ⊗ u).

Similarly, we have a bilinear map

Ψ : V ⊗ (W ⊗ U) −→ (V ⊗W )⊗ U

satisfying

Ψ

(
v ⊗

(∑
i∈I

wi ⊗ ui

))
=
∑
i∈I

(v ⊗ wi)⊗ ui.

Clearly that Φ ◦Ψ = 1V⊗(W⊗U) and Ψ ◦ Φ = 1(V⊗W )⊗U .

(c) V ∗ ⊗W ∼= Hom(V,W ). Consider

V ∗ ⊗W

α

''
V ∗ ×W

φ

OO

ψ // Hom(V,W )

where

ψ(f, w)(v) := f(v)w, v ∈ V, w ∈W, f ∈ V ∗.

Observe that ψ is a bilinear map. From Proposition 1.7, there exists a linear map

α : V ∗ ⊗W → Hom(V,W ) such that

α(f ⊗ w)(v) = f(v)w.

Letα(f⊗w) = 0. Then f(v)w = 0 for all v ∈ V . Ifw 6= 0, then f(v) = 0. Consequently,

f ⊗ w = 0. Thus kerα = 0. To prove the surjectivity, choose any F ∈ Hom(V,W ). If

e1, · · · , en is a basis of V , where n = dimV , then

α

 ∑
1≤i≤n

ri ⊗ F (ei)

 (v) =
∑

1≤i≤n
ri(v)F (ei) =

∑
1≤i≤n

viF (ei) = F (v)

where ri : V → R is the map given by ri(v) = vi for v =
∑

1≤i≤n v
iei. Thus α is
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♣

surjective. Finally,

dim(V ∗ ⊗W ) = dimHom(V,W )

and in particular

dim(V ⊗W ) = dimV · dimW. (1.2.2)

(d) Let (ei)1≤i≤dimV and (fj)1≤j≤dimW be bases for V and W respectively. Then

(ei ⊗ fj)1≤i≤dimV,1≤j≤dimW is a basis of V ⊗W .

Definition 1.16. (Tensors)

♣

The tensor space T r,sV of type (r, s) associated with V is the vector space

V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s

.

The direct sum

T V :=
⊕
r,s≥0

T r,sV (1.2.3)

where T 0,0V := R, is called the tensor algebra of V . Elements of T V are finite linear

combinations over R of elements of the various T r,sV and are called tensors.

T V is a non-commutative, associative, graded algebra under ⊗ multiplication: if

u = u1 ⊗ · · · ⊗ ur1 ⊗ u∗1 ⊗ · · · ⊗ u∗s1 ∈ T r1,s1V,

v = v1 ⊗ · · · ⊗ vr2 ⊗ v∗1 ⊗ · · · ⊗ v∗s2 ∈ T r2,s2V

their product u⊗ v is defined by

u⊗ v := u1 ⊗ · · · ⊗ ur1 ⊗ v1 ⊗ · · · ⊗ vr2 ⊗ u∗1 ⊗ · · · ⊗ u∗s1 ⊗ v∗1 ⊗ · · · ⊗ v∗s2 ∈ T r1+r2,s1+s2V.

Tensors in T r,s are called homogeneous of degree (r, s). A homogeneous tensor of degree

(r, s) is called decomposable it if can be written as

v1 ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · ⊗ v∗s

where vi ∈ V , 1 ≤ i ≤ r, and v∗j ∈ V ∗, 1 ≤ j ≤ s.

Definition 1.17. (Exterior algebras)
Denote

CV :=
⊕
k≥0

T k,0V (1.2.4)

the subalgebra of T V . Let I V be the two-sided ideal in CV generated by the set of

elements of the form v ⊗ v for v ∈ V and set

I kV := I (V ) ∩ T k,0V. (1.2.5)
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♣

Observe that

I V =
⊕
k≥0

I kV (1.2.6)

and is a graded ideal in CV . The exterior algebra ∧V of V is the graded algebra

∧ V := CV/I V. (1.2.7)

If we set

∧k V := T k,0V/I k(V ) (k ≥ 2), ∧1(V ) := V, ∧0(V ) := R, (1.2.8)

then

∧ V =
⊕
k≥0

∧kV. (1.2.9)

The multiplication in the algebra ∧V is denoted by ∧ and is called the wedge or exterior
product. In particular, the coset containing v1 ⊗ · · · ⊗ vk is v1 ∧ · · · ∧ vk.

Definition 1.18. (Alternative maps)

♣

A multi-linear map

h : V × · · · × V︸ ︷︷ ︸
r

−→W

is called alternative if

h(vπ(1), · · · , vπ(r)) = sgn(π)h(v1, · · · , vr), v1, · · · , vr ∈ V

for all permutations π in the permutations group Sr. The vector space of all alternative

multi-linear functions

V × · · · × V︸ ︷︷ ︸
r

−→ R

will be denoted by Ar(V ) and for convenience we set A0(V ) := R.

Note 1.6
(a) If u ∈ ∧kV and v ∈ ∧ℓV , then u ∧ v ∈ ∧k+ℓV and

u ∧ v = (−1)kℓv ∧ u. (1.2.10)

Proof. without loss of generality, we may assume that u := u1 ∧ · · · ∧ uk and v =

v1 ∧ · · · ∧ vℓ. Suppose that 1 ≤ i < j ≤ k. Then

0 = u1 ∧ · · · ∧ (ui + uj) ∧ · · · ∧ (ui + uj) ∧ · · · ∧ uk

where the first ui + uj is in the i-th position while the second one in the j-th position.

Direct computation shows that

u1 ∧ · · · ∧ ui ∧ · · · ∧ uj ∧ · · · ∧ uk = −u1 ∧ · · · ∧ uj ∧ · · · ∧ ui ∧ · · · ∧ uk.
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♣

Then

u ∧ v = u1 ∧ · · · ∧ uk ∧ v1 ∧ · · · ∧ vℓ

= −u1 ∧ · · · ∧ uk−1 ∧ v1 ∧ uk ∧ v2 ∧ · · · ∧ vℓ

= (−1)kv1 ∧ u1 ∧ · · · ∧ uk ∧ v2 ∧ · · · ∧ vℓ

= (−1)kℓv1 ∧ · · · ∧ vℓ ∧ u1 ∧ · · · ∧ uk = (−1)kℓv ∧ u.

(b) If (ei)1≤i≤dimV is a basis of V , then

(eI)I , I ⊂ {1, · · · ,dimV }, eI := ei1 ∧ · · · ∧ eir with i1 < · · · < ir,

is a basis of ∧V (If I = ∅, we require eI = 1). In particular,

∧dimV V ∼= R, ∧jV = {0} for j > dimV. (1.2.11)

Moreover,

dim(∧V ) = 2dimV , dim(∧kV ) =

(
dimV

k

)
for 0 ≤ k ≤ dimV. (1.2.12)

Proposition 1.8. (Universal mapping property)

♥

Let

ϕ : V × · · · × V︸ ︷︷ ︸
k

−→ ∧kV, (v1, · · · , vk) 7−→ v1 ∧ · · · ∧ vk

be the natural alternative multi-linear map. To each alternative multi-linear map

h : V × · · · × V︸ ︷︷ ︸
k

−→W

there corresponds uniquely a linear map h̃ : ∧kV →W such that h̃ ◦ ϕ = h.

∧kV
∃!h̃

##
V × · · · × V︸ ︷︷ ︸

k

φ

OO

h
//W

The pair (∧kV, ϕ) is said to solve the universal mapping problem for alternative multi-

linear maps with domain V × · · · × V (k copies); and this is the unique solution in the

sense that if X is a vector space and ϕ̃ : V × · · · × V → X an alternative multi-linear

map also possessing the universal mapping property for alternative multi-linear maps with

domains V × · · · × V , then there is an isomorphism α : ∧kV → X such that α ◦ ϕ = ϕ̃.

Proof. Define

h̃(v1 ∧ · · · ∧ vk) := h(v1, · · · , vk).
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For u1 ⊗ · · · ⊗ uk ∈ I kV , there exist i, j ∈ {1, · · · , k} with i 6= j such that ui = uj . Then

h(uπ(1), · · · , uπ(j), · · · , uπ(i), · · · , uk) = sgn(π) · h(u1, · · · , uj , · · · , ui, · · · , uk)

where π : (1, · · · , i, · · · , j · · · , k) 7→ (1, · · · , j, · · · , i, · · · k)with sgn(π) = 2(j−i)−1. Hence

h(u1, · · · , ui, · · · , uj , · · · , uk) = −h(u1, · · · , uj , · · · , ui, · · · , uk);

thus h(u1, · · · , ui, · · · , uj , · · · , uk) = 0 and then h̃ is well-defined.

The reminder proof is similar to that in Proposition 1.7. □

In the special case W := R, we can prove from Proposition 1.8 that

(∧kV )∗ ∼= Ak(V ). (1.2.13)

Define

Φ : (∧kV )∗ −→ Ak(V ), f 7−→ Φ(f)

by

Φ(f)(v1, · · · , vk) := f(v1 ∧ · · · ∧ vk),

and

Ψ : Ak(V ) −→ (∧kV )∗, h 7−→ Ψ(h)

by

Ψ(h) := h̃ : ∧kV −→ R.

We first check that Φ(f) ∈ Ak(V ): for any permutation π ∈ Sk,

Φ(f)(vπ(1), · · · , vπ(k)) = f(vπ(1) ∧ · · · ∧ vπ(k))

= f(sgn(π)v1 ∧ · · · ∧ vk) = sgn(π)Φ(f)(v1 ∧ · · · ∧ vk).

Compute

Φ ◦Ψ(h)(v1, · · · , vk) = Φ(h̃)(v1, · · · , vk)

= h̃(v1 ∧ · · · ∧ vk) = h(v1, · · · , vk),

Ψ ◦ Φ(f)(v1 ∧ · · · ∧ vk) = Φ̃(f)(v1 ∧ · · · ∧ vk)

= Φ(f)(v1, · · · , vk) = f(v1 ∧ · · · ∧ vk).

Thus Φ is isomorphic.

We shall now consider various dualities between the spaces T r,sV,∧kV,∧V and the cor-

responding spaces T r,sV ∗,∧kV ∗,∧V ∗.

Definition 1.19. (Nonsingular pairings)
Let V and W be finite dimensional real vector spaces. A pairing of V and W is a

bilinear map

(, ) : V ×W −→ R.
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♣

A pairing is called nonsingular if whenever w 6= 0 in W , there exists an element v ∈ V

such that (v, w) 6= 0, and whenever v 6= 0 in V , there exists an element w ∈W such that

(v, w) 6= 0.

Let V and W be nonsingularly paired by ( , ) and define

ϕ : V −→W ∗, ϕ(v)(w) := (v, w), v ∈ V, w ∈W. (1.2.14)

If ϕ(v1) = ϕ(v2) for v1, v2 ∈ V , then

(v1 − v2, w) = 0, for all w ∈W.

Consequently, v1 − v2 = 0 by nonsingularity. Thus ϕ is injective. Similarly, defining

ψ :W −→ V ∗, ψ(w)(v) := (v, w), v ∈ V, w ∈W, (1.2.15)

implies that ψ is injective and therefore

dimV ≤ dimW ∗ = dimW ≤ dimV ∗ = dimV.

Thus ϕ and ψ are both isomorphisms.

A non-singular pairing of T r,sV ∗ with T r,sV is defined as follows:

T r,sV ∗ × T r,sV −→ R, (v∗, u) 7−→ (v∗, u)

where

v∗ = v∗1 ⊗ · · · ⊗ v∗r ⊗ ur+1 ⊗ · · · ⊗ ur+s ∈ T r,sV ∗

and

u = u1 ⊗ · · · ⊗ ur ⊗ v∗r+1 ⊗ · · · ⊗ v∗r+s ∈ T r,sV

yields

(v∗, u) := v∗1(u1) · · · v∗r+s(ur+s).

Clearly that this is a non-singular pairing. Indeed, if u 6= 0, then u1, · · · , ur and v∗r+1, · · · , v∗r+s
are all nonzero. Choose elements ur+1, · · · , ur+s ∈ V such that v∗r+1(ur+1), · · · , v∗r+s(ur+s)
are nonzero. Setting v∗1 = · · · = v∗r =nonzero constant yields (v∗, u) 6= 0. The above remark

gives us an isomorphism

T r,sV ∗ ∼= (T r,sV )∗. (1.2.16)

Let Mr,s(V ) be the vector space of all multi-linear functions

V × · · · × V︸ ︷︷ ︸
r

×V ∗ × · · · × V ∗︸ ︷︷ ︸
s

−→ R.

By the universal mapping property, Proposition 1.7, we obtain

(T r,sV )∗ ∼= Mr,s(V ). (1.2.17)

If h̃ ∈ (T r,sV )∗, then the corresponding multi-linear function h ∈ Mr,s(V ) satisfies

h(v1, · · · , vr, v∗1, · · · , v∗s) = h̃(v1 ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · ⊗ v∗s).
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T r,sV
h̃ // R

V × · · · × V︸ ︷︷ ︸
r

×V ∗ × · · · × V ∗︸ ︷︷ ︸
s

φ

OO

h

66mmmmmmmmmmmmmmmmm

Finally, from (1.2.16) and (1.2.17) we obtain an isomorphism

T r,sV ∗ ∼= (T r,sV )∗ ∼= Mr,s(V ). (1.2.18)

A non-singular pairing of ∧kV ∗ with ∧kV is defined as follows:

∧kV ∗ × ∧kV −→ R, (v∗, u) 7−→ (v∗, u)

where v∗ = v∗1 ∧ · · · ∧ v∗k ∈ ∧kV ∗ and u = u1 ∧ · · · ∧ uk ∈ ∧kV yields

(v∗, u) := det (v∗i (u)) .

Clearly that this is a non-singular pairing. Suppose that det(v∗i (uj)) = 0 for all v∗ = v∗1 ∧ · · · ∧
v∗k ∈ V ∗. Then the system

0 = v∗1(u1)x
1 + · · ·+ v∗1(uk)x

k

· · ·

0 = v∗k(u1)x
1 + · · ·+ v∗k(uk)x

k

has no zero solution (x1, · · · , xk) ∈ Rk. Consequently,

0 = u1x
1 + · · ·+ ukx

k

where x1, · · · , xk are not all equal to zero. Without loss of generality, we may assume that

x1 6= 0; hence

u1 = −x
2

x1
u2 − · · · − xk

x1
uk

and

u =

(
−x

2

x1
u2 − · · · − xk

x1
uk

)
∧ u2 ∧ · · · ∧ uk = −

∑
2≤i≤k

xi

x1
ui ∧ u2 ∧ · · · ∧ uk = 0.

Thus the pairing is non-singular and we have an isomorphism

∧k V ∗ ∼= (∧kV )∗ ∼= Ak(V ) (1.2.19)

by (1.2.13). Finally, we have

∧V ∗ =
⊕
k≥0

∧kV ∗ ∼=
⊕
k≥0

(∧kV )∗ = (∧V )∗, (1.2.20)

∧V ∗ =
⊕
k≥0

∧kV ∗ ∼=
⊕
k≥0

Ak(V ) =: A (V ). (1.2.21)

Note 1.7
(a) If (ei)1≤i≤dimV is a basis of V with dual basis (e∗i )1≤i≤dimV in V ∗, then the bases

(eI)I and (e∗I)I are dual bases of ∧V and ∧V ∗ under the isomorphism (1.2.20).
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(b) Define α, β : ∧kV ∗ × ∧kV −→ R, where

α(v∗, u) := det (v∗i (uj)) , (1.2.22)

β(v∗, u) :=
1

k!
det (v∗i (uj)) =

1

k!
α(v∗, u) (1.2.23)

for any v∗ = v∗1 ∧ · · · ∧ v∗k ∈ ∧kV ∗ and u = u1 ∧ · · · ∧ uk ∈ ∧kV . These two different

isomorphisms induce different algebra structures ∧α and ∧β on A (V ) via (1.2.21). If

f ∈ Ap(V ) and g ∈ Aq(V ), then

f ∧α g(v1, · · · , vp+q) =
∑
π∈∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))

(1.2.24)

where π ∈ ∧p,q means that π(1) < · · · < π(p) and π(p+ 1) < · · · < π(p+ q), and

f ∧β g(v1, · · · , vp+q) =
∑

π∈Sp+q

sgn(π)

(p+ q)!
f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q)).

(1.2.25)

We now claim that

f ∧α g =
(p+ q)!

p!q!
f ∧β g. (1.2.26)

We suffice to prove∑
π∈Sp+q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))

= p!q!
∑
π∈∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q)).

The left-hand side is equal to∑
π∈∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))

+
∑

π∈Sp+q\∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q));

there are three cases of π ∈ Sp+q \ ∧p,q:
(A) π(p+ 1) < · · · < π(p+ q),

(B) π(1) < · · · < π(p), and

(C) othercase.

Compute∑
π∈(A)

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))

= (p!− 1)
∑

σ∈∧π;p

sgn(π)sgn(σ)f(vσ(π(1)), · · · , vσ(π(p)))g(vπ(p+1), · · · , vπ(p+q))

= (p!− 1)
∑

σ∈∧π;p,0

sgn(π ◦ σ)f(vσ(π(1)), · · · , vσ(π(p)))g(vσ(π(p+1)), · · · , vσ(π(p+q)))

= (p!− 1)
∑
π∈∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))
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♣

where σ ∈ ∧π;p means that σ(π(1)) < · · · < σ(π(p)) and σ ∈ ∧π;p,0 means that

σ(π(1)) < · · · < σ(π(p)) and σ(π(i)) = π(i) for p+ 1 ≤ i ≤ p+ q. Similarly∑
π∈(B)

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))

= (q!− 1)
∑
σ∈∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q)),∑
π(C)

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))

= (p!− 1)(q!− 1)
∑
σ∈∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q)).

Consequently the left-hand is equal to the term∑
π∈∧p,q

sgn(π)f(vπ(1), · · · , vπ(p))g(vπ(p+1), · · · , vπ(p+q))

multiplied by the constant

(p!− 1) + (q!− 1) + (p!− 1)(q!− 1) + 1 = p!q!.

For example, for p = q = 1, we have A1(V ) ∼= ∧1V ∗ ∼= (∧1V )∗ = V ∗. If γ, δ ∈ V ∗ ∼=
A1(V ) and v, w ∈ V , then

γ ∧α δ ∈ A2(V ) ∼= (∧2V )∗, γ ∧β δ ∈ A2(V ) ∼= (∧2V )∗.

Moreover,

γ ∧α δ(v, w) = γ(v)δ(w)− γ(w)δ(v), γ ∧β δ(v, w) =
γ(v)δ(w)− γ(w)δ(v)

2
.

Let End(∧V ) denote the vector space of all endomorphisms of ∧V (i.e., linear transforma-

tions from ∧V into ∧V ). Let u ∈ ∧V .

(1) Left multiplication by u is the endomorphism εu = u∧ ∈ End(∧V ) defined by

εuv := u ∧ v, v ∈ ∧V. (1.2.27)

(2) Interior multiplication by u is the endomorphism ιu ∈ End(∧V ∗) defined by

(ιuv
∗, w) := (v∗, εuw), v∗ ∈ ∧V ∗, w ∈ ∧V, (1.2.28)

where ιuv∗ ∈ ∧V ∗ ∼= (∧V )∗.

(3) If u ∈ V = ∧1V , for each k ∈ N, we have

ιu : ∧kV ∗ −→ ∧k−1V ∗, v∗1 ∧ · · · ∧ v∗k 7−→ ιu(v
∗
1 ∧ · · · ∧ v∗k) (1.2.29)

where

ιu(v
∗
1 ∧ · · · ∧ v∗k)(w2 ∧ · · · ∧ wk) := v∗1 ∧ · · · ∧ v∗k(u ∧ w2 ∧ · · ·wk).

When k = 1, we get

ιu : V ∗ = ∧1V ∗ −→ ∧0V ∗ = R, v∗ 7−→ ιuv
∗
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and

ιuv
∗ = (ιuv

∗, 1) = (v∗, εu1) = (v∗, u) = v∗(u).

An endomorphism l of ∧V is called

(a) a derivation if

l(u ∧ v) = l(u) ∧ v + u ∧ l(v), u, v ∈ ∧V. (1.2.30)

(b) an anti-derivation if

l(u ∧ v) = l(u) ∧ v + (−1)pu ∧ l(v), u ∈ ∧pV, v ∈ ∧V. (1.2.31)

(c) of degree k if

l : ∧jV −→ ∧j+kV

for all j, where we assume that ∧iV = {0} for i < 0.

Proposition 1.9

♥

(a) l ∈ End(∧V ) is an anti-derivation if and only if

l(v1 ∧ · · · ∧ vj) =
∑

1≤i≤j
(−1)i+1v1 ∧ · · · ∧ l(vi) ∧ · · · ∧ vj , for all j.

(b) If u ∈ V , then ιu is an anti-derivation of degree −1.

Proof. (a) Suppose l ∈ End(∧V ) is an anti-derivation and the result holds for j − 1. We have

l(v1 ∧ · · · ∧ vj) = l((v1 ∧ · · · ∧ vj−1) ∧ vj)

= l(v1 ∧ · · · ∧ vj−1) ∧ vj + (−1)j−1v1 ∧ · · · ∧ vj−1 ∧ l(vj)

=
∑

1≤i≤j−1

(−1)i+1v1 ∧ · · · ∧ l(vi) ∧ · · · ∧ vj−1 ∧ vj

+ (−1)j+1v1 ∧ · · · ∧ vj−1 ∧ l(vj)

=
∑

1≤i≤j
(−1)i+1v1 ∧ · · · ∧ l(vi) ∧ · · · ∧ vj .

Conversely, choose a basis {ei}1≤i≤dimV of V . Any element u ∈ ∧pV can be written as u =∑
1≤i1<···<ip≤dimV a

i1···ipei1 ∧ · · · ∧ eip . If v ∈ ∧qV with v =
∑

1≤j1<···<jq≤dimV b
j1···jqej1 ∧

· · · ∧ eiq , then

l(u ∧ v) = ai1···ipbj1···jq l
(
ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq

)
= ai1···ipbj1···jq

( ∑
1≤m≤p

(−1)m+1ei1 ∧ · · · ∧ l(eim) ∧ · · · ∧ eip ∧ · · · ∧ ejq

+
∑

1≤n≤q
(−1)n+1+pei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ l(ejn) ∧ · · · ∧ ejq

)
= ai1···ip

∑
1≤m≤p

(−1)m+1ei1 ∧ · · · ∧ l(eim) ∧ · · · ∧ eip ∧ v

+ (−1)pu ∧ bj1···jq
∑

1≤n≤q
(−1)n+1ej1 ∧ · · · ∧ l(ejn) ∧ · · · ∧ ejq

= l(u) ∧ v + (−1)pu ∧ l(v).
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(b) By definition, ιu is of degree −1. To prove the anti-derivation, we suffice to check part

(a). For any w2 ∧ · · · ∧ wj ∈ ∧j−1V and v∗1 ∧ · · · ∧ v∗j ∈ ∧jV ∗, we have(
ιu(v

∗
1 ∧ · · · ∧ v∗j ), w2 ∧ · · · ∧ wj

)
= (v∗1 ∧ · · · ∧ v∗j , u ∧ w2 ∧ · · · ∧ wj)

=
∑

1≤i≤j
(−1)i+1v∗i (u) det (v

∗
k(wℓ) (k = {1, · · · , j} \ {i}, ` ∈ {2, · · · , j}))

=
∑

1≤i≤j
(−1)i+1v∗i (u)

(
v∗1 ∧ · · · ∧ v̂∗i ∧ · · · ∧ v∗j , w2 ∧ · · · ∧ wj

)

=

 ∑
1≤i≤j

(−1)i+1v∗1 ∧ · · · ∧ v∗i (u) ∧ · · · ∧ v∗j , w2 ∧ · · · ∧ wj


=

 ∑
1≤i≤j

(−1)i+1v∗1 ∧ · · · ∧ ιuv∗i ∧ · · · ∧ v∗j , w2 ∧ · · · ∧ wj

 .

Hence ιu is an anti-derivation.

Let l : V →W be a linear transformation. Then l defines an algebra homomorphism

l : ∧V −→ ∧W, v1 ∧ · · · ∧ vk 7−→ l(v1) ∧ · · · ∧ l(vk) (1.2.32)

and l(1) := 1. The transpose l∗ :W ∗ → V ∗ defines an algebra homomorphism

l∗ : ∧W ∗ −→ ∧V ∗, w∗
1 ∧ · · · ∧ w∗

k 7−→ l∗(w∗
1) ∧ · · · ∧ l∗(w∗

k). (1.2.33)

For any w∗ ∈ ∧W ∗ and v ∈ ∧V , we have

(l∗(w∗), v) = (w∗, l(v)). (1.2.34)

For w∗ = w∗
1 ∧ · · · ∧ w∗

k and v = v1 ∧ · · · ∧ vk, we have

(l∗(w∗), v) = (l∗(w∗
1) ∧ · · · ∧ l∗(w∗

k), v1 ∧ · · · ∧ vk)

= det (l∗(w∗
i )(vj)) = det (w∗

i (l(vj)))

= (w∗
1 ∧ · · · ∧ w∗

k, l(v1) ∧ · · · ∧ l(vk)) = (w∗, l(v)).

1.2.2 Tensor fields and differential forms

Let M be a differentiable manifold. Define

T r,sTM :=
⋃
x∈M

T r,sTxM, (1.2.35)

∧kT ∗M :=
⋃
x∈M

∧kT ∗
xM, (1.2.36)

∧T ∗M :=
⋃
x∈M

∧T ∗
xM (1.2.37)

the tensor bundle of type (r, s) over M, exterior k bundle over M, and exterior bundle
over M, respectively. T r,sTM, ∧kT ∗M, and ∧T ∗M have natural manifold structures such

that the canonical projection maps to Mm are smooth. If (U , ϕ) is a coordinate system on
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M with coordinate functions x1, · · · , xm, then the basis2 (∂/∂xi)1≤i≤m of TxM on M and

(dxi)1≤i≤m of T ∗
xM on M, for x ∈ U , yield

(a) the basis of T r,sTxM:(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
1≤i1,··· ,ir,j1,··· ,js≤m

;

(b) the basis of ∧kT ∗
xM: (

dxi1 ∧ · · · ∧ dxik
)
1≤i1<···<ik≤m

;

(c) the basis of ∧T ∗
xM:

(dxi)1≤i≤m, (dx
i1 ∧ dxi2)1≤i1<i2≤m, · · · ,

(
dx1 ∧ · · · ∧ dxm

)
.

Definition 1.20. (Tensor fields and differential forms)

♣

A smooth mapping of M into T r,sTM, ∧kT ∗M, or ∧T ∗M whose composition with the

canonical projection is the identity map is called a (smooth) tensor field of type (r, s)

on M, a (differential) k-form on M, or a (differential) form on M, respectively.

A lifting α : M → T r,sTM is a smooth tensor field of type (r, s) if and only if for each

coordinate system (U , x1, · · · , xm) on M,

α|U = ai1···irj1···js
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs (1.2.38)

where ai1···irj1···js ∈ C∞(U). A lifting β : M → ∧kT ∗M is a differential k-form if and only if for

any coordinate system (U , x1, · · · , xm) on M,

β|U = bi1···ikdx
i1 ∧ · · · ∧ dxik (1.2.39)

where bi1···ik ∈ C∞(U).

Definition 1.21

♣

Let

Ek(M) := C∞(M,∧kT ∗M) (1.2.40)

denote the space of all smooth k-forms on M, and

E∗(M) := C∞(M,∧T ∗M) =
⊕

0≤k≤m
Ek(M) (1.2.41)

the space of all smooth forms on M.

Since ∧0T ∗M = ∪x∈M ∧0 T ∗
xM = ∪x∈MR = M×R, it follows that

E0(M) ∼= C∞(M). (1.2.42)

We now consider operations on forms.

(1) For ω, η ∈ E∗(M), define ω + η ∈ E∗(M) by

(ω + η)x := ωx + ηx.

2We always omit the subscript x.
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(2) For ω ∈ E∗(M) and c ∈ R, define cω ∈ E∗(M) by

(cω)x := cωx.

(3) For ω, η ∈ E∗(M), define ω ∧ η ∈ E∗(M) by

(ω ∧ η)x := ωx ∧ ηx.

Moreover, if ω ∈ Ep(M) and η ∈ Eq(M), then ω ∧ η ∈ Ep+q(M).

(4) For ω ∈ E∗(M) and f ∈ E0(M), define dω ∈ E∗(M) by

(fω)x := f(x)ωx.

Clearly that E∗(M) is a module over the ring C∞(M) and (E∗(M),∧) is a graded algebra

over R.

Let X(M) denote the C∞(M)-module of smooth vector fields on M; that is

X(M) := C∞(M, TM). (1.2.43)

Consider Ak(M) the set of all alternative C∞(M) multi-linear map

X(M)× · · · × X(M)︸ ︷︷ ︸
k

−→ C∞(M).

Proposition 1.10

♥

We have

Ek(M) ∼= Ak(M). (1.2.44)

Proof. Let ω ∈ Ek(M) be a k-form on M. For any X1, · · · , Xk ∈ X(M), define

ω(X1, · · · , Xk)(x) := ωx(X1(x), · · · , Xk(x)), x ∈ M. (1.2.45)

Then ω can be viewed as an alternative multi-linear map of the module X(M) into C∞(M):

ω(X1, · · · , Xi−1, fX + gY,Xi+1, · · · , Xk)

= fω(X1, · · · , Xi−1, X,Xi+1, · · · , Xk) + gω(X1, · · · , Xi−1, Y,Xi+1, · · · , Xk)

whenever f, g ∈ C∞(M) and X1, · · · , Xi−1, X, Y,Xi+1, · · · , Xk ∈ X(M). Thus ω ∈
Ak(M).

Conversely, choose an element ω ∈ Ak(M). For any v1, · · · , vk ∈ TxM, choose

V1, · · · , Vk ∈ X (M) such that

Vi(x) = vi, 1 ≤ i ≤ k.

Define

ωx(v1, · · · , vk) := ω(V1, · · · , Vk)(x).

We shall check thatωx(v1, · · · , vk) is well-defined and independent of the choice of the extensions

Vi to vi. Without loss of generality, we may assume that k = 1. Then X : X(M) → C∞(M).

To any fixed X ∈ X(M), we want to show that ω(X)(x) depends only on X(x).
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For this, it suffices to check ω(X)(x) = 0 whenever X(x) = 0. Write

X =
∑

1≤i≤m
ai

∂

∂xi
, ai ∈ C∞(U)

in a coordinate system (U , x1, · · · , xm) about x. Since X(x) = 0, it follows that ai(x) = 0 for

all i. By Corollary 1.1, there exist a smooth function ϕ on M and a neighborhood V of x such

that

V ⊂ U , ϕ|V = 1, ϕ|Mm\U = 0.

Define the vector field Xi by

Xi :=

 ϕ ∂
∂xi
, on U ,

0, on M\ U .

Then Xi is a smooth vector field on M. Define the smooth function ãi on M by

ãi :=

 ϕai, on U ,
0, on Mm \ U .

Hence

ϕ2X =
∑

1≤i≤m
ϕ2ai

∂

∂xi
=

∑
1≤i≤m

ϕai

(
ϕ
∂

∂xi

)
;

on U , we have

ϕ2X =
∑

1≤i≤m
ãiXi =⇒ X =

∑
1≤i≤m

ãiXi + (1− ϕ2)X,

while, on M\ U ,

ϕ2X = 0 = Xi = ãi.

Finally, we arrive at

X =
∑

1≤i≤m
ãiXi + (1− ϕ2)X

on M. Therefore

ω(X)(x) = ω

 ∑
1≤i≤m

ãiXi + (1− ϕ2)X

 (x)

=
∑

1≤i≤m
ãi(x)ω(Xi)(x) + ((1− ϕ2)(x))ω(X)(x) = 0.

So ω(X)(x) = 0 if X(x) = 0.

If T is a tensor field of type (r, s), then we can consider T as a map

T : E1(M)× · · · × E1(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

−→ C∞(M)

where

T (ω1, · · · , ωr, X1, · · · , Xs)(x) := Tx (ω1(x), · · · , ωr(x), X1(x), · · · , Xs(x)) ,

which is C∞(M) multi-linear with respect to the C∞(M)-modules E1(M) and X(M).
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If ω, η ∈ E1(M) and X,Y ∈ X(M), we have

ω ∧ η(X,Y ) = ω(X)η(Y )− ω(Y )η(X). (1.2.46)

Definition 1.22

♣

If f ∈ C∞(M), then df is a smooth mapping of TM into R which is linear on each

tangent space. Thus df can be considered as a 1-form,

df : M −→ ∧1T ∗M, x 7−→ df(x) := df |x ∈ T ∗
xM = ∧1T ∗

xM. (1.2.47)

The 1-form df ∈ E1(M) is called the exterior derivative of the 0-form f . Moreover, we

obtain a map

d : E0(M) −→ E1(M), f 7−→ df. (1.2.48)

Theorem 1.11. (Exterior differentiation)

♥

There exists a unique anti-derivation d : E∗(M) → E∗(M) of degree +1 such that

(1) d2 = 0.

(2) Whenever f ∈ C∞(M) = E0(M), df is the differential of f .

d is called the exterior differentiation operator of E∗(M).

Proof. (1) Existence. Let x ∈ M and define

E∗
x(M) := {smooth forms defined on open subsets of M containing x},

Ekx (M) := {smooth k-forms defined on open subsets of M containing x}.

Observe that E∗
x(M) = ⊕k≥0Ekx (M). We fix a coordinate system (U , x1, · · · , xm) about x. If

ω ∈ E∗
x(M), then

ω|domain(ω)∩U = aIdx
I

where aI ∈ C∞(domain(ω)∩U), I runs over all subsets of {1, · · · ,m}, and dxI = dxi1 ∧· · ·∧
dxir when I = {i1 < · · · < ir} or dxI = 1 when I = ∅. Define dω ∈ E∗

x(M) by

(dω)x := daI |x ∧ dxI |x ∈ ∧T ∗
xM.

We first give the following properties:

(a) ω ∈ Erx(M) implies dω(x) ∈ ∧r+1T ∗
xM.

(b) dω(x) depends only on the germ of ω at x.

(c) d(a1ω1+a2ω2)(x) = a1dω1(x)+a2dω2(x), ai ∈ R and ωi ∈ E∗
x(M), where the domain

of a1ω1 + a2ω2 is domain(ω1)∩domain(ω2).

(d) d(ω1 ∧ ω2)(x) = dω1(x) ∧ ω2(x) + (−1)rω1(x) ∧ dω2(x), ω1 ∈ Erx(Mm) and ω2 ∈
E∗
x(M).

(e) If f is smooth on a neighborhood of x, then d(df)(x) = 0.

If ω =
∑

i1<···<ir ai1···irdx
i1 ∧ · · · ∧ dxir , then

dω(x) =
∑

i1<···<ir

∑
1≤j≤m

∂ai1···ir
∂xj

∣∣∣∣
x

dxj |x ∧ dxi1 |p ∧ · · · ∧ dxir |x ∈ ∧r+1T ∗
xM.
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Part (b) follows from the chain rule, while part (c) is obvious. From (b) and (c), it suffices to

check (d) for ω1 = fdxi1 ∧ · · · ∧ dxir and ω2 = gdxj1 ∧ · · · ∧ dxjs on some neighborhood of

x. If r = s = 0, then

d(ω1 ∧ ω2)(x) = d(fg)(x) = df(x) · g(x) + f(x) · dg(x)

= dω1(x) ∧ ω2(x) + (−1)rω1(x) ∧ dω2(x).

The second case is r = 0 or s = 0. Assume first that r = 0; then

d(ω1 ∧ ω2)(x) = d(fgdxj1 ∧ · · · ∧ dxjs)(x)

=
∑

1≤j≤m

∂(fg)

∂xj

∣∣∣∣
x

dxj |x ∧ dxj1 |x ∧ · · · ∧ dxjs |x

=
∑

1≤j≤m

(
f(x)

∂g

∂xj

∣∣∣∣
x

+ g(x)
∂f

∂xj

∣∣∣∣
x

)
dxj |x ∧ dxj1 |x ∧ · · · ∧ dxjs |x

= f(x)dω2(x) + df(x) ∧ ω2(x)

= dω1(x) ∧ ω2(x) + (−1)rω1(x) ∧ dω2(x).

For the case s = 0, we obtain

d(ω1 ∧ ω2)(x) = d(fgdxi1 ∧ · · · ∧ dxir)(x)

=
∑

1≤j≤m

(
f(x)

∂g

∂xj

∣∣∣∣
x

+ g(x)
∂f

∂xj

∣∣∣∣
x

)
dxj |x ∧ dxi1 |x ∧ · · · ∧ dxir |x

= g(x) ∧ dω1(x) +
∑

1≤j≤m
f(x)

∂g

∂xj

∣∣∣∣
x

(−1)rdxi1 |x ∧ · · · ∧ dxir |x ∧ dxj |x

= g(x) ∧ dω1(x) + (−1)rω1(x) ∧ dg(x)

= dω1(x) ∧ ω2 + (−1)rω1(x) ∧ dω2(x).

The third and last case is r, s > 0. If {i1, · · · , ir} ∩ {j1, · · · , js} 6= ∅, the result id obvious.

Then we may assume that {i1, · · · , ir} ∩ {j1, · · · , js} = ∅. Write

(fdxi1 ∧ · · · ∧ dxir) ∧ (gdxj1 ∧ · · · ∧ dxjs) = εfgdxℓ1 ∧ · · · ∧ dxℓr+s

where `1 < · · · < `r+s and ε = ±1. In particular,

dxi1 ∧ · · · ∧ dxir ∧ dxj1 ∧ · · · ∧ dxjs = εdxℓ1 ∧ · · · ∧ dxℓr+s .

Compute

d(ω1 ∧ ω2)(x) = d(εfgdxℓ1 ∧ · · · ∧ dxℓr+s)(x)

= ε (df(x)g(x) + f(x)dg(x)) ∧ dxℓ1 |x ∧ · · · ∧ dxℓr+s |x

= εg(x)df(x) ∧ dxℓ1 |x ∧ · · · ∧ dxℓr+s |x

+ εf(x)dg(x) ∧ dxℓ1 |x ∧ · · · ∧ dxℓr+s |x

=
(
df(x) ∧ dxi1 |x ∧ · · · ∧ dxir |x

)
∧
(
g(x)dxj1 |x ∧ · · · ∧ dxjs |x

)
+ (−1)r

(
f(x)dxi1 |x ∧ · · · ∧ dxir |x

)
∧
(
dg(x) ∧ dxj1 |x ∧ · · · ∧ dxjs |x

)
= dω1(x) ∧ ω2(x) + (−1)rω1(x) ∧ dω2(x).
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For (e), on domain(f) ∩ U , we have

df =
∑

1≤i≤m

∂f

∂xi
dxi

so that

d(df)(x) =
∑

1≤i≤m
d

(
∂f

∂xi

)
(x) ∧ dxi(x)

=
∑

1≤i,j≤m

∂2f

∂xi∂xj

∣∣∣∣
x

dxj |x ∧ dxi|x = −
∑

1≤i,j≤m

∂2f

∂xi∂xj

∣∣∣∣
x

dxi|x ∧ dxj |x

which implies that d(df)(x) = 0.

We now claim that the definition of d at x is independent of the choice of coordinate systems.

If (V, y1, · · · , ym) is another coordinate system about x, we can define another operator d′ on

E∗
x(M) satisfying the above properties (a) – (e). For ω ∈ E∗

x(M), we have

d′ω(x) = d′
(
ai1···irdx

i1 ∧ · · · ∧ dxir
)
(x)

= d′(ai1···ir)(x) ∧ dxi1 |x ∧ · · · ∧ dxir |x

+
∑

1≤k≤r
(−1)k−1ai1···ir(x)dx

i1 |x ∧ · · · ∧ d′(dxik)(x) ∧ · · · ∧ dxir |x

= d(ai1···ir)(x) ∧ dxi1 |x ∧ · · · ∧ dxir |x = dω(x).

If ω ∈ E∗(M), we define dω to be the form which as a lifting of M into ∧T ∗M sends x

to dω(x). We now check that d2 = 0 and d is an anti-derivation of E∗(M) of degree +1. If

ω = aIdx
I near x ∈ M, then

d(dω)(x) = d
(
daI ∧ dxI

)
(x) = d(daI)(x) ∧ dxI |x + (−1)|I|+1daI ∧ d(dxI)(x) = 0.

(2) Uniqueness. Let d′ be an anti-derivation of E∗(M) of degree +1 satisfying (1) and (2).

(i) If ω ∈ E∗(M) with ω|W = 0, where W is a neighborhood of x, then d′ω(x) = 0. Choose

a neighborhood U of x such that U ⊂ W and U is compact. By Corollary 1.1, there exists

a smooth function ϕ on M such that

ϕ|U ≡ 0, ϕ|M\W ≡ 1.

Then ϕω = ω on M and d′ϕ(x) = ϕ(x) = 0. Hence

d′ω(x) = d′(ϕω)(x) = d′ϕ(x) ∧ ω(x) + ϕ(x)d′ω(x) = 0.

(ii) d′ is defined only on elements of E∗(M), that is, on globally defined forms on M. We

wish to define d′ on E∗
x(M) for each x ∈ M. If ω ∈ E∗

x(M), we define d′ω as follows.

Let V1 be the domain of ω. By Corollary 1.1, there exist a smooth function ψ on Mm

and a neighborhood V2 of x such that

ψ|V2
≡ 1, ψ|M\V1

≡ 0, supp(ψ) ⊂ V1

and V2 ⊂ V2 ⊂ V1 and V2 is compact. Then ψω ∈ E∗(M) and define

d′ω(x) := d′(ψω)(x).

We must check that the above definition is independent of the extension. Let (ψ̃, Ṽ2) be
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another pair with above properties. Then

(ψω − ψ̃ω)|V2∩Ṽ2
= 0;

thus d′(ψω − ψ̃ω)(x) = 0 and then d′(ψω)(x) = d′(ψ̃ω)(x).

(iii) d′ω(x) is defined for all ω ∈ E∗
x(M) and satisfies properties (a) – (e). The properties

(a) – (c) are obvious. For ω1, ω2 ∈ E∗
x(M) we can find a suitable smooth function (see

above) ϕ on Mm such that ϕω1 ∧ ϕω2 ∈ E∗(M). Then (ω1 ∈ Erx(M))

d′(ω1 ∧ ω2)(x) = d′(ϕω1 ∧ ϕω2)(x)

= d′(ϕω1)(x) ∧ (ϕω2)(x) + (−1)r(ϕω1)(x) ∧ d′(ϕω2)(x)

= d′ω1(x) ∧ ω2(x) + (−1)rω1(x) ∧ d′ω2(x).

For any smooth function f near x, we have

d′(d′f)(x) = d′(d′(ϕf))(x) = 0.

Whenever ω ∈ E∗
x(M), we have proved

d′ω(x) = dω(x).

This prove the uniqueness.

From the above prove that

dω|U = d(ω|U ) (1.2.49)

whenever U is an open subset in M.

Definition 1.23. (Interior multiplication)

♣

Let X ∈ X(M) and ω ∈ E∗(M). Interior multiplication of ω by X is the form ιXω

defined by

ιXω(x) := ιXx(ωx), x ∈ Mm. (1.2.50)

Then ιXω is a smooth form and ιX : E∗(M) → E∗(M) is an anti-derivation of degree

−1.

Let F : M → N be a smooth map and let x ∈ M. Then we have the differential

F∗,x : TxM → TF (x)N , its transpose F ∗
x : T ∗

F (x)N → T ∗
xM, and the induced algebra

homomorphism

F ∗
x : ∧T ∗

F (x)N −→ ∧T ∗
xM

If ω ∈ E∗(N ), then we can pull ω back to a form on M by setting

F ∗ : E∗(N ) −→ E∗(M), ω 7−→ F ∗ω (1.2.51)

where (F ∗ω)x := F ∗
x (ωF (x)).
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Proposition 1.11

♥

Let F : M → N be a smooth map. Then

(a) F ∗ : E∗(N ) → E∗(M) and is an algebra homomorphism.

(b) F ∗ commutes with d, that is

d(F ∗ω) = F ∗(dω), ω ∈ E∗(N ). (1.2.52)

E∗(N )
F ∗

−−−−→ E∗(M)

d

y yd
E∗(N ) −−−−→

F ∗
E∗(M)

(c) For any ω ∈ Ek(N ) and X1, · · · , Xk ∈ X(M), we have

(F ∗ω)(X1, · · · , Xk)(x) = ωF (x)(F∗,x(X1(x)), · · · , F∗,x(Xk(x))). (1.2.53)

Proof. Part (a) is obvious and part (c) follows from (1.2.34). We now consider part (b). If

f ∈ C∞(N ), then F ∗f = f ◦ F ∈ C∞(M) and

(F ∗(df))x = F ∗
x (dfF (x)) = d(f ◦ F )x = d(F ∗f)x

by (1.1.21).

Letω ∈ E∗(N ) andx ∈ M. Consider a coordinate system (V, y1, · · · , yn) about y := F (x)

and choose a neighborhood U of x such that F (U) ⊂ V . Write

ω|V = ai1···irdy
i1 ∧ · · · ∧ dyir , ai1···ir ∈ C∞(V).

Then

F ∗ω|U = (ai1···ir ◦ F )d(yi1 ◦ F ) ∧ · · · ∧ d(yir ◦ F )

which is a smooth form on V . Hence F ∗ω ∈ E∗(M). Moreover

d(F ∗ω)x = d

(
(ai1···ir ◦ F )d(yi1 ◦ F ) ∧ · · · ∧ d(yir ◦ F )

)
x

=

(
d(ai1···ir ◦ F ) ∧ d(yi1 ◦ F ) ∧ · · · ∧ d(yir ◦ F )

)
x

=

(
F ∗
(
dai1···ir ∧ dyi1 ∧ · · · ∧ dyir

))
x

= (F ∗(dω))x.

Therefore, d(F ∗ω) = F ∗(dω).

1.2.3 Lie derivatives

Fix a smooth vector field X on a differentiable manifold M. Recall the local 1-parameter

group {Xt}t≥0 of transformations associated with X . If Y is another smooth vector field on

M, we define the derivative of Y with respect to X at the point x ∈ M as follows: Since

Xt : Dt → D−t is a diffeomorphism, (X−t)∗,Xt(x)(YXt(x)) ∈ TxMm. We define the Lie
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derivative of Y with respect to X at x by

(LXY )x := lim
t→0

(X−t)∗,Xt(x)(YXt(x))− Yx

t
=

d

dt

∣∣∣∣
t=0

(
(X−t)∗,Xt(x)(YXt(x))

)
(1.2.54)

because (X−0)∗,X0(x)(YX0(x)) = Yx. Similarly, we can define the Lie derivative of a differential
form ω with respect to X at x by

(LXω)x := lim
t→0

(Xt)
∗
x(ωXt(x))− ωx

t
=

d

dt

∣∣∣∣
t=0

(
(Xt)

∗
x(ωXt(x))

)
. (1.2.55)

The smoothness of LXY and LXω is obvious. The Lie derivative LX can be extended to

arbitrary tensor fields in the obvious way. If T is a tensor field of type (r, s), then (LXT )x is

given by

(LXT )x :=
d

dt

∣∣∣∣
t=0

(
(X−t)∗,Xt(x)(v1 ⊗ · · · ⊗ vr)⊗ (Xt)

∗
x(v

∗
1 ⊗ · · · ⊗ v∗s)

)
(1.2.56)

if TXt(x) = v1 ⊗ · · · ⊗ vt ⊗ v∗1 ⊗ · · · ⊗ v∗s .

Proposition 1.12

♥

Let X be a smooth vector field on M. Then

(a) LXf = Xf whenever f ∈ C∞(M).

(b) LXY = [X,Y ] for each smooth vector field Y on M.

(c) LX : E∗(M) → E∗(M) is a derivation which commutes with d.

(d) (Cartan formula) LX = ιX ◦ d+ d ◦ ιX on E∗(M).

(e) If ω ∈ Ep(M) and Y0, · · · , Yp ∈ X(M), then

LY0(ω(Y1, · · · , Yp)) = (LY0ω)(Y1, · · · , Yp)

+
∑

1≤i≤p
ω(Y1, · · · , Yi−1,LY0Yi, Yi+1, · · · , Yp).

(f) If ω ∈ Ep(M) and Y0, · · · , Yp ∈ X(M), then

dω(Y0, · · · , Y1) =
∑

0≤i≤p
(−1)iYi

(
ω(Y0, · · · , Ŷi, · · · , Yp)

)
+

∑
0≤i<j≤p

(−1)i+jω([Yi, Yj ], Y0, · · · , Ŷi, · · · , Ŷj , · · · , Yp).

Proof. (a) Compute

(LXf)x = lim
t→0

(Xt)
∗
x(f(Xt(x)))− f(x)

t
=

d

dt

∣∣∣∣
t=0

((Xt)
∗
x(f(Xt(x))))

=
d

dt

∣∣∣∣
t=0

((f ◦Xt)(x)) =
d

dt

∣∣∣∣
t=0

(f(γx(t)))

=
∑

1≤i≤m

∂f

∂xi

∣∣∣∣
x

∂γ̇ix
∂t

∣∣∣∣
t=0

=
∑

1≤i≤m

∂f

∂xi

∣∣∣∣
x

ai = (Xf)x

if Xx =
∑

1≤i≤m a
i ∂
∂xi

.

(b) We need only to show that (LXY )(f) = [X,Y ]f for each f ∈ C∞(M). Let x ∈ M.
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Then

(LXY )x(f) =

(
lim
t→0

(X−t)∗,Xt(x)(YXt(x))− Yx

t

)
(f)

=
d

dt

∣∣∣∣
t=0

[
(X−t)∗,Xt(x)(YXt(x))(f)

]
=

d

dt

∣∣∣∣
t=0

[
YXt(x)(f ◦X−t)

]
.

Define a real-valued function H on a neighborhood of (0, 0) ∈ R2 by

H(t, u) := f (X−t(Yu(Xt(x)))) .

Then by (a),

YXt(x)(f ◦X−t) =
∂

∂r2

∣∣∣∣
(t,0)

H(t, u)

and then

(LXY )x(f) =
∂2H

∂r1∂r2

∣∣∣∣
(0,0)

.

Set

K(t, u, s) := f (Xs(Yu(Xt(x))))

near a neighborhood of (0, 0, 0) ∈ R3. Then H(t, u) = K(t, u,−t) and the chain rule implies
∂2H

∂r1∂r2

∣∣∣∣
(0,0)

=
∂2K

∂r1∂r2

∣∣∣∣
(0,0,0)

− ∂2K

∂r3∂r2

∣∣∣∣
(0,0,0)

.

Since K(t, u, 0) = f(Yu(Xt(x))), it follows that
∂K

∂r2

∣∣∣∣
(t,0,0)

= YXt(x)f = (Y f)(Xt(x)),
∂2K

∂r1∂r2

∣∣∣∣
(0,0,0)

= Xx(Y f).

Similarly, using K(0, u, s) = f(Xs(Yu(x))), we arrive at
∂K

∂r3

∣∣∣∣
(0,u,0)

= XYu(x)f = (Xf)(Yu(x)),
∂2K

∂r2∂r3

∣∣∣∣
(0,0,0)

= Yx(Xf).

Therefore, (LxY )x(f) = Xx(Y f) − Yx(Xf) = [X,Y ]x(f). By part (b), LXY is a smooth

vector field.

(c) The derivation is clear. Next we check L commutes with d when applied to functions;

that is

(LX(df))x = d(LXf)x, f ∈ C∞(Mm), x ∈ Mm.

For Yx ∈ TxM, the right-hand side gives

d(LXf)x(Yx) = Yx(LXf) = Yx

(
d

dt

∣∣∣∣
t=0

(f ◦Xt)

)
where f ◦Xt can be considered as a smooth function on (−ε, ε)×W for some ε > 0 and some

neighborhood W of x in M. The left-hand side gives

(LX(df))x Yx =

(
d

dt

∣∣∣∣
t=0

(Xt)
∗
x(dfXt(x))

)
Yx =

d

dt

∣∣∣∣
t=0

(
(Xt)

∗
x(dfXt(x))(Yx)

)
=

d

dt

∣∣∣∣
t=0

(
d(f ◦Xt)xYx

)
=

d

dt

∣∣∣∣
t=0

(
Yx(f ◦Xt)

)
.

Let Y be an extension of Yx to a smooth vector field on W . Then d/dt and Y have canonical

extensions to smooth vector fields d̃/dt and Ỹ respectively on (−ε, ε)×W where [d̃/dt, Ỹ ] = 0.
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Hence

d(LXf)x(Yx) = Yx

(
lim
t→0

d

dt
(f ◦Xt)

)
= Yx

(
lim
t→0

d̃

dt
(f ◦Xt)

)
= lim

t→0
Ỹ

(
d̃

dt
(f ◦Xt)

)
= lim

t→0

d̃

dt

(
Ỹ (f ◦Xt)

)
=

d

dt

∣∣∣∣
t=0

(
Yx(f ◦Xt)

)
= (LX(df))xYx.

To see that the form LXω is smooth and to check that LX commutes with d on all of E∗(M),

we simply express ω in local coordinates and compute using (LX(df))xYx = d(LXf)x(Yx),

part (a), and the fact that LX is a derivation.

The last three results can be verified by direct computations.

1.2.4 Star transformation

Let (V, 〈, 〉) be an m-dimensional real inner product space. For w = w1 ∧ · · · ∧ wp, v =

v1 ∧ · · · ∧ vp ∈ ∧pV , define

〈w, v〉 := det(〈wi, vj〉1≤i,j≤p). (1.2.57)

This defines an inner product on ∧pV and then on ∧V .

(a) If (ei)1≤i≤m is an orthonormal basis of V , then (ei1 ∧ · · · ∧ eir)1≤i1<···<ir≤m is an

orthonormal basis of ∧V .

(b) Since ∧mV is one-dimensional, ∧mV \ {0} has two components. An orientation on V

is a choice of a component of ∧mV \ {0}.

Let (V, 〈, 〉) be an oriented inner product space and dimV = m. The star transformation

∗ : ∧V −→ ∧V (1.2.58)

is defined by requiring, for any orthonormal basis {ei}1≤i≤m of V ,

∗(1) = ±e1 ∧ · · · ∧ em, ∗(e1 ∧ · · · ∧ em) = ±1,

∗(e1 ∧ · · · ∧ ep) = ±ep+1 ∧ · · · ∧ em,

where one takes “+” if e1 ∧ · · · ∧ em lies in the component of ∧mV \ {0} determined by the

orientation and “−” otherwise. Observe that

∗ : ∧pV −→ ∧m−pV. (1.2.59)

Proposition 1.13

♥

(1) On ∧pV , we have ∗2 = (−1)p(m−p).

(2) For any v, w ∈ ∧pV , we have 〈v, w〉 = ∗(w ∧ ∗v) = ∗(v ∧ ∗w).

Proof. (1) Compute

∗2(e1 ∧ · · · ∧ ep) = ∗(±ep+1 ∧ · · · ∧ em) = ± ∗ (ep+1 ∧ · · · ∧ em).

Since

e1 ∧ · · · ∧ ep ∧ ep+1 ∧ · · · ∧ em = (−1)pep+1 ∧ e1 ∧ · · · ∧ ep ∧ ep+2 ∧ · · · ∧ em

= [(−1)p]m−pep+1 ∧ · · · ∧ em ∧ e1 ∧ · · · ∧ ep
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it follows that ∗(ep+1 ∧ · · · ∧ em) = ±(−1)p(m−p)e1 ∧ · · · ∧ ep and then ∗2 = (−1)p(m−p) on

∧pV .

(2) For convenience, we may assume that the orientation is “+”. Choose an orthonormal

basis {ei}1≤i≤m of V and write

v =
∑

1≤i1<···<ip≤m
vi1···ipei1 ∧ · · · ∧ eip =

∑
|I|=p

vIeI ,

w =
∑

1≤j1<···<jp≤m
wj1···jpej1 ∧ · · · ∧ ejp =

∑
|J |=p

wJeJ

where I = {1 ≤ i1 < · · · < ip ≤ m} and eI := ei1 ∧ · · · ∧ eip . Then

∗(w ∧ ∗v) = ∗

∑
|I|=p

w ∧ vI ∗ (eI)

 =
∑

|I|,|J |=p

vIwJ ∗ (eJ ∧ ∗(eI)) .

For any I = {1 ≤ i1 < · · · < ip ≤ m}, define Ic := {1 ≤ ip+1 < · · · < im ≤ m} where

ip+1, · · · , im are obtained from the ordered set {1 < · · · < m} by removing i1, · · · , ip. Then

∗(eI) = sgn(I, Ic)eIc .

Consequently,

∗(w ∧ ∗v) =
∑

|I|,|J |=p

vIwJ ∗ (sgn(I, Ic)eJ ∧ eIc) =
∑

I=J,|I|=p

vIwJsgn(I, Ic) ∗ (eI ∧ eIc).

Because eI ∧ eIc = sgn(I, Ic)e1 ∧ · · · ∧ em, we arrive at

∗(w ∧ ∗v) =
∑
|I|=p

vIwI ∗ (1) =
∑
|I|=p

vIwJ = 〈v, w〉.

Similarly, we can prove ∗(v ∧ ∗w) = 〈v, w〉.

Let ε∗ξ : ∧p+1V → ∧pV denote the adjoint of left exterior multiplication by ξ ∈ V . That is

〈ε∗ξv, w〉 := 〈v, εξw〉 = 〈v, ξ ∧ w〉, v ∈ ∧p+1V, w ∈ ∧pV. (1.2.60)

We claim that

ε∗ξv = (−1)mp ∗ (ξ ∧ (∗v)), v ∈ ∧p+1V, ξ ∈ V. (1.2.61)

It suffices to prove that

〈(−1)mp ∗ (ξ ∧ (∗v)), w〉 = 〈v, ξ ∧ w〉

for any w ∈ ∧pV . The left-hand side is equal to

(−1)mp ∗ (w ∧ ∗ ∗ (ξ ∧ (∗v))) = (−1)mp ∗
(
w ∧ (−1)mp−p

2
ξ ∧ (∗v)

)
= (−1)−p

2〈v, w ∧ ξ〉 = (−1)−p
2〈v, (−1)pξ ∧ w〉

= (−1)p−p
2〈v, ξ ∧ w〉 = 〈v, ξ ∧ w〉

by Proposition 1.13.
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1.2.5 Cartan’s lemma

Let M be a differential manifold and p ≤ m.

Theorem 1.12. (Cartan’s lemma)

♥

Let ω1, · · · , ωp be 1-forms on M which are linearly independent pointwise. If θ1, · · · , θp
are 1-forms on M with ∑

1≤i≤p
θi ∧ ωi = 0,

then there exist smooth functions Aij on M with Aij = Aji such that

θi =
∑

1≤j≤p
Aijωj , 1 ≤ i ≤ p.

Proof. Choose ωp+1, · · · , ωm ∈ E1(M) so that ω1, · · · , ωp, ωp+1, · · · , ωm form a basis of TM
pointwise. Write

θi =
∑

1≤j≤m
Aijωj , 1 ≤ i ≤ p

for some smooth functions Aij on M. Hence

0 =
∑

1≤i≤p

∑
1≤j≤m

Aijωj ∧ ωi =
∑

1≤i,j≤p
Aijωj ∧ ωi +

∑
1≤i≤p

∑
p+1≤j≤m

Aijωj ∧ ωi.

Consequently,

0 =
∑

1≤i,j≤p
(Aij −Aji)ωj ∧ ωi −

∑
1≤i≤p

∑
p+1≤j≤m

Aijωi ∧ ωj ;

then Aij − Aji = 0 for all 1 ≤ j < j ≤ p and Aij for 1 ≤ i ≤ p and p + 1 ≤ j ≤ m. Thus

θi =
∑

1≤j≤pAijωj for each i ∈ {1, · · · , p}.

1.3 Integration on manifolds

Introduction

h Orientation

h Integration on manifolds

h de Rham cohomology

1.3.1 Orientation

Let V be a real space of dimension m. An orientation on V is a choice of a (connected)

component of ∧mV \ {0}.



1.3 Integration on manifolds – 58 –

Definition 1.24. (Orientation)

♣

Let M be a connected manifold of dimension m. Let O be the “0-section” of the exterior

m-bundle ∧mT ∗M; that is

O :=
⋃
x∈M

{0 ∈ ∧mT ∗
xM} . (1.3.1)

Since each ∧mT ∗
xM\{0} has exactly two components, it follows that ∧mT ∗M\O has at

most two components. We say that M is orientable if ∧mT ∗M\O has two components;

and if Mm is orientable, an orientation on M is a choice of one of the two components

of ∧mT ∗M\O.

A non-connected manifoldM is said to be orientable if each component ofM is orientable,

and an orientation is a choice of orientation on each component.

Let M be oriented and let e1, · · · , em be a basis of TxM with dual basis e∗1, · · · , e∗m. We

say that the ordered basis e1, · · · , em is oriented if e∗1 ∧ · · · ∧ e∗m belongs to the orientation.

Let M and N be orientable m-dimensional manifolds, and let F : M → N be a smooth

map. We say that F preserves orientation if the induced map

F ∗ : ∧mT ∗N −→ ∧mT ∗M

maps the component of ∧mT ∗N \ O determining the orientation on N into the component of

∧mT ∗M \ O determining the orientation on M. Equivalently, F is orientation-preserving if

F∗,x sends oriented bases of TxM into oriented bases of TF (x)N .

Proposition 1.14

♥

Let M be a manifold of dimension m. Then the following are equivalent.

(a) M is orientable.

(b) There is a collection Ψ := {(V, ψ)} of coordinate systems on M such that

M =
⋃

(V,ψ)∈Ψ

V, det

(
∂xi

∂yj

)
> 0 on U ∩ V

whenever (U , x1, · · · , xm) and (V, y1, · · · , ym) belong to Ψ.

(c) There is a nowhere-vanishing m-form on M.

Proof. Without loss of generality, we may assume that M is connected.

(a) ⇒ (b). Given (a), choose an orientation on M; that is, we choose one of the two

components, called Λ, of ∧mT ∗M \ O. Let Ψ consist of all of those coordinate system

(V, y1, · · · , ym) on M such that the map of V into ∧mT ∗M defined by

x 7−→ (dy1 ∧ · · · ∧ dym)(x)

has range in Λ. If (U , x1, · · · , xm) and (V, y1, · · · , ym) are any two coordinate systems on M,
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then for x ∈ U ∩ V ,

(dx1 ∧ · · · ∧ dxm)(x) =

(
∂x1

∂yj1
dyj1

)
∧ · · · ∧

(
∂xm

∂yjm
dyjm

)
(x)

= det

(
∂xi

∂yj

∣∣∣∣
x

)
(dy1 ∧ · · · ∧ dym)(x).

Then

det

(
∂xi

∂yj

∣∣∣∣
x

)
> 0

for each x ∈ U ∩ V .

(b) ⇒ (c). Let {ϕi}i∈I be a partition of unity subordinate to the cover of M given by the

coordinate neighborhoods in the collection Ψ with ϕi subordinate to (Vi, x1i , · · · , xmi ). Let

ω :=
∑
i∈I

ϕidx
1
i ∧ · · · ∧ dxmi

be a global m-form on M, where ϕidx1i ∧ · · · ∧ dxmi is defined to be the 0 outside of Vi. On

Vi ∩ Vj , we have

ω

(
∂

∂x1j
, · · · , ∂

∂xmj

)
=
∑
i∈I

ϕi det

(
∂xαi

∂xβj

)
which is positive.

(c) ⇒ (a). Let ω be a nowhere-vanishing m-form on Mm and let

Λ+ :=
⋃
x∈M

{aωx : a ∈ R, a > 0} , Λ− :=
⋃

x∈Mm

{aωx : a ∈ R, a > 0} .

Then

∧mT ∗M\O = Λ+
∐

Λ−

is the disjoint union of the above two open subsets Λ+ and Λ−, so ∧mT ∗M\O is disconnected

and M is orientable.

Example 1.5

♠

(1) The standard orientation onRm is the one determined by them-form dr1∧· · ·∧drm.

(2) Let M be a manifold of dimension m and suppose that there is an immersion f :

M → Rm+1. A normal vector field along (M, f) is a smooth map

N : M −→ TRm+1

such that N(x) ∈ Tf(x)R
m+1 for any x ∈ M and is orthogonal to f∗,x(TxM) ⊂

Tf(x)R
m+1. Such a manifold M is orientable if and only if there is a smooth nowhere-

vanishing normal vector field along (M, f).

(3) Sm is orientable for each m ≥ 1.

(4) RPm is orientable if and only if m is odd.
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1.3.2 Integration on manifolds

Let F be a diffeomorphism of a bounded open setD in Rm with a bounded open set F (D)

and let

JF := det

(
∂F i

∂rj

)
, F = (F 1, · · · , Fm).

If f is a bounded continuous function on F (D) andA is a nice subset ofD (Awill be polyhedral

in most of application), then ∫
F (A)

f =

∫
A
f ◦ F |JF |. (1.3.2)

Integration of m-forms in Rm. The standard orientation on Rm is determined by the

m-form dr1 ∧ · · · ∧ drm. If ω is an m-form on an open set D ⊂ Rm, then

ω = fdr1 ∧ · · · ∧ dxm, f ∈ C∞(D).

For any A ⊂ D, define ∫
A
ω :=

∫
A
f (1.3.3)

provided that the latter exists. Let F be a diffeomorphism of a bounded open set D in Rm with

a bounded open set F (D) and A be a nice subset of D. If ω is an m-form on F (D), then

F ∗ω = f ◦Fd(r1 ◦F )∧· · ·∧d(rm ◦F ) = f ◦FdF 1∧· · ·∧dFm = (f ◦F )JF dr1∧· · ·∧drm.

Hence, by (1.3.2),∫
F (A)

ω =

∫
F (A)

f =

∫
A
f ◦ F |JF | = ±

∫
A
f ◦ F JF = ±

∫
A
F ∗ω, (1.3.4)

where one uses “+” if F is orientation-preserving and “−” if F is orientation-reversing.

Integration over chains. For each p ≥ 1 let

∆p :=

(a1, · · · , ap) ∈ Rp :
∑

1≤i≤p
ai ≤ 0, ai ≥ 0

 .

∆p is called the standard p-simplex in Rp. For p = 0, we set ∆0 := {0} called the standard
0-simplex.

Let M be a manifold of dimension m. A singular p-simplex σ in M is a map

σ : ∆p −→ M

which extends to be a smooth map of a neighborhood of ∆p in Rp into M. A p-chain c in M
(with real coefficient) is a finite linear combination

c =
∑
i∈I

aiσi, |I| <∞,

of p-simplices σi in Mm where ai ∈ R. For each p ≥ 0 we define a collection of maps

kpi : ∆
p −→ ∆p+1, 0 ≤ i ≤ p+ 1

as follows:
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(i) For p = 0, define

k00(0) = 1, k01(0) = 0.

(ii) For p ≥ 1, define

kp0(a
1, · · · , ap) :=

1−
∑

1≤i≤p
ai, a1, · · · , ap

 ,

kpi (a
1, · · · , ap) := (a1, · · · , ai−1, 0, ai, · · · , ap), 1 ≤ i ≤ p+ 1.

If σ is a p-simplex in Mm with p ≥ 1, we define its i-th face (0 ≤ i ≤ p)

σi := σ ◦ kp−1
i (1.3.5)

and define the boundary of σ

∂σ :=
∑

0≤i≤p
(−1)iσi. (1.3.6)

If c =
∑

j∈J a
jσj is a p-chain, then the boundary of c is given by

∂c :=
∑
j∈J

aj∂σj =
∑
j∈J

∑
0≤i≤p

(−1)iajσij .

Clearly that

kp+1
i ◦ kpj = kp+1

j+1 ◦ kpi , p ≥ 0, i ≤ j. (1.3.7)

∆p
kpj−−−−→ ∆p+1

kpi

y ykp+1
i

∆p+1 −−−−→
kp+1
j+1

∆p+2

Moreover,

∂2 = 0. (1.3.8)

For any p-simplex (p ≥ 2) σ in M, we have

∂2σ = ∂

 ∑
0≤i≤p

(−1)iσi

 =
∑

0≤i≤p
(−1)i∂σi =

∑
0≤i≤p

(−1)i∂
(
σ ◦ kp−1

i

)
=

∑
0≤i≤p

(−1)i
∑

0≤j≤p−1

(−1)jσ ◦ kp−1
i ◦ kp−2

j

=

 ∑
0≤i≤p,0≤j≤p−1,i≤j

+
∑

0≤i≤p,0≤j≤p−1,i>j

 (−1)i+jσ ◦ kp−1
i ◦ kp−2

j

=
∑

0≤i≤p,0≤j≤p−1,i≤j
(−1)i+jσ ◦ kp−1

j+1 ◦ kp−2
i

+
∑

0≤i≤p,0≤j≤p−1,i>j

(−1)i+jσ ◦ kp−1
i ◦ kp−2

j = 0.

Let σ be a p-simplex in M and ω be a continuous p-form defined on a neighborhood of the

image of σ.
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(1) If p = 0, we define the integral of ω over σ by∫
σ
ω := ω(σ(0)). (1.3.9)

(2) If p ≥ 1, we define the integral of ω over σ by∫
σ
ω :=

∫
∆p

σ∗ω. (1.3.10)

We now extend these integrals linearly to chains so that if c =
∑

i∈I a
iσi, then∫

c
ω :=

∑
i∈I

ai
∫
σi

ω. (1.3.11)

The fundamental theorem in calculus now can be stated as∫
σ
dF =

∫
∂σ
F, (1.3.12)

whenever F ∈ C∞(R) and σ is a smooth 1-simplex in R.

Theorem 1.13. (Stokes’ theorem I)

♥

Let c be a p-chain (p ≥ 1) in a manifold M of dimension m and let ω be a smooth

(p− 1)-form defined on a neighborhood of the image of σ. Then∫
c
dω =

∫
∂c
ω. (1.3.13)

Proof. It suffices to consider the case ∫
σ
dω =

∫
∂σ
ω

for any p-simplex σ. Since ∫
σ
dω =

∫
∆p

σ∗(dω) =

∫
∆p

d(σ∗ω)

by (1.3.10), and∫
∂σ
ω =

∫
∑

0≤i≤p(−1)iσi

ω =
∑

0≤i≤p
(−1)i

∫
σi

ω

=
∑

0≤i≤p
(−1)i

∫
∆p−1

(σi)∗ω =
∑

0≤i≤p
(−1)i

∫
∆p−1

(kp−1
i )∗ (σ∗(ω)) .

Then we need only to prove∫
∆p

d(σ∗ω) =
∑

0≤i≤p
(−1)i

∫
∆p−1

(kp−1
i )∗ (σ∗ω) .

(1) p = 1. Then σ is a 1-complex and ω is a 0-form. Compute∫
∆1

d(σ∗ω) =

∫
∆1

d

dr
(ω ◦ σ)dr = ω(σ(1))− ω(σ(0)),∑

0≤i≤1

(−1)i
∫
∆0

(k0i )
∗(σ∗ω) =

∫
∆0

(k00)
∗(σ∗ω)−

∫
∆0

(k01)
∗(σ∗ω)

=

∫
∆0

(k00)
∗(ω ◦ σ)−

∫
∆0

(k01)
∗(ω ◦ σ)

= ω(σ(k00(0)))− ω(σ(k01(0))) = ω(σ(1))− ω(σ(0)).
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(2) p ≥ 2. Write the (p− 1)-form σ∗ω as

σ∗ω :=
∑

1≤j≤p
ajdr

1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp,

where aj are smooth functions on a neighborhood of ∆p in Rp. Compute∫
∆p

d(σ∗ω) =
∑

1≤j≤p

∫
∆p

d
(
ajdr

1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp
)

=
∑

1≤j≤p

∫
∆p

∑
1≤k≤p

∂aj
∂rk

drk ∧ dr1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp

=
∑

1≤j≤p

∫
∆p

∂aj
∂rj

drj ∧ dr1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp

=
∑

1≤j≤p
(−1)j−1

∫
∆p

∂aj
∂rj

dr1 ∧ · · · ∧ drp.

We claim that

(kp−1
i )∗rj =


rj , 1 ≤ j ≤ i− 1,

0, j = i,

rj−1, i+ 1 ≤ j ≤ p,

for any 1 ≤ i ≤ p, and

(kp−1
0 )∗rj =

 1−
∑

1≤i≤p−1 r
i, j = 1,

rj−1, 1 < j ≤ p.

In fact, from kp−1
i : ∆p−1 → ∆p and (kp−1

i )∗ : (∆p)∗ → (∆p−1)∗, we have, for any f =

(f1, · · · , fp−1) ∈ ∆p−1,

(kp−1
i )∗rj(f) = rj

(
kp−1
i f

)
= rj(f1, · · · , f i−1, 0, f i, · · · , fp−1)

=


f j = rj(f), 1 ≤ j ≤ i− 1,

0, j = i,

f j−1 = rj−1(f), i+ 1 ≤ j ≤ p

(kp−1
0 )∗rj(f) = rj

(
kp−1
0 (f1, · · · , fp−1)

)
= rj

1−
∑

0≤i≤p−1

f i, f1, · · · , fp−1


=


(
1−

∑
0≤i≤p−1 r

i
)
(f), j = 1,

f j−1 = rj−1(f), 1 < j ≤ p.

Consequently, ∑
0≤i≤p

(−1)i
∫
∆p−1

(kp−1
i )∗

(
ajdr

1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp
)

=

∫
∆p−1

(kp−1
0 )∗

(
ajdr

1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp
)

+
∑

1≤i≤p
(−1)i

∫
∆p−1

(kp−1
i )∗

(
ajdr

1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp
)
;
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the first term on the right-hand side is equal to∫
∆p−1

aj

(
(kp−1

0 )∗(r1), · · · , (kp−1
0 )∗(rp)

)
d(r1 ◦kp−1

0 )∧· · ·∧ ̂d(rj ◦ kp−1
0 )∧· · ·∧d(rp ◦kp−1

0 )

∫
∆p−1

aj

1−
∑

1≤i≤p−1

ri, r1, · · · , rp−1

 d

−
∑

1≤i≤p−1

ri

 ∧ · · · ∧ d̂rj−1 ∧ · · · ∧ drp−1

∫
∆p−1

aj

1−
∑

1≤i≤p−1

ri, r1, · · · , rp−1

 (−drj−1) ∧ dr1 ∧ · · · ∧ d̂rj−1 ∧ · · · ∧ drp−1

= (−1)1+j−2

∫
∆p−1

aj

1−
∑

1≤i≤p−2

ri, r1, · · · , rp−1

 dr1 ∧ · · · ∧ drp−1

while the second term to∑
1≤i≤p

(−1)i
∫
∆p−1

aj(r
1, · · · , ri−1, 0, ri, · · · , rp−1)

d(r1 ◦ kp−1
i ) ∧ · · · ∧ ̂d(rj ◦ kp−1

i ) ∧ · · · ∧ d(rp ◦ kp−1
i )

= (−1)j
∫
∆p−1

aj(r
1, · · · , rj−1, 0, rj , · · · , rp−1)dr1 ∧ · · · ∧ drp−1.

Hence ∑
0≤i≤p

(−1)i
∫
∆p−1

(kp−1
i )∗

(
ajdr

1 ∧ · · · ∧ d̂rj ∧ · · · ∧ drp
)

(−1)j−1

∫
∆p−1

aj

1−
∑

1≤i≤p−1

ri, r1, · · · , rp−1

 dr1 ∧ · · · ∧ drp−1

+ (−1)j
∫
∆p−1

aj(r
1, · · · , rj−1, 0, rj , · · · , rp−1)dr1 ∧ · · · ∧ drp−1.

Consider

ϕj(r
1, · · · , rp−1) :=


(r1, · · · , rp−1), j = 1,(

1−
∑

1≤i≤p−1 r
i, r2, · · · , rp−1

)
, j = 2,(

r2, · · · , rj−1, 1−
∑

1≤i≤p−1 r
i, rj , · · · , rp−1

)
, 3 ≤ j ≤ p.

Then ϕj(∆p−1) = ∆p−1 and |Jφj | = 1. By the change of variables formula, we obtain

(−1)j−1

∫
∆p−1

aj

1−
∑

1≤i≤p−1

ri, r1, · · · , rp−1

 dr1 ∧ · · · ∧ drp−1

= (−1)j−1

∫
∆p−1

aj

1−
∑

1≤i≤p−1

riϕj , r
1ϕj , · · · , rp−1ϕj

 dr1 ∧ · · · ∧ drp−1

= (−1)j−1

∫
∆p−1

aj

r1, · · · , rj−1, 1−
∑

1≤i≤p−1

ri, rj , · · · , rp−1

 dr1 ∧ · · · ∧ drp−1.
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Therefore we need only to show that∫
∆p

∂aj
∂rj

dr1 ∧ · · · ∧ drp

=

∫
∆p−1

aj

r1, · · · , rj−1, 1−
∑

1≤i≤p−1

ri, rj , · · · , rp−1

 dr1 ∧ · · · ∧ drp−1

−
∫
∆p−1

aj(r
1, · · · , rj−1, 0, rj , · · · , rp−1)dr1 ∧ · · · ∧ drp−1.

This can be seen as follows:∫
∆p

∂aj
∂rj

dr1 ∧ · · · ∧ drp =

∫
∑

1≤i≤p r
i≤1,ri≥0

∂aj
∂rj

dr1 ∧ · · · ∧ drp

∫
∑

1≤i≤p−1 t
i≤1,ti≥0

(∫ 1−
∑

1≤i≤p−1 t
i

0

∂aj
∂rj

drj

)
dt1 ∧ · · · ∧ dtp−1

∫
∑

1≤i≤p−1 t
i≤1,ti≥0

(
aj

t1, · · · , tj−1, 1−
∑

1≤i≤p−1

ti, tj , · · · , tp−1


−aj(t1, · · · , tj−1, 0, tj , · · · , tp−1)

)
dt1 ∧ · · · ∧ dtp−1

∫
∆p−1

(
aj

r1, · · · , rj−1, 1−
∑

1≤i≤p−1

ri, rj , · · · , rp−1


− aj(t

1, · · · , tj−1, 0, tj , · · · , tp−1)

)
dr1 ∧ · · · ∧ drp−1

by the fundamental theorem of calculus.

Integration on an oriented manifold. Let M be an m-dimensional oriented manifold. A

subset D of M will be called a regular domain if for each point x ∈ M one of the following

holds:

(a) there is an open neighborhood of x which is contained in M\D;

(b) there is an open neighborhood of x which is contained in D;

(c) there is a centered coordinate system (U , ϕ) about x such that ϕ(U ∩ D) = ϕ(U) ∩Hm,

where Hm is the half-space of Rm defined by rm ≥ 0.

Points of D of type (b) are called interior points (Int(D) or D◦). Points of D of type (c) are

called boundary points (∂D). ∂D is an embedded (m− 1)-dimensional submanifold of M.

Let x ∈ ∂D and v ∈ TxM. We call v an outer vector to D if for each smooth curve α(t)

in Mm with α̇(0) = v, there exists an ε > 0 such that α(t) /∈ D for all t ∈ (0, ε). Let v be

an outer to ∂D at x, and let v1, · · · , vm−1 be a basis of Tx∂D. Then we define v1, · · · , vm−1

be an oriented basis of Tx∂D if and only if v, v1, · · · , vm−1 is an oriented basis of TxM. This
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definition is independent of the choice of the outer vector v and defines a smooth orientation on

∂D.

Anm-simplex σ inM is called regular if σ extends to a diffeomorphism on a neighborhood

of ∆m. An oriented regular m-simplex is one in which the map σ preserves orientation.

(i) Associated with a given regular domain D, we consider only oriented regularm-simplices

of the following two types:

(α) σ(∆m) ⊂ Int(D).

(β) σ(∆m) ⊂ D and σ(∆m)∩∂D = σ(∆m−1); that is, precisely them-th face of σ lies

in ∂D.

(ii) Cover D by open sets U of the following types:

(α′) U lies in the interior of an oriented regular m-simplex σ of type (α).

(β′) U is the image under a type (β) oriented regularm-simplex σ of an open set V ⊂ Rm

which is a neighborhood of a point in the m-th face of ∆m, which intersects the

boundary of ∆m only in that m-th face, and whose image under σ is contained in

σ(∆m) ∪ (M\D).

Let ω be a continuous m-form with compact support and let D be a regular domain in

Mm. Since supp(ω) ∩ D is compact, we can cover supp(ω) ∩ D by a finitely many open sets

U1, · · · ,Uk of type (α′) or (β′). Let the associated oriented regular m-simplices be σ1, · · · , σk.
Write U := M \ (supp(ω) ∩ D). Then U ,U1, · · · ,Uk is a cover of M and, therefore, there

exists a partition of unity ϕ,ϕ1, · · · , ϕk subordinate to this cover. Define∫
D
ω :=

∑
1≤i≤k

∫
σi

ϕiω. (1.3.14)

Proposition 1.15

♥The definition (1.3.14) is independent of the cover and the partition of unity chosen.

Proof. Let V,V1, · · · ,Vℓ and ψ,ψ1, · · · , ψℓ be another such cover and another such partition of

unity respectively, with Vj associated with the oriented regular m-simplex τj . Since ψ = 0 on

supp(ω) ∩ D, it follows that
∑

1≤j≤ℓ ψj = 1 on supp(ω) ∩ D and∑
1≤i≤k

∫
σi

ϕiω =
∑

1≤i≤k

∫
σi

∑
1≤j≤ℓ

ψjϕiω =
∑

1≤i≤k,1≤j≤ℓ

∫
σi

ψjϕiω.

Similarly, ∑
1≤j≤ℓ

∫
τj

ψjω =
∑

1≤i≤k,1≤j≤ℓ

∫
τj

ψjϕiω.

Since σ−1
i ◦ τj is an orientation-preserving diffeomorphism on the open set where it is defined
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and (supp(ψjϕiω)) ∩ σi(∆m) = (supp(ψjϕiω)) ∩ τj(∆m), we arrive at∫
σi

ψiϕiω =

∫
∆m

σ∗i (ψjϕiω) =

∫
(σ−1

i ◦τj)(∆m)
σ∗i (ψjϕiω)

=

∫
∆m

(σ−1
i ◦ τj)∗ (σ∗i (ψjϕiω))

=

∫
∆m

τ∗j (σ
−1
i )∗ (σ∗i (ψjϕiω)) =

∫
∆m

τ∗j (ψjϕiω) =

∫
τj

ψjϕjω.

by (1.3.2).

Using again (1.3.2), we can prove that∫
F (D)

ω = ±
∫
D
F ∗ω (1.3.15)

whenever F is a diffeomorphism on M, where “+” if and only if F is orientation-preserving.

Theorem 1.14. (Stokes’ theorem II)

♥

Let D be a regular domain in an oriented m-dimensional manifold M, and let ω be a

smooth (m− 1)-form of compact support. Then∫
D
dω =

∫
∂D
ω. (1.3.16)

Proof. Let ϕ1, · · · , ϕk and σ1, · · · , σk be chosen as in (1.3.14) relative to (supp(ω))∩D. Since∑
1≤i≤k ϕi ≡ 1 on a neighborhood of (supp(ω)) ∩ D we have∑

1≤i≤k
d(ϕiω) =

∑
1≤i≤k

(dϕi ∧ ω + ϕidω) = dω.

If σi is an m-simplex of type (α), then∫
∂σi

ϕiω = 0 =

∫
∂D
ϕiω

since supp(ϕiω) ⊂ Int(σi(∆
m)) ⊂ Int(D). If σi is an m-simplex of type (β), then ϕiω is zero

on the boundary of σi except possibly at points in the interior of σmi . Hence∫
∂σi

ϕiω = (−1)m
∫
σm
i

ϕiω = (−1)m(−1)m
∫
∂D
ϕiω =

∫
∂D
ϕiω

because σmi is an orientation-preserving regular (m − 1)-simplex in ∂D if m is even, and is

orientation-revising if m is odd. therefore∫
D
dω =

∫
D

∑
1≤i≤k

d(ϕiω) =
∑

1≤i≤k

∫
D
d(ϕiω) =

∑
1≤i≤k

∫
σi

d(ϕiω)

=
∑

1≤i≤k

∫
∂σi

ϕiω =
∑

1≤i≤k

∫
∂D
ϕiω =

∫
∂D
ω

by Theorem 1.13.

A manifold is called closed if it is both compact and without boundary.
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Corollary 1.9

♥

Let ω be a smooth (m− 1)-form on a closed oriented m-dimensional manifold M. Then∫
M
dω = 0.

Integration on a Riemannian manifold. Let M be a Riemannian manifold of dimension

m. That is, M is an m-dimensional manifold with a positive definite inner product gx := 〈 , 〉x
on each tangent space TxM such that x 7→ 〈X,Y 〉x := 〈Xx, Yx〉x is a smooth function on M
whenever X and Y are smooth vector fields on M.

(1) The existence of Riemannian metrics on manifolds is obvious by using the partition of

unity.

(2) Given a point x ∈ M we can always find3 a neighborhood U of x and a collection

e1, · · · , em of smooth vector fields on U which are orthonormal in the sense that they form

an orthonormal basis of the tangent space to M at each point of U . such a collection

{ei}1≤i≤m is called a local orthonormal frame field.

(3) Since the inner product 〈 , 〉x is a non-singular pairing of TxM with itself, it induces an

isomorphism of TxM with T ∗
xM,

ϕ : TxM −→ T ∗
xM, v 7−→ ϕv, ϕv(w) := 〈v, w〉x. (1.3.17)

Consequently, T ∗M is also a Riemannian manifold.

(4) Let e1, · · · , em be a local orthonormal frame field on U and let ω1, · · · , ωm be the dual

1-forms. That is

ωi(ej) = δij on U . (1.3.18)

We call {ωi}1≤i≤m a local orthonormal coframe field on U .

(5) If {ωi}1≤i≤m and {ω′
i}1≤i≤m are two local orthonormal coframe fields on U and U ′

respectively, then, on U ∩ U ′,

ω1 ∧ · · · ∧ ωm = ±ω′
1 ∧ · · · ∧ ω′

m.

Let (M, g) be an m-dimensional oriented Riemannian manifold. A local coframe field

{ωi}1≤i≤m on U will be called oriented if ω1 ∧ · · · ∧ωm belongs to the orientation at each point

of U . Choose a local oriented orthonormal coframe field {ωi}1≤i≤m at each point of M. By (5)

above, we have a globally defined m-form

ω := ω1 ∧ · · · ∧ ωm (1.3.19)

nowhere-vanishing on M. This form is called the volume form of the oriented Riemannian

manifold M. The volume of M is

Vol(g) :=

∫
M
ω =

∫
M
ω1 ∧ · · · ∧ ωm. (1.3.20)

3Start with a coordinate system (U , x1, · · · , xm), apply the Gram-Schmidt procedure to orthonormalize ∂/∂x1,
· · · ,∂/∂xm, and do it simultaneously at all points of U .
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We define ∗ on ∧T ∗
xM so that get a linear operator

∗ : Ep(M) −→ Em−p(M) (1.3.21)

satisfying

∗2 = (−1)p(m−p) on Ep(M). (1.3.22)

If f is a continuous function with compact support, we define∫
M
f :=

∫
M

∗f =

∫
M
fω. (1.3.23)

Note 1.8

♣

We can define
∫
M f on any Riemannian manifold M. Choosing {Uα}α∈A a cover of

M by interiors of regular m-simplices {σα}′α∈A and {ωαi }1≤i≤m a local orthonormal

coframe field defined on a neighborhood of σα(∆m), we can find smooth functions {hα}α
on neighborhoods of ∆m such that

σ∗α(ω
α
1 ∧ · · · ∧ σαm) = hαdr

1 ∧ · · · ∧ drm.

Let {ϕα}α∈A be a partition of unity subordinate to the cover {Uα}α∈A and let f be a

continuous function with compact support on M. Define∫
M
f :=

∑
α∈A

∫
∆m

((ϕαf) ◦ σα) |hα|dr1 ∧ · · · ∧ drm. (1.3.24)

This definition is independent of the cover and partition of unity chosen. In the case of an

oriented Riemannian manifold, (1.3.23) agrees with (1.3.24).

If f is a smooth function on Rm, its gradient is defined by

grad(f) :=
∑

1≤i≤m

∂f

∂ri
∂

∂ri
.

If V =
∑

1≤i≤m v
i ∂
∂ri

is a smooth vector field, its divergence is defined by

div(V ) :=
∑

1≤i≤m

∂vi

∂ri
.

Let (M, g) be an oriented Riemannian manifold. If v ∈ TxM, we write

v♭ = ϕ(v)

according to (1.3.16). If ω ∈ T ∗
xM, we write

ω♯ := ϕ−1(ω).

If f is a smooth function on M, its gradient is the vector field

grad(f) := (df)♯. (1.3.25)

If V is a smooth vector field, its divergence is the function

div(V ) := ∗d ∗ V♭. (1.3.26)

observe that div(V ) is defined independent of orientability.
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Theorem 1.15. (Divergence theorem)

♥

If V is a smooth vector field with compact support on an oriented Riemannian manifold

M, if D is a regular domain in M and if n is the unit outer normal vector field on ∂D,

then ∫
D
divV =

∫
∂D

〈V,n〉. (1.3.27)

Let M be an oriented Riemannian manifold, let f and g are smooth functions on M, and

let D be a regular domain in M. The Laplacian of g, denoted ∆g, is defined by

∆g := ∗d ∗ dg. (1.3.28)

If n is the unit outer normal vector field along ∂D, we let ∂g
∂n denote n(g). Green’s identities

say that ∫
D
f∆g = −

∫
D
〈grad(f), grad(g)〉+

∫
∂D
f
∂g

∂n
, (1.3.29)∫

D
(f∆g − g∆f) =

∫
∂D

(
f
∂g

∂n
− g

∂f

∂n

)
. (1.3.30)

1.3.3 de Rham cohomology

A p-form on a differentiable manifold M is called closed if dα = 0. It is called exact if

α = dβ for some smooth (p− 1)-form β. Write

Zp(M) := {closed p-forms}, Bp(M) := {exact p-forms}.

Since Bp(M) ⊂ Zp(M), we define the p-th de Rham cohomology group of M

Hp
dR(M) :=

Zp(M)

Bp(M)
. (1.3.31)

Example 1.6
For the unit circle S1, we have

Hp
dR(S

1) =

 R, p = 0, 1,

0, p ≥ 2.
(1.3.32)

Since S1 is connected, it follows from Theorem 1.3 that f is constant. Hence H0
dR(S

1) ∼=
R. The polar coordinate function θ on S1 is not well-defined globally, but dθ is a globally

well-defined nowhere-vanishing 1-form onS1 because dθ is the volume form of the induced

Riemannian metric on S1 from R2.

(a) dθ is not exact. Otherwise, dθ = dα for some smooth function f on S1. By

Corollary 1.9, we get

0 =

∫
S1

dα =

∫
S1

dθ = 2π − 0 = 2π.

(b) All 1-forms on S1 are closed.

(c) If α is a 1-form, then α − cdθ is exact for some constant c. Let α = f(θ)dθ and
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♠

define

c :=
1

2π

∫
S1

f(θ)dθ, g(θ) :=

∫ θ

0
[f(τ)− c]dτ.

Since

g(θ + 2πn) =

∫ θ+2πn

0
[f(τ)− c]dτ

=

∫ θ

0
[f(τ)− c]dτ +

∫ θ+2πn

θ
[f(τ)− c]dτ

=

∫ θ

0
[f(τ)− c]dτ +

∑
1≤k≤n

∫ θ+2πk

θ+2π(k−1)
[f(τ)− c]dτ

=

∫ θ

0
[f(τ)− c]dτ +

∑
1≤k≤n

∫ 2π

0
f(τ)dτ − 2πcn

=

∫ θ

0
[f(τ)− c]dτ + n2πc− 2πcn = g(θ),

the function g(θ) is a well-defined smooth function on S1. Moreover

dg = [f(θ)− c]dθ = α− cdθ.

Thus α− cdθ is exact.

Now the result follows from (a) – (c).

Let F : M → N be a smooth map. Since d ◦ F ∗ = F ∗ ◦ d

E∗(N )
F ∗

−−−−→ E∗(M)

d

y yd
E∗(N ) −−−−→

F ∗
E∗(M)

we have an induced homomorphism

F ∗ : Hp
dR(N ) −→ Hp

dR(M) (1.3.33)

for each integer p ≥ 0. For α ∈ Zp(N ), d(F ∗α) = F ∗(dα) = 0 implies F ∗α ∈ Zp(M).

If α ∈ Bp(N ), then dβ = α for some β ∈ Ep−1(N ) and F ∗α = F ∗(dβ) = d(F ∗β); hence

F ∗α ∈ Zp(M).

(a) If G : N → P is another smooth map, then

(G ◦ F )∗ = F ∗ ◦G∗. (1.3.34)

(b) The identity map 1 : M → M induces

1∗ = 1 (1.3.35)

on the de Rham cohomology groups.

For each integer p ≥ 0, we let Csing,p(M;R) denote the real vector space generated by the

singular p-simplices in M. That is, an element of Csing,p(M;R) is a singular p-chain in M
with real coefficients. For p < 0, define Csing,p(M;R) be the zero vector space. The boundary



1.3 Integration on manifolds – 72 –

operator ∂ induces linear transformations

∂p : Csing,p(M;R) −→ Csing,p−1(M;R) (1.3.36)

for each p ∈ Z. Since ∂p ◦ ∂p+1 = 0, we define the p-th differential singular homology group
of M with real coefficients by

Hsing,p(M;R) :=
ker(∂p)

Im(∂p+1)
. (1.3.37)

Elements of ker(∂p) are called differentiable p-cycles and elements of Im(∂p+1) are called

differentiable p-boundaries. Define a linear map

ϕ : Hp
dR(M) −→ Hsing,p(M;R)∗, [α] 7−→ ϕ([α])([z]) :=

∫
z
α. (1.3.38)

We shall prove that (1.3.38) is well-defined. If α′ = α + dβ for some β ∈ Ep−1(M) and if

z′ = z + ∂pw for some w ∈ Csing,p+1(M;R), we have∫
z′
α′ =

∫
z+∂pw

(α+ dβ) =

∫
z
(α+ dβ) +

∫
∂pw

(α+ dβ)

=

∫
z
α+

∫
z
dβ +

∫
∂pw

α+

∫
∂pw

dβ

=

∫
z
α+

∫
∂z
β +

∫
w
dα+

∫
w
d2β =

∫
z
α.

Theorem 1.16. (de Rham theorem)

♥If M is compact manifold, then (1.3.38) is an isomorphism.
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Introduction

h Introduction

h Metrics and connections

h Examples

h Exterior differential calculus

h Integrations

h Curvature decomposition

h Moving frames

h Variation of arc length

h Geodesics

h Second fundamental forms

h Manifolds with nonnegative curva-

ture

h Lie groups

2.1 Introduction

A fundamental question in Riemannian geometry is that given a restriction on the curvature

of a Riemannian manifold, what topological conditions follow?

(1) Myers’ theorem: If M is a complete m-dimensional manifold with Ricci curvature

bounded below by a positive constant (m − 1)K, then M has diameter at most π/
√
K.

Topological consequence is that M is compact and has finite fundamental group.

(2) Cartan-Hadamard theorem: If M is a simply-connected, complete m-dimensional

manifold with nonpositive sectional curvature, then M is diffeomorphic to Rm and each

exponential map is a diffeomorphism.

2.2 Metrics, connections, curvatures and covariant differentiation

Introduction

h Metrics and connections

h Curvatures

h Covariant differentiation

h Holonomy

Let M be anm-dimensional (smooth) manifold and �2T ∗M = T ∗M⊗S T
∗M denote the

subspace of T ∗M⊗T ∗M generated by elements of the formX⊗Y +Y ⊗X . We also consider

the subspace �2
+T

∗M, consisting of all positive-definite symmetric covariant 2-tensor fields, of

�2T ∗M. Then a Riemannian metric g can be viewed as a section of the bundle �2
+T

∗M.
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2.2.1 Metrics and connections

If V is a tangent field of M, we denote by Vp or (p, V ) the tangent vector at the point p. If

we consider the tangent space TpM, its element is written as v.

Example 2.1

♠

The Euclidean spaceEm := (Rm, gcan) is the simplest Riemannian manifold. The tangent

bundle TRm is naturally identified with the product manifold Rm ×Rm via the map

(p, V ) ∈ Rm ×Rm 7−→
(
p,
d

dt

∣∣∣
t=0

(p+ tV )

)
∈ TRm

so that the standard or canonical metric gcan on Rm is defined by

gcan ((p, V ), (p,W )) := V ·W.

A Riemannian isometry between Riemannian manifolds (M, gM) and (N , gN ) is a dif-

feomorphism ϕ : M → N such that ϕ∗gN = gM, i.e.,

gN (dϕ(V ), dϕ(W )) = gM(V,W ) (2.2.1)

for all tangent fields V and W . In this case ϕ−1 is also a Riemannian isometry.

Suppose that we have an immersion (or embedding) ϕ : M → N , and that (N , gN ) is a

Riemannian manifold. We can then construct a Riemannian manifold on M by pulling back gN
to gM := ϕ∗gN on M, i.e.,

gM(V,W ) = gN (dϕ(V ), dϕ(W )).

Note that if gM(V, V ) = 0, then since ϕ is an immersion, we have V = 0.

A Riemannian immersion (or Riemannian embedding) is thus an immersion (or embed-

ding) ϕ : (M, gM) → (N , gN ) such that gM = ϕ∗gN . Riemannian immersions are also called

isometric immersions, but as we shall see below they are almost never distance preserving.

Example 2.2

♠

Define

Sm(r) := {x ∈ Rm+1 : |x| = r}.

The metric induced from the embedding Sm(r) ↪→ Rm+1 is the canonical metric on

Sm(r). The unit sphere, or standard sphere, is Sm := Sm(1) ⊂ Rm+1 with the induced

metric.

A Riemannian submersion ϕ : (M, gM) → (N , gN ) is a submersion ϕ : M → N such

that for each p ∈ M, dϕp : Ker⊥(dϕp) → Tφ(p)N is a linear isometry. In other words, if

(p, V ), (p,W ) ∈ TpM are perpendicular to the kernel of dϕp : TpM → Tφ(p)N , then

gM(V,W ) = gN (dϕ(V ), dϕ(W )).

This is also equivalent to saying that the adjoint (dϕp)∗ : Tφ(p)N → TpM preserves inner

products of vectors.
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Example 2.3. (Hopf fibration)

♠

The Hopf fibration S3(1) → S2(1/2) can be written as

(z, w) 7−→
(
|w|2 − |z|2

2
, zw

)
(2.2.2)

if we think of S3(1) ⊂ C2 and S2(1/2) ⊂ R ⊕C. The fiber containing (z, w) consists

of the points (e
√
−1θz, e

√
−1θw), and hence the tangent vectors that are perpendicular to

those points are of the form λ(−w, z), λ ∈ C. Calculate(
|w + λz|2 − |z − λw|2

2
, (z − λw)(w + λz)

)
=
(
2Re(λzw),−λw2 + λz2

)
.

This term has length |λ| as well as the length of λ(−w, z). Hence the map is a Riemannian

submersion.

For a Riemannian manifold (M, g), let Iso(M, g) denote the group of Riemannian isome-

tries ϕ : (M, g) → (M, g) and Isop(M, g) the isometry group at p, i.e., those ϕ ∈ Iso(M, g)

with ϕ(p) = p. A Riemannian manifold is said to be homogeneous if its isometry group acts

transitively, i.e., for any points p, q ∈ M, there is an ϕ ∈ Iso(M, g) such that ϕ(p) = q.

Example 2.4

♠

(1) Iso(Rm, gcan) = Rm oO(m), i.e.,

Iso(Rm, gcan) = {ϕ|Rm → Rm : F (x) = V +Ox, V ∈ Rm and O ∈ O(m)}.

(2) On the sphere

Iso(Sm(r), gcan) = O(m+ 1) = Iso0(R
m+1, gcan).

Consequently, O(m+ 1)/O(m) ∼= Sm.

If G is a Lie group, then the tangent space can be trivialized by

TG ∼= G× TeG

by using the left (or right) translations on G. If H is a closed subgroup of G, then G/H is

a manifold. If we endow G with a metric such that right translation by elements in H act by

isometries, then there is unique Riemannian metric on G/H making the projection G → G/H

into a Riemannian submersion. If in addition, the metric is also left invariant then G acts by

isometries on G/H (on the left) thus making G/H into a homogeneous space.

For any tangent fields X and Y , we define

〈X,Y 〉g := g(X,Y ), |X|g := (〈X,X〉g)2

and the angle of X and Y

∠g(X,Y ) := cos−1

(
〈X,Y 〉g
|X|g|Y |g

)
.

Let x1, · · · , xm be a local coordinate system of M. Then ∂1, · · · , ∂m, where ∂i := ∂/∂xi,

form a local basis for TM and dx1, · · · , dxm form a dual basis for T ∗M. The metric may then
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be written in above local coordinates as

g = gijdx
i ⊗ dxj

where gij := g(∂/∂xi, ∂/∂xj). Here and throughout the note, we follow the Einstein
summation convention of summing over repeated indices. If the repeated indices both
occur in upper line or lower line, we write down the summation symbol.

Given a smooth immersion ϕ : N → M and a metric g on M, the pull-back g to a metric

on N is

(ϕ∗g)(V,W ) = g(ϕ∗V, ϕ∗W ),

where ϕ∗ : TN → TM is the tangent map. If (yα)nα=1 and (xi)mi=1 are local coordinates on N

and M , respectively, then

(ϕ∗g)αβ = gij
∂ϕi

∂yα
∂ϕj

∂yβ
,

where (ϕ∗g)αβ := (ϕ∗g)(∂/∂yα, ∂/∂yβ) and ϕi := xi ◦ ϕ. Given any covariant p-tensor field

α on M and a smooth map ϕ : N → M, we can define the pull-back of α to N by

(ϕ∗α)(X1, · · · , Xp) := α(ϕ∗(X1), · · · , ϕ∗(Xp)) (2.2.3)

for all X1, · · · , Xp ∈ C∞(TN ).

Note 2.1

♣

If ϕ is a diffeomorphism, then we do not distinguish between a metric g and its pull-back

ϕ∗g.

Example 2.5
(1) The canonical metric on Rm is

gcan = δijdx
i ⊗ dxj =

∑
1≤i≤m

dxi ⊗ dxi.

(2) On R2 \ {half line} we also have polar coordinates (r, θ). In these polar coordinates

the canonical metric is

gcan = dr ⊗ dr + r2dθ ⊗ dθ.

Hence

grr = 1, gθθ = r2, grθ = gθr = 0.

(3) A surface of revolution consist of a curve

γ(t) = (r(t), z(t)) : I −→ R2,

where I ⊂ R is open and r(t) > 0 for all t. By rotating this curve around the z-axis, we

get a surface that can be represented as

(t, θ) 7−→ f(t, θ) = (r(t) cos θ, r(t) sin θ, z(t)) .
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Then the metric is

g =
(
ṙ2 + ż2

)
dt⊗ dt+ r2dθ ⊗ dθ

so that

gtt =
(
ṙ2 + ż2

)1/2
, gθθ = r, gtθ = gθt = 0.

(4) On I × S1, we have rotationally symmetric metrics

g = η2(t)dt⊗ dt+ ϕ2(t)dθ ⊗ dθ.

Example (3) is a special case of (4).

(5) Let snk(t) denote the unique solution to

ẍ(t) + kẋ(t) = 0, x(0) = 0, ẋ(0) = 1.

Then we have a 1-parameter family

dt⊗ dt+ sn2k(t)dθ ⊗ dθ (2.2.4)

of rotationally symmetric metrics. When k = 0, this isR2; when k > 0, we getS2(1/
√
k);

and when k < 0, we get the hyperbolic metrics

dt⊗ dt+ r2 sinh2
(
t

r

)
dθ ⊗ dθ.

(6) Assume we have

dt⊗ dt+ ϕ2(t)dθ ⊗ dθ

where ϕ : [0, b) → [0,∞) is smooth, ϕ(0) = 0 and ϕ(t) > 0 for t > 0. Write

ϕ(t) = tψ(t)

for some smooth function ψ(t) > 0 for t > 0. Introduce Cartesian coordinates

x = t cos θ, y = t sin θ

near t = 0. Then

dt⊗ dt+ ϕ2(t)dθ ⊗ dθ =
x2 + ψ2(t)y2

x2 + y2
dx⊗ dx+

xy − xyψ2(t)

x2 + y2
dx⊗ dy

+
xy − xyψ2(t)

x2 + y2
dy ⊗ dx+

ψ2(t)x2 + y2

x2 + y2
dy ⊗ dy

so that

gxx = 1 +
ψ2(t)− 1

t2
· y2,

gxy = gyx =
1− ψ2(t)

t2
· xy,

gyy = 1 +
ψ2(t)− 1

t2
· x2.

To check for smoothness of the metric at (x, y) = (0, 0) (or t = 0), it suffices to check that

the function
ψ2(t)− 1

t2
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♠

is smooth at t = 0. First, it is clearly necessary that ψ(0) = 1; this is the vertical

tangent condition. Second, if ψ is given by a power series we see that it must further

satisfy: ψ̇(0) = ψ(3) = · · · = 0. Those conditions are also sufficient when ψ is merely

smooth. Translating back to ϕ, we get that the metric is smooth at t = 0 if and only if

ϕ(even)(0) = 0 and ϕ̇(0) = 1.

These conditions are all satisfied by the metrics dt⊗dt+sn2k(t)dθ⊗dθ, where t ∈ [0,∞)

when k ≤ 0 and t ∈ [0, π/
√
k) for k > 0. Note that in this case snk(t) is real analytic.

Example 2.6. (Doubly warped products)
(1) (Doubly warped products in general) We can consider metrics on I×Sm−1 of the type

dt⊗ dt+ ϕ2(t)dsm−1 ⊗ dsm−1

where dsm−1 ⊗ dsm−1 is the canonical metric on Sm−1(1) ⊂ Rm. Even more general

are metrics of the type

dt⊗ dt+ ϕ2(t)dsp ⊗ dsp + ψ2(t)dsq ⊗ dsq

on I × Sp × Sq.

(a) If ϕ : (0, b) → (0,∞) is smooth and ϕ(0) = 0, then we get a smooth metric at

t = 0 if and only if

ϕ(even)(0) = 0, ϕ̇(0) = 1,

and

ψ(0) > 0, ψ(odd)(0) = 0.

The topology near t = 0 in this case is Rp+1 × Sq.

(b) If ϕ : (0, b) → (0,∞) is smooth and ϕ(b) = 0, then we get a smooth metric at t = b

if and only if

ϕ(even)(b) = 0, ϕ̇(b) = −1,

and

ψ(b) > 0, ψ(odd)(b) = 0.

The topology near t = b in this case is again Rp+1 × Sq.

By adjusting and possibly changing the roles of these function we can get three different

types of topologies:

ϕ,ψ : [0,∞) → [0,∞) are both positive on all of (0,∞). Then we have a smooth

metric on Rp+1 × Sq if ϕ,ψ satisfy (a).

ϕ,ψ : [0, b] → [0,∞) and both positive on (0, b) and satisfy (a) and (b). Then we

get a smooth metric on Sp+1 × Sq.

ϕ,ψ : [0, b] → [0,∞) as in the second type but the roles ofψ andϕ are interchanged
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at t = b. Then we get a smooth metric on Sp+q+1.

(2) (Spheres as warped products) The sphere metric dt ⊗ dt + sin2(r)dsm−1 ⊗ dsm−1

can be written as a rotationally symmetric metric. Consider the map

F : (0, π)×Rn −→ R×Rm, (r, z) 7−→ (t, x) = (cos r, sin r · z) ,

which reduces to a map

G : (0, π)× Sm−1 −→ R×Rm, (r, z) 7−→ (cos r, sin r · z) .

Thus, G really maps into the unit sphere Sm in Rm+1. Calculate

gcan = dt⊗ dt+
m∑

i,j=1

δijdx
i ⊗ dxj

= d cos r ⊗ d cos r +
m∑

i,j=1

δijd(z
i sin r)⊗ d(zj sin r)

= dr ⊗ dr + sin2 r
(
dz1 ⊗ dz1 + · · ·+ dzm ⊗ dzm

)
which is the canonical metric dt⊗ dt+ sin2 rdsm−1 ⊗ dsm−1.

The metric

dt⊗ dt+ sin2 tdsp ⊗ dsp + cos2 tdsq ⊗ dsq, t ∈
[
0,
π

2

]
,

are also
(
Sp+q+1, gcan

)
. Namely, we have Sp ⊂ Rp+1 and Sq ⊂ Rq+1, so we have map(

0,
π

2

)
× Sp × Sq −→ Rp+1 ×Rq+1, (t, x, y) 7−→ (x · sin t, y · cos t) ,

where x ∈ Rp+1, y ∈ Rq+1 have |x| = |y| = 1. The map is a Riemannian isometry.

(3) (The Hopf fibration) On S3(1), write the metric as

dt⊗ dt+ sin2 tdθ1 ⊗ dθ1 + cos2 tdθ2 ⊗ dθ2, t ∈
[
0,
π

2

]
,

and use complex coordinates(
t, e

√
−1θ1 , e

√
−1θ2

)
7−→

(
sin te

√
−1θ1 , cos te

√
−1θ2

)
to describe the isometric embedding(

0,
π

2

)
× S1 × S1 −→ S3(1) ⊂ C2.

On S2(1/2) use the metric

dr ⊗ dr +
sin2(2r)

4
dθ ⊗ dθ, r ∈

[
0,
π

2

]
,

with coordinates (
r, e

√
−1θ
)
−→

(
1

2
cos(2r),

1

2
sin(2r)e

√
−1θ

)
.

The Hopf fibration in these coordinates looks like(
t, e

√
−1θ1 , e

√
−1θ2

)
7−→

(
t, e

√
−1(θ1−θ2)

)
.
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♠

On S3(1) we have an orthogonal framing{
∂θ1 + ∂θ2 , ∂t,

cos2 t∂θ1 − sin2 t∂θ1
cos t sin t

}
,

where the first vector is tangent to the Hopf fiber and the two other vectors have unit length.

On S2(1/2) {
∂r,

2

sin(2r)
∂θ

}
is an orthonormal frame. The Hopf map clearly maps

∂t −→ ∂r,

cos2 t∂θ1 − sin2 t∂θ2
cos t sin t

−→ cos2 r∂θ + sin2 r∂θ
cos r sin r

=
2

sin(2r)
· ∂θ.

Hence, it is an isometry on vectors perpendicular to the fiber.

The Levi-Civita connection ∇g : C∞(TM) × C∞(TM) → C∞(TM) is the unique

connection on TM that is compatible with the metric g and is torsion-free:

X (g(Y, Z)) = g ((∇g)XY, Z) + g (Y, (∇g)XZ) , (2.2.5)

(∇g)XY − (∇g)YX = [X,Y ], (2.2.6)

where (∇g)XY := (∇gY ) (X) := ∇g(X,Y ). The Levi-Civita connection is uniquely deter-

mined by the equation

2g((∇g)XY, Z) = X (g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y )) (2.2.7)

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X).

Note 2.2

♣For any c > 0 we have ∇cg = ∇g.

Let x1, · · · , xm be a local coordinate system. The Christoffel symbols of the Levi-Civita

connection are defined as

(∇g) ∂

∂xi

∂

∂xj
:= (Γg)

k
ij

∂

∂xk
.

Then

(Γg)
k
ij =

1

2
gkl (∂igℓj + ∂jgiℓ − ∂ℓgij) :=

1

2
gkℓ(Γg)ij,ℓ. (2.2.8)

Here and throughout ∂i stands for ∂/∂xi. We call {Γg}ij,k the Christoffel symbols of the first

kind, while (Γg)kij the Christoffel symbols of the second kind. Classically the following notation

has also been used  k

ij


g

= (Γg)
k
ij , [ij, k]g = (Γg)ij,k. (2.2.9)
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Note 2.3

♣

Let x1, · · · , xm and y1, · · · , ym are two local coordinate systems. Show that

(Γg)
γ
αβ

∂xk

∂yγ
= (Γg)

k
ij

∂xi

∂yα
∂xj

∂yβ
+

∂2xk

∂yα∂yβ
.

Note 2.4

♣

If (M, g) is an m-dimensional Riemannian manifold, ϕ : N → M is an immersion, and

y1, · · · , yn and x1, · · · , xm are local coordinates on N and M, respectively, then

(Γφ∗g)
γ
αβ

∂ϕk

∂yγ
=
(
(Γg)

k
ij ◦ ϕ

) ∂ϕi
∂yα

∂ϕj

∂yβ
+

∂2ϕk

∂yα∂yβ
,

where ϕi := xi ◦ ϕ.

A vector field X along a path γ : [a, b] → M is parallel if

(∇g)γ̇X = 0

along γ; the vector field X(γ(t)) is called the parallel translation of X(γ(a)). We say that a

path γ is a geodesic if the unit tangent vector field is parallel along γ:

(∇g)γ̇

(
γ̇

|γ̇|g

)
= 0.

A geodesic has constant speed if |γ̇|g is constant along γ; in this case (∇g)γ̇ γ̇ = 0.

Note 2.5

♣

IfX is a parallel along a path γ, then |X|2g is constant along γ. Since∇g is the Levi-Civita

Connection, it follows that

(∇g)γ̇ |X|2g = (∇g)γ̇ (〈X,X〉g) = 2 〈(∇g)γ̇X,X〉g = 0

because of (∇g)γ̇X = 0.

2.2.2 Curvatures

The Riemannian curvature (3,1)-tensor field Rmg is defined by

Rmg(X,Y )Z := (∇g)X(∇g)Y Z − (∇g)Y (∇g)XZ − (∇g)[X,Y ]Z. (2.2.10)

For any function f one has

Rmg(fX, Y )Z = Rmg(X, fY )Z = Rmg(X,Y )(fZ) = fRmg(X,Y )Z. (2.2.11)

If we define

(∇g)
2
X,Y Z := (∇g)X(∇g)Y Z − (∇g)(∇g)XY Z

so that

Rmg(X,Y )Z = (∇g)
2
X,Y Z − (∇g)

2
Y,XZ, (2.2.12)

(∇g)
2
fX,Y Z = (∇g)

2
X,fY Z = f(∇g)

2
X,Y Z, (2.2.13)
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and

(∇g)
2
X,Y (fZ) = f(∇g)

2
X,Y Z + Y (f)(∇g)XZ +X(f)(∇g)Y Z (2.2.14)

− (((∇g)XY ) f)Z +X (Y (f))Z

for any function f .

Note 2.6

♣
Note that Rmg is a tensor field but (∇g)

2
•,• is not. Also note that (∇g)

2
•,• 6= (∇g)•(∇g)•.

The components of the (3, 1)-tensor field Rmg are defined by

Rmg(∂i, ∂j)∂k := Rℓijk∂ℓ

and Rijkℓ := gℓpR
p
ijk. The quantities

Rijkℓ := Rmg(∂i, ∂j , ∂k, ∂ℓ) := 〈Rmg(∂i, ∂j)∂k, ∂ℓ〉g

are the components of Rmg as a (4, 0)-tensor field Rmg. Some basic symmetrics of the Riemann

curvature tensor are

Rijkℓ = −Rjikℓ = −Rijℓk = Rkℓij . (2.2.15)

The metric g introduces the inner product on C∞(M,∧2M):

g(X ∧ Y, V ∧W ) := det

g(X,V ), g(X,W )

g(Y, V ), g(Y,W )


and then extend it by linearity to all of C∞(M,∧2M). From the symmetry properties of the

curvature tensor field we see that Rmg actually defines a symmetric bilinear map

Rm∧
g : C∞(M,∧2M)× C∞(M,∧2M) −→ C∞(M) (2.2.16)

given by

Rm∧
g (X ∧ Y,W ∧ V ) := Rmg(X,Y, V,W ). (2.2.17)

The relation

g (Rmg(X ∧ Y ), V ∧W ) := Rm∧
g (X ∧ Y, V ∧W ) (2.2.18)

defines a self-adjoint operator

Rmg : C
∞(M,∧2M) −→ C∞(M,∧2M). (2.2.19)

This operator is called the Riemann curvature operator.

If Π ⊂ TpM is a 2-plane, then the sectional curvature of Π is defined by

Secg(Π) := 〈Rmg(e1, e2)e2, e1〉g = Rmg(e1, e2, e2, e1) = Rm∧
g (e1 ∧ e2, e1 ∧ e2)

where {e1, e2} is an orthonormal basis of Π.
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Note 2.7

♣

If v and w are two vectors spanning Π, then

Secg(Π) :=
〈Rmg(v, w)w, v〉g
|v|2g|w|2g − 〈v, w〉2g

.

Since v and 2 span the 2-plane Π, we can write

v = a1e1 + a2e2, w = b1e1 + b2e2.

By symmetric properties of Rmg, it follows that

〈Rmg(v, w)w, v〉g =
(
a1b2 − a2b1

)2 〈Rmg(e1, e2)e2, e1〉g .

On the other hand, we have

|v|2g(p)|w|
2
g − 〈v, w〉2g

=
((
a1
)2

+
(
a2
)2)((

b1
)2

+
(
b2
)2)− (a1b2 + a2b2

)2
=
(
a1b2 − a2b1

)2
.

Hence we prove the identity.

Geometrically, the sectional curvature of a 2-plane Π ⊂ TpM is equal to the Gauss

curvature at p of the surface spanned by the geodesics emanating from p and tangent to

Π (this surface is smooth in a neighborhood of p).

For any v ∈ TpM let

Rmg(v) : TpM −→ TpM, w 7−→ Rmg(w, v)v (2.2.20)

be the directional curvature operator. This operator is also known as the tidal force operator.

Then

g (Rmg(w)v, v) = g (Rmg(v, w)w, v) = Rmg(v, w,w, v)

= Rm∧
g (v ∧ w, v ∧ w) = g (Rmg(v ∧ w), v ∧ w) .

Proposition 2.1. (Riemann, 1854)

♥

The following properties are equivalent:

(1) Secg(Π) = k for all 2-planes Π in TpM.

(2) Rmg(v1, v2)v3 = k(v1 ∧ v2)(v3) for all v1, v2, v3 ∈ TpM.

(3) Rmg(w)(v) = k
(
v − 〈v, w〉g(p)w

)
for all v ∈ TpM and |w|g = 1.

(4) Rmg(ω) = k · ω for all ω ∈ ∧2TpM.

Proof. (2) ⇒ (3): Calculate

Rmg(w)(v) = Rmg(v, w)w = k(v ∧ w)w = k (〈w,w〉gv − 〈v, w〉gw)

= k (v − 〈v, w〉gw) .

(3) ⇒ (1): Calculate

Secg(Π) =
〈k (v − 〈v, w〉gw) , v〉g

|v|g − (v, w)2g
= k.
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(1) ⇒ (2): We introduce the multilinear maps:

T(v1, v2)v3 := k(v1 ∧ v2)(v3),

T(v1, v2, v3, v4) := 〈T(v1, v2)v3, v4〉g = k〈(v1 ∧ v2)v3, v4〉g.

The basic symmetries are

T(v1, v2)v3 + T(v2, v3)v1 + T(v3, v1)v2 = 0,

T(v1, v2)v3 = −T(v2, v1)v3,

T(v1, v2, v3, v4) = −T(v2, v1, v3, v4) = −T(v1, v2, v4, v3)

= T(v3, v4, v1, v2),

T(v1, v2, v3, v4) + T(v2, v3, v1, v4) + T(v3, v2, v1, v4) = 0.

Now consider the map

S(v1, v2, v3, v4) := Rmg(v1, v2, v3, v4)− T(v1, v2, v3, v4)

which also satisfies the same symmetry properties. The assumption that Secg(Π) = k implies

S(v, w,w, v) = 0

for all v, w ∈ TpM. Using polarization w = w1 + w2 we get

0 = S(v, w1 + w2, w1 + w2, v) = S(v, w1, w2, v) + S(v, w2, w1, v)

= 2S(v, w1, w2, v) = −2S(v, w1, v, w2).

Using the symmetric properties, S is alternating in all four variables. Hence S = 0, which is

exactly what we wish to prove.

(2) ⇒ (4): Choose an orthonormal basis ei for TpM; then ei ∧ ej , i < j, is a basis for

∧2TpM. Using (2) we have

〈Rmg(ei ∧ ej), eℓ ∧ ek〉g(p) = Rmg(ei, ej , ek, eℓ)

= k
〈
〈ej , ek〉g(p)ei − 〈ei, ek〉g(p)ej , eℓ

〉
g(p)

= k〈ei ∧ ej , eℓ ∧ ek〉g(p)

that implies

Rmg(ei ∧ ej) = k (ei ∧ ej) .

(4) ⇒ (1): If v, w are orthogonal unit vectors, then k = 〈Rmg(v ∧ w), w ∧ v〉g =

Secg(v, w).

A Riemannian manifold (M, g) has constant sectional curvature if the sectional curvature

of every 2-plane is the same. So for we only know that (Rm, gcan) has sectional curvature zero.

Later, we shall prove that dr ⊗ dr + sn2k(r)dsn−1 ⊗ dsn−1 has constant sectional curvature k.

Note 2.8

♣

Show that

Rℓijk = ∂iΓ
ℓ
jk − ∂jΓ

ℓ
ik + ΓpjkΓ

ℓ
ip − ΓpikΓ

ℓ
jp. (2.2.21)
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The Ricci tensor field Ricg is the trace of the Riemann curvature tensor field:

Rcg(Y, Z) := trg (X 7−→ Rmg(X,Y )Z) .

In terms of an orthonormal frame e1, · · · , em, we have

Rcg(Y, Z) =
∑

1≤i≤m
〈Rmg(ei, Y )Z, ei〉g .

Its components, defined by

Rij := Ricg(∂i, ∂j)

are given by

Rjk =
∑

1≤i≤m
Riijk.

The Ricci curvature of a line L ⊂ TxM is defined by

Rcg(L) := Ricg(e1, e1),

where e1 ∈ TxM is a unit vector spanning L. The scalar curvature is the trace of the Ricci

tensor field:

Rg :=
∑

1≤i≤m
Rcg(ei, ei).

Equivalently,

Rg = gijRij .

Here (gij) := (gij)
−1 is the inverse matrix.

We say a metric has constant Ricci curvature if the Ricci curvature of every line is the

same. We say (M, g) is an Einstein manifold with Einstein constant k, if

Rcg = kg.

If (M, g) has constant sectional curvature k, then (M, g) is also Einstein with Einstein constant

(m− 1)k. The converse may not be true; three basic types are

(1) (Sm × Sm, dsm ⊗ dsm + dsm ⊗ dsm) with Einstein constant m− 1.

(2) The Fubini-Study metric on CPm with Einstein constant 2m+ 2.

(3) The Schwarzschild metric on R2 × S2, which is a doubly warped product metric: dr ⊗
dr + ϕ2(r)dθ ⊗ dθ + ψ2(r)ds2 ⊗ ds2 with Einstein constant 0.

Note 2.9

♣

Given a metric g and a positive constant C, show that

Rm
(3,1)
Cg = Rm(3,1)

g , Rm
(4,0)
Cg = CRm(4,0)

g , RcCg = Rcg, RCg = C−1Rg.

Note 2.10. (Geometric interpretation of tracing)
The trace of a symmetric 2-tensor field α is given by the following formula:

trg(α) =
1

ωm

∫
Sm−1

α(v, v)dσ(v),
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♣

where Sm−1 is the unit (m − 1)-sphere, mωm its volume, and dσ its volume form. For

any unit vector u, 1
m−1Rcg(u, u) is the average of the sectional curvatures of planes

containing the vector u. Similarly, 1
mRg(p) is the average of Rcg(u, u) over all unit

vectors u ∈ Sm−1 ⊂ TpM.

Choose an orthonormal basis e1, · · · , em such that α =
∑

1≤i≤m λie
∗
i ⊗ e∗i . Then

trg(α) =
∑

1≤i≤m λi and
1

ωm

∫
Sm−1

〈v, ei〉2gdσ(v) = 1.

Therefore
1

ωm

∫
Sm−1

α(v, v)dσ(v) =
1

ωm

∫
Sm−1

∑
1≤i≤m

λie
∗
i ⊗ e∗i (v, v) dσ(v)

=
∑

1≤i≤m
λi

(
1

ωm

∫
Sm−1

e∗i ⊗ e∗i (v, v)dσ(v)

)

=
∑

1≤i≤m
λi

(
1

ωm

∫
Sm−1

〈v, ei〉2gdσ(v)
)

=
∑

1≤i≤m
λi = trg(α).

Using this formula we can prove the rest facts.

2.2.3 Covariant differentiation

Acting on (0, s)-tensor fields, we define covariant differentiation by(
∇(0,s)
g

)
X

: C∞ (M,⊗sTM) −→ C∞ (M,⊗sTM)

where (
∇(0,s)
g

)
X
(Z1 ⊗ · · · ⊗ Zs) :=

∑
1≤i≤s

Z1 ⊗ · · · ⊗ (∇g)XZi ⊗ · · · ⊗ Zs.

The covariant derivative of an (r, s)-tensor field α is defined by((
∇(r,s)
g

)
X
α
)
(Y1, · · · , Yr) := (∇g)

(0,s)
X (α(Y1, · · · , Yr))

−
∑

1≤i≤r
α (Y1, · · · , (∇g)XYi, · · · , Yr) , (2.2.22)

Let ⊗r,sM = ⊗rT ∗M⊗⊗sTM. The covariant derivative may be considered as

∇(r,s)
g : C∞(M,⊗r,sM) −→ C∞(M,⊗r+1,sM),

where ((
∇(r,s)
g

)
α
)
(X,Z1, · · · , Zr) :=

((
∇(r,s)
g

)
X
α
)
(Z1, · · · , Zr),

or equivalently,

∇(r,s)
g α =

∑
1≤i≤m

dxi ⊗
(
∇(r,s)
g

)
i
α.

As an application, we prove

∇(2,0)
g g = 0. (2.2.23)
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Indeed, by definition,(
∇(2,0)
g g

)
(X,Z1, Z2) =

((
∇(2,0)
g

)
X
g
)
(Z1, Z2)

=
(
∇(0,0)
g

)
X
(g(Z1, Z2))− g ((∇g)XZ1, Z2)− g (Z1, (∇g)XZ2)

= X (g(Z1, Z2))−X (g(Z1, Z2)) = 0.

In general, we say a (r, s)-tensor field α is parallel if ∇(r,s)
g α = 0. Thus, g is parallel.

We consider the composition of two covariant derivatives

∇(r+1,s)
g ◦ ∇(r,s)

g : C∞(M,⊗r,sM) −→ C∞(M,⊗r+2,sM)

is given by((
∇(r+1,s)
g ◦ ∇(r,s)

g

)
α
)
(X,Y, Z1, · · · , Zr) = (∇(r+1,s)

g )X

(
∇(r,s)
g α

)
(Y, Z1, · · · , Zr)

= (∇(0,s)
g )X

((
∇(r,s)
g α

)
(Y, Z1, · · · , Zr)

)
−
(
∇(r,s)
g α

)
((∇g)XY, Z1, · · · , Zr)

−
∑

1≤i≤r

(
∇(r,s)
g α

)
(Y, Z1, · · · , (∇g)XZi, · · · , Zr)

= (∇(0,s)
g )X

((
(∇(r,s)

g )Y α
)
(Z1, · · · , Zr)

)
−
(
(∇(r,s)

g )(∇g)XY α
)
(Z1, · · · , Zr)

−
r∑
i=1

(
(∇(r,s)

g )Y α
)
(Z1, · · · , (∇g)XZi, · · · , Zr)

=
(
(∇(r,s)

g )X

(
(∇(r,s)

g )Y α
))

(Z1, · · · , Zr)−
(
(∇(r,s)

g )(∇g)XY α
)
(Z1, · · · , Zr).

If we write((
(∇(r+1,s)

g )X ◦ (∇(r,s)
g )Y

)
α
)
(Z1, · · · , Zr) =

((
∇(r+1,s)
g ◦ ∇(r,s)

g

)
α
)
(X,Y, Z1, · · · , Zr),

then (
(∇(r+1,s)

g )X ◦ (∇(r,s)
g )Y

)
α = (∇(r,s)

g )X

(
(∇(r,s)

g )Y α
)
− (∇(r,s)

g )(∇g)XY α.

Note 2.11

♣Throughout this note, we write ∇g instead of ∇(r,s)
g .

Hence

(∇2
g)X,Y α = (∇g)X(∇g)Y α− (∇g)(∇g)XY α.

If β is an (r, s)-tensor field, then we define the components ∇iβ
k1···ks
j1···jr of the covariant

derivative ∇gβ by

∇iβ
k1···ks
j1···jr ∂k1 ⊗ · · · ⊗ ∂ks = ((∇g)∂iβ) (∂j1 , · · · , ∂jr) .

We then have

∇iβ
k1···ks
j1···jr = ∂iβ

k1···ks
j1···jr −

∑
1≤p≤r

∑
1≤q≤m

Γqijpβ
k1···ks
j1···jp−1ℓjp+1···jr (2.2.24)

+
∑

1≤p≤s

∑
1≤q≤m

Γ
kp
iq β

k1···kp−1qkp+1···ks
j1···jr .
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For any 2-form β we have

∇iβjk = ∂iβjk − Γℓijβℓk − Γℓikβjℓ.

If β is a 4-form, then

∇iβjkℓp = ∂iβjkℓp − Γpijβpkℓp − Γpikβjpℓp − Γpiℓβjkpp − Γpipβjkℓp.

Note 2.12

♣

We

∇i∇jf := (∇g∇gf)(∂i, ∂j) = ∂i∂jf − Γkij∂kf

and more generally for a 1-form α = αidx
i,

∇iαj = ∂iαj − Γkijαk.

Since ∇gf = df = ∂ifdx
i, it follows that ∇gf can be viewed as a 1-form so that the two

formulas coincide with each other in this case.

Let αi1···ir denote the components of an (r, 0)-tensor field α:

αi1···ir := α (∂i1 , · · · , ∂ir) .

We denote the components of ∇k
gα by ∇j1 · · · ∇jkαi1···ir , that is,

∇j1 · · · ∇jrαi1···ir :=
(
∇k
gα
)
(∂j1 , · · · , ∂jm , ∂i1 , · · · , ∂ir) .

For example, if α is a 1-form, then

∇i∇jαk = ∇i

(
∂jαk − Γℓjkαℓ

)
= ∂i∂jαk − Γℓij∂ℓαk − Γℓik∂jαℓ −∇iΓ

ℓ
jk · αℓ − Γℓjk

(
∂iαℓ − Γpiℓαp

)
;

note that

∇iΓ
ℓ
jk = ∂iΓ

ℓ
jk − ΓpijΓ

ℓ
pk − ΓpikΓ

ℓ
jp + ΓℓipΓ

p
jk.

Therefore

∇i∇jαk = ∂i∂jαk −
(
Γℓij∂ℓαk + Γℓik∂jαℓ + Γℓjk∂iαℓ

)
−
(
∂iΓ

ℓ
jk − ΓpijΓ

ℓ
pk − ΓpikΓ

ℓ
jp

)
αℓ.

Similarly, we can define the multiple covariant derivatives of an (r, s)-tensor field.

2.2.4 Holonomy

Given a path γ : [a, b] → M from p to q, parallel translation along γ defines an isometry

ιγ : (TpM, gp) −→ (TqM, gq) .

Given a point p ∈ M, the set of isometries induced by parallel translation along contractible

loop based at p is a group, called the restricted holonomy group Hol0p(M, g).
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Note 2.13

♣

Show that

Hol0(p1,p2)(M
m1
1 ×Mm2

2 , g1 + g2) = Hol0p1(M
m1
1 , g1) + Hol0p2(M

m2
2 , g2).

If Ep ⊂ TpM is a subspace invariant under parallel translation, then E⊥
p , the orthogonal

complement in TpM, is also invariant. Consequently, the action of Hol0p(M, g) on TM induces

a bundle decomposition

TM = E1 ⊕ · · · ⊕ Ek, (2.2.25)

where Ei are subbundles invariant under parallel translation such that for each p ∈ M,

TpM = (E1)p ⊕ · · · ⊕ (Ek)p

is the decomposition of TpM into its irreducible invariant subspaces with respect to the action

Hol0p(M, g). We call the splitting (2.2.25) the irreducible holonomy decomposition of TM.

Theorem 2.1. (De Rham holonomy splitting theorem)

♥

Let (M, g) be a complete, simply-connected, m-dimensional Riemannian manifold. If

TM = E1 ⊕ · · · ⊕ Ek is the irreducible holonomoy decomposition of TM, then (M, g)

splits as a Riemannian product, where Ei = TNi,

(M, g) = (N1 × · · ·Nk, g1 + · · ·+ gk) .

2.3 Basic formulas and identities

Introduction

h Bianchi identities

h Lie derivatives

h Commuting covariant derivatives

h The fundamental curvature equations

2.3.1 Bianchi identities

The first and second Bianchi identities are

Rijkℓ +Rjkiℓ +Rkijℓ = 0, (2.3.1)

∇iRjkℓp +∇jRkiℓp +∇kRijℓp = 0. (2.3.2)

For any vector fields X,Y , and Z, we have (where we set ∇ = ∇g)

Rmg(X,Y )Z +Rmg(Y, Z)X +Rmg(Z,X)Y

= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z +∇Y∇ZX −∇Z∇YX −∇[Y,Z]X

+∇Z∇XY −∇X∇ZY −∇[Z,X]Y

= ∇X (∇Y Z −∇ZY ) +∇Y (∇ZX −∇XZ) +∇Z (∇XY −∇YX)
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−
(
∇[X,Y ]Z +∇[Y,Z]X +∇[Z,X]Y

)
= ∇X [Y, Z] +∇Y [Z,X] +∇Z [X,Y ]−

(
∇[X,Y ]Z +∇[Y,Z]X +∇[Z,X]Y

)
= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Setting X = ∂i, Y = ∂j , and Z = ∂k, yields (2.3.1). For the second Bianchi identity, one can

write down the expression of Rijkl in terms of the metric components, then calculus the right

side of (2.3.2).

The twice contracted second Bianchi identity is

2gij∇iRjk = ∇kRg. (2.3.3)

In fact, multiplying the second Bianchi identity (2.3.2) by gipgjℓ implies

0 = −gip∇iRkp − gjℓ∇jRkℓ +∇kRg.

By rearranging the terms, we obtain (2.3.3). Using the convenient notation ∇j := gij∇i, we can

rewrite (2.3.3) as

∇jRjk =
1

2
∇kRg.

If we introduce the Einstein tensor Eng = Rcg − 1
2Rgg, then

divg (Eng) = 0.

This is because

(divg(Eng))k = gij∇j

(
Rjk −

Rg
2
gjk

)
= gij∇iRjk −

1

2
∇kRg = 0.

The (once contracted second Bianchi identity) is

− (divg(Rmg))ℓjk = ∇pRjkℓp = gim∇iRjkℓp = ∇jRkℓ −∇kRjℓ. (2.3.4)

Multiplying (2.3.2) by gip, we get 0 = ∇pRjkℓp −∇jRkℓ +∇kRjℓ that implies (2.3.4).

Theorem 2.2. (Schur, 1886)

♥

(1) If g is an Einstein metric, i.e., Rij = 1
mRggij , and m ≥ 3, then R is a constant. Note

that any Riemannian metric on a surface is always Einstein.

(2) If m ≥ 3 and the sectional curvatures at each point are independent of the 2-plane,

that is, if

Rijkℓ =
Rg

m(m− 1)
(giℓgjk − gikgjℓ),

then Rg is a constant.

Proof. (1) Using (2.3.3) we obtain
1

2
∇kRg = ∇jRjk =

1

m
∇kRg.

If m ≥ 3, it follows that ∇kRg = 0 for any k and hence Rg is a constant.
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(2) We use (1) by computing

Rjk = giℓRijkℓ =
Rg

m(m− 1)
(mgjk − gjk) =

Rg
m
gjk.

Therefore Rg is a constant.

2.3.2 Lie derivatives

A vector field X is complete if there is a 1-parameter group of diffeomorphisms (ϕt)t∈R
generated by X . If M is closed, then any smooth vector field is complete. Let α be an

(r, s)-tensor field and let X be a complete vector field generating a global 1-parameter group of

diffeomorphisms ϕt. The Lie derivative of α with respect to X is defined by

LXα := lim
t→0

α− (ϕt)∗α

t
. (2.3.5)

Here (ϕt)∗,p : TpM → Tφ(p)M is the differential of ϕt at p ∈ M. It acts on the cotangent

bundle by (ϕt)∗,p := (ϕ−1
t )∗φt(p)

: T ∗
pM → T ∗

φt(p)
M. We can then extend the action of (ϕt)∗

to the tensor bundles of M . The definition (2.3.5) extends to the case where X is not complete

and only defines local 1-parameter groups of diffeomorphisms. Some basic properties of the Lie

derivative are

(1) If f is a function, then LXf = Xf .

(2) If Y is a vector field, then LXY = [X,Y ].

(3) If α and β are tensor fields, then LX(α⊗ β) = (LXα)⊗ β + α⊗ (LXβ).

(4) If α is an (r, 0)-tensor fields, then for any vector fields X,Y1, · · · , Yr,

(LXα)(Y1, · · · , Yr) = X (α(Y1, · · · , Yr))

−
∑

1≤i≤m
α(Y1, · · · , Yi−1, [X,Yi], Yi+1, · · · , Yr)

= (∇Xα)(Y1, · · · , Yr) (2.3.6)

+
∑

1≤i≤m
α(Y1, · · · , Yi−1,∇YiX,Yi+1, · · · , Yr).

If α is a 2-form, then

(LXα) (∂i, ∂j) = X (α(∂i, ∂j))− α ([X, ∂i], ∂j)− α (∂i, [X, ∂j ])

= Xαij − α
(
−∂iXℓ · ∂ℓ, ∂j

)
− α

(
∂i,−∂jXℓ · ∂ℓ

)
= Xαij + ∂iX

ℓ · αℓj + ∂jX
ℓ · αiℓ = ∇Xαij +∇iX

ℓ · αlj +∇jX
ℓ · αiℓ

where we use the formula ∂ℓαij = ∇ℓαij + Γpℓiαpj + Γpℓjαip.

Note 2.14

♣

Given a diffeomorphism ϕ : M → M, we have ϕ∗
p : T ∗

φ(p)M → T ∗
pM. The pull-back

acts on the tangent bundle by ϕ∗
p := (ϕ−1)∗,φ(p) : Tφ(p)M → TpM. These actions

extend to the tensor bundles of M . Show that definition (2.3.5) is equivalent to

LXα = lim
t→0

ϕ∗
tα− α

t
=

d

dt

∣∣∣
t=0

ϕ∗
tα.
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The gradient of a function f with respect to the metric g is defined by

g
(
gradgf,X

)
:= Xf = df(X).

We shall also use the notation ∇gf to denote gradgf . In local coordinates,

df = ∂ifdx
i, gradgf = gij∂if∂j .

Note 2.15. (Lie derivative of the metric)

♣

The Lie derivative of the metric is given by

(LXg)(Y1, Y2) = g (∇Y1X,Y2) + g (Y1,∇Y2X) (2.3.7)

and that in local coordinates this implies

(LXg)ij = ∇iXj +∇jXi, Xi := giℓX
ℓ.

In particular, if f is a function, then(
Lgradgfg

)
ij
= 2∇i∇jf. (2.3.8)

Actually, (2.3.7) follows from ∇gg = 0. Let X = gradgf , by using (2.3.8) we have

Xi = ∂if so that we prove (2.3.8).

Note 2.16

♣

For any 1-form α = αidx
i, we write

α♯ = gijαi∂j .

Then (df)♯ = gradgf . Also note that (2.3.8) has a short expression

L(df)♯g = 2∇2
gf = 2Hessg(f), Hessg(f) = L 1

2
(df)♯g.

Correspondingly, to any vector field X = Xi∂i we associate a 1-form X♭ defined by

X♭ = gijX
idxj .

In terms of this notation, (2.3.7) equals (LX)ij = ∇i(X
♭)j +∇j(X

♭)i.

Lemma 2.1

♥

For any diffeomorphism ϕ : M → M, tensor field α, and vector field X ,

ϕ∗(LXα) = Lφ∗X(ϕ
∗α), (2.3.9)

and if f : M → R, then

ϕ∗(gradgf) = gradφ∗g(ϕ
∗f) (2.3.10)

where ϕ∗f := f ◦ ϕ.

Proof. Let ψt be a 1-parameter group of diffeomorphisms generated by X . Calculate

ϕ∗(LXα) = ϕ∗
(
lim
t→0

ψ∗
tα− α

t

)
= lim

t→0

ϕ∗(ψ∗
tα)− ϕ∗α

t

= lim
t→0

(ψt ◦ ϕ)∗α− ϕ∗α

t
= lim

t→0

(ϕ−1 ◦ ψt ◦ ϕ)∗ϕ∗α− ϕ∗α

t
= LY (ϕ

∗α)
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where Y is the vector field generating the 1-parameter group of diffeomorphisms ϕ−1 ◦ ψt ◦ ϕ.

For any point p ∈ M, we have

Y (p) =
d

dt

∣∣∣
t=0

(ϕ−1 ◦ ψt ◦ ϕ)(p) = (ϕ−1)∗
d

dt

∣∣∣
t=0

ψt ◦ ϕ(p)

= (ϕ−1)∗(X(ϕ(p))) = (ϕ∗X)(p).

For any p ∈ M and X ∈ Tφ(p)M, we have〈
ϕ∗(gradgf), ϕ ∗X

〉
φ∗g

(p) = 〈gradgf,X〉g(ϕ(p))

= (Xf)(ϕ(p)) = (ϕ∗X)(ϕ∗f)(p) =
〈
gradφ∗g(ϕ

∗f), ϕ∗X
〉
φ∗g

(p).

Thus we prove (2.3.10).

Note 2.17

♣

If ϕt : M → M is the 1-parameter family of diffeomorphisms and α is a tensor field, then

∂t (ϕ
∗
tα) = LXt (ϕ

∗
tα) , (2.3.11)

where

Xt0 := ∂t|t=0

(
ϕ−1
t0

◦ ϕt
)
=
(
ϕ−1
t0

)
∗ ∂t|t=0ϕt.

Here we have not assumed that ϕt is a group.

Definition 2.1

♣

We say that a diffeomorphism ψ : (M, g) → (N , h) is an isometry if ψ∗h = g. If we do

not require ψ to be a diffeomorphism, then ψ is called a local isometry. Two Riemannian

manifolds are said to be isometric if there is an isometry from one to the other.

We say that a vector field X on (M, g) is Killing if LXg = 0. If X is a complete Killing

vector field, then the 1-parameter group of diffeomorphisms ϕt that it generates is a 1-parameter

group of isometries of (M, g). Indeed,

∂t (ϕ
∗
t g) = Lφ∗

tX
(ϕ∗

t g) = ϕ∗
t (LXg) = 0.

Note 2.18
(1) Prove the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for vector fields X,Y, Z as follows: Let ϕt : M → M be the 1-parameter group of

diffeomorphisms generated by X and take the time derivative at t = 0 of the "invariance

of the Lie bracket under diffeomorphism" equation

ϕ∗
t [Y, Z] = [ϕ∗

tY, ϕ
∗
tZ].

(2) (Kazdan, 1981) Prove the twice contracted second Bianchi identities by considering

the diffeomorphism invariance of the scalar curvature and Riemannian curvature tensor.

(a) To obtain the twice contracted second Bianchi identity (2.3.3) we use the equation

DRg(LXg) = LXRg = Xi∇iRg (2.3.12)
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♣

where DRg(LXg) denotes the linearization of Rg in the direction LXg.

(b) To prove the second Bianchi identity (2.3.2), we use

DRmg(LXg) = LXRmg. (2.3.13)

2.3.3 Commuting covariant derivatives

The Ricci identities are

(∇i∇j −∇j∇i)αk1···kr = −
∑

1≤ℓ≤r
Rpijkrαk1···kℓ−1pkℓ+1···kr . (2.3.14)

If α is a 1-form, then

(∇i∇j −∇j∇i)αk = −Rℓijkαℓ.

If β is a 2-form, then

∇i∇jβkℓ −∇j∇iβkℓ = −Rpijkβpℓ −Rpijℓβkp.

Note 2.19

♣The vector space of Killing vector fields is a Lie algebra.

Note 2.20

♣

∇i∇jα
ℓ1···ℓs
k1···kr −∇j∇iα

ℓ1···ℓs
k1···kr = −

∑
1≤k≤r

∑
1≤p≤m

Rpijkhα
ℓ1···ℓs
k1···kh−1pkh+1···kr

+
∑

1≤h≤s

∑
1≤p≤m

Rℓhijpα
ℓ1···ℓh−1pℓh+1···ls
k1···kr .(2.3.15)

2.3.4 The fundamental curvature equations in Riemannian geometry

Let (M, g) be an m-dimensional Riemannian manifold. If f : M → R is smooth, we

define a self-adjoint (1, 1)-tensor by

Sf : C∞(M, TM) −→ C∞(M, TM), X 7−→ (∇g)X∇gf. (2.3.16)

Then the Hessian of f can be written as

Hessgf(X,Y ) = g (Sf (X), Y ) .

We say that a map r : U → R, where U ⊂ M is open, is a distance function if |∇gr|g ≡ 1

on U . Distance functions are solutions to the Hamilton-Jacobi equation

|∇gr|2g = 1.

Example 2.7
(1) On (Rm, gcan) and a fixed point y ∈ Rm, we define

r(x) := |x− y|gcan .
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♠

Then r(x) is smooth on Rm \ {y} and has |∇gcanr|gcan ≡ 1.

(2) More generally, if M ⊂ Rn is a submanifold, then it can be shown that

r(x) = d(x,M) = inf{d(x, y) : y ∈ M}

is a distance function on some open set U ⊂ Rn.

(3) On I ×M, where I ⊂ R, is an integral we have metrics of the form dr2 + gr, where

dr2 is the standard metric on I and gr is a metric on {r} ×M that depends on r. In this

case the projection I ×M → I is a distance function.

Lemma 2.2

♥

Given r : U → I ⊂ R, then r is a distance function if and only if r is Riemannian

submersion.

Proof. From dr(v) = g (∇gr, v), we see that v ⊥ ∇gr if and only if Dr(v) := dr(v)∂t, where

∂t is the basis for TI . Thus, v is perpendicular to the kernel ofDr if and only if it is proportional

to ∇gr. For v = α∇gr, we have

Dr(v) = αDr (∇gr) = αg (∇gr,∇gr) ∂t.

Since ∂t has length 1 in I , it follows that

|v|g = |α| |∇gr|g , |Dr(v)| = |α| |∇gr|2g .

Thus, r is a Riemannian submersion if and only if |∇gr|g = 1.

Let us fix a distance function r : U → R and an open subset U ⊂ M of an m-dimensional

Riemannian manifold (M, g). The dual of the gradient ∇gr will usually be denoted by

∂r := gij∂ir∂j . (2.3.17)

This is a tangent vector field over U . The level sets for r are denoted

Ur := {x ∈ U : r(x) = r}, (2.3.18)

and the induced metric on Ur is gr. Set

Sg,r(·) = ∇g∂r

so that

Hessgr(X,Y ) = g (Sg,r(X), Y ) .

Sg,r stands for second derivative or sharp operator or second fundamental form. The last two

terms are more or less synonymous and refer to the shape of (Ur, gr) in (U , g) ⊂ (M, g). The

idea is that Sg,r = ∇g∂r measures how the induced metric on Ur changes by computing how the

unit normal to Ur changes.
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Example 2.8

♠

Let M ⊂ Rm+1 be an orientable hypersurface, ν the unit normal, and Sν the sharp

operator defined by

Sν(V ) = ∇V ν, V ∈ C∞(M, TM)

where ∇ = ∇gcan . If Sν ≡ 0 on M then ν must be a constant vector field on M, and

hence M is an open subset of the hyperplane

H = {x+ p ∈ Rm+1 : x · νp = 0},

Recall our isometric immersion or embedding (Rm, gcan) → (Rm+1, gcan) defined by

(x1, · · · , xm) 7−→ (γ(x1), x2, · · · , xm)

where γ = (γ1, γ2) : R → R2 is a unit speed curve. In this case,

ν = (ν(x1), 0, · · · , 0)

is a unit normal, where ν(x1) is the unit normal to γ in R2. Then

ν =
(
−γ̇2(x1), γ̇1(x1), 0, · · · , 0

)
in Cartesian coordinates. Calculate

∇ν = −d
(
γ̇2
)
⊗ ∂1 + d

(
γ̇1
)
⊗ ∂2 = −γ̈2dx1 ⊗ ∂1 + γ̈1dx1 ⊗ ∂2

=
(
−γ̈2∂1 + γ̈1∂2

)
⊗ dx1.

Thus, Sν ≡ 0 if and only if γ̈1 = γ̈2 = 0 if and only if γ is a straight line if and only if M
is an open subset of a hyperplane.

Theorem 2.3. (The radial curvature equation)

♥

If U ⊂ (M, g) is an open set and r : U → R a distance function, then

(∇g)∂rSg,r + S2
g,r = −Rmg(∂r). (2.3.19)

Proof. If X is a vector field on U , then

((∇g)∂rSg,r) (X) + S2
g,r(X) = (∇g)∂r (Sg,r(X))− Sg,r ((∇g)∂rX) + S2

g,r(X)

= (∇g)∂r(∇g)X∂r − (∇g)(∇g)∂rX
∂r + (∇g)(∇g)X∂r∂r = (∇g)∂r(∇g)X∂r − (∇g)[∂r,X]∂r;

and

−Rmg(∂r)(X) = −Rmg(X, ∂r)∂r = −(∇g)X(∇g)∂r∂r + (∇g)∂r(∇g)X∂r − (∇g)[∂r,X]∂r.

To finish the proof we shall check what happens to the term −(∇g)X(∇g)∂r∂r. By definition of

the distance function, we have

g ((∇g)∂r∂r, Y ) = g (Sg,r(∂r), Y ) = Hessgr (Y, ∂r) = Hessgr (Y, ∂r)

= g (Sg,r(Y ), ∂r) = g ((∇g)Y ∂r, ∂r) =
1

2
(∇g)Y g (∂r, ∂r) =

1

2
(∇g)Y 1

for any vector field Y on U . In particular, (∇g)∂r∂r = 0 on U .
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Each vector v on the level set Ur can be decomposed into normal and tangent components:

v = v⊤ + v⊥ = (v − g(v, ∂r)∂r) + g(v, ∂r)∂r. (2.3.20)

The decomposition is a direct sum since

g (v − g(v, ∂r)∂r, g(v, ∂r)∂r) = g (v, g(v, ∂r)∂r)− g (g(v, ∂r)∂r, g(v, ∂r)∂r)

= g(v, ∂r)
2 − g(v, ∂r)

2g(∂r, ∂r) = 0.

Theorem 2.4. (Tangent curvature equation)

♥

For tangent vector fields X,Y, Z,W on the level set Ur, we have

(Rmg(X,Y )Z)⊤ = Rmgr(X,Y )Z − (Sg,r(X) ∧ Sg,r(Y )) (Z),

Rmg(X,Y, Z,W ) = Rmgr(X,Y, Z,W )− IIgr(Y, Z)IIgr(X,W )

+ IIgr(X,Z)IIgr(Y,W ),

where

IIgr(U, V ) := Hessgr(U, V ) = g (Sg,r(U), V )

is the classical second fundamental form.

Proof. If X,Y are vector fields that are tangent to the level set Ur, then we claim that

(∇gr)XY = (∇g)XY + IIgr(X,Y )∂r. (2.3.21)

By definition, we have

(∇gr)XY = ((∇g)XY )⊤ = (∇g)XY − g ((∇g)XY, ∂r) ∂r.

Since Y ⊥ ∂r, it follows that

0 = (∇g)Xg(Y, ∂r) = g ((∇g)XY, ∂r) + g (Y, Sg,r(X))

and hence

(∇gr)XY = (∇g)XY + g (Sg,r(X), Y ) ∂r = (∇g)XY + IIgr(X,Y )∂r.

Using (2.3.21) yields

Rmg(X,Y )Z = Rmgr(X,Y )Z − (Sg,r(X) ∧ Sg,r(Y )) (Z)

+ g (− ((∇g)XSg,r) (Y ) + ((∇g)Y Sg,r) (X), Z) · ∂r.

This establishes the first part of each formula. The second part follows from the definition.

Theorem 2.5. (The normal or mixed curvature equation)

♥

For tangent vector fields X,Y, Z on the level set Ur, we have

Rmg(X,Y, Z, ∂r) = g (− ((∇g)XSg,r) (Y ) + ((∇g)Y Sg,r) (X), Z)

= − ((∇g)XIIgr) (Y, Z) + ((∇g)Y IIgr) (X,Z).

Proof. Use the similar method in the proof of previous theorem.
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IfB(·, ·) is a symmetric 2-form and Bg(·) the corresponding self-adjoint (1, 1)-tensor field

defined via

g (Bg(X), Y ) = B(X,Y ),

then the square of B is the symmetric bilinear form corresponding to B2
g

B2(X,Y ) = g
(
B2
g(X), Y

)
= g (Bg(X),Bg(Y )) .

Note that this symmetric bilinear form is always nonnegative, i.e., B2(X,X) ≥ 0 for all X .

For example, if B(·, ·) = Hessgr(·, ·), then Bg(·) = Sg,r(·) = ∇g∂r.

Proposition 2.2

♥

If we have a smooth distance function r : (U , g) → R and denote gradgr = ∂r, then

L 1
2
∂r
g = Hessgr,

((∇g)∂rHessgr) (X,Y ) + Hess2gr(X,Y ) = −Rmg(X, ∂r, ∂r, Y ),

(L∂rHessgr) (X,Y )−Hess2gr(X,Y ) = −Rmg(X, ∂r, ∂r, Y ).

Proof. We have proved (∇g)∂r∂r = 0 in the proof of Theorem 2.3. Keep in mind that (∇g)X∂r

is the self-adjoint operator corresponding to Hessgr. Using the radial curvature equation, we

obtain

((∇g)∂rHessgr) (X,Y ) = ∂rHessgr(X,Y )−Hessgr ((∇g)∂rX,Y )−Hessgr (X, (∇g)∂rY )

= ∂rg ((∇g)X∂r, Y )− g
(
(∇g)(∇g)∂rX

∂r, Y
)
− g ((∇g)X∂r, (∇g)∂rY )

= g ((∇g)∂r(∇g)X∂r, Y )− g
(
(∇g)(∇g)∂rX

∂r, Y
)

+ g ((∇g)X∂r, (∇g)∂rY )− g ((∇g)X∂r, (∇g)∂rY )

= g (Rmg(∂r, X)∂r, Y )− g
(
(∇g)(∇g)X∂r∂r, Y

)
= −Rmg(X, ∂r, ∂r, Y )−g ((∇g)Y ∂r, (∇g)X∂r) = −Rmg (X, ∂r, ∂r, Y )−Hess2gr(X,Y ).

Similarly, we can prove the third equation.

A Jacobi field for a smooth distance function r is a smooth vector field J that does not

depend on r, i.e., it satisfies the Jacobi equation

L∂rJ = 0. (2.3.22)

This is a first-order linear PDE, which can be solved by the method of characteristics. Locally we

select a coordinate system (r, x2, · · · , xm) where r is the first coordinate. Then J = ar∂r+a
i∂i

and the Jacobi equation becomes

0 = L∂rJ = L∂r

(
ar∂r + ai∂i

)
= ∂r(a

r)∂r + ∂r(a
i)∂i.
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Thus the coefficients ar, ai have to be independent of r. Since

−Rmg(J, ∂r)∂r = Rmg(∂r, J)∂r = (∇g)∂r(∇g)J∂r − (∇g)J(∇g)∂r∂r − (∇g)[∂r,J ]∂r

(∇g)∂r(∇g)J∂r − (∇g)[∂r,J ]∂r = (∇g)∂r(∇g)∂rJ − (∇g)∂r [∂r, J ]− (∇g)[∂r,J ]∂r

it follows that (2.3.22) satisfies a more general second-order equation, also known as the Jacobi

equation:

(∇g)∂r(∇g)∂rJ +Rmg(J, ∂r)∂r = 0. (2.3.23)

If J1 and J2 are Jacobi fields, then

∂r (g(J1, J2)) = 2Hessgr(J1, J2),

∂r (Hessgr(J1, J2))−Hess2gr(J1, J2) = −Rmg(J1, ∂r, ∂r, J2)

according to Proposition 2.2.

A parallel field for a smooth distance function r is a vector field X such that

(∇g)∂rX = 0. (2.3.24)

This is a first-order linear PDE and can be solved in a similar manner. However, one crucial

difference is that parallel fields are almost never Jacobi fields.

If X1, X2 are parallel fields for a smooth distance function r, then

∂r (g(X1, X2)) = 0,

∂r (Hessgr(X1, X2)) + Hess2gr(X1, X2) = −Rmg(X1, ∂r, ∂r, X2).

2.4 Examples

Introduction

h Warped products

h Hyperbolic spaces

h Metrics on Lie groups

h Riemannian submersions

Let (M, g) be anm-dimensional Riemannian manifold. Recall operators Rm∧
g and Rmg:

Rm∧
g : C∞(M,∧2M)× C∞(M,∧2M) −→ C∞(M),

(X ∧ Y, V ∧W ) 7−→ Rmg(X,Y,W, V ),

Rmg : C
∞(M,∧2M) −→ C∞(M,∧2M),

g (Rmg (X ∧ Y ) , V ∧W ) = Rm∧
g (X ∧ Y, V ∧W )

Proposition 2.3
Let {ei}1≤i≤m be an orthonormal basis for TpM. If {ei ∧ ej}1≤i,j≤m diagonalize the

Riemann curvature operator

Rmg(ei ∧ ej) = λijei ∧ ej
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♥then for any plane Π in TpM we have Secg(Π) ∈ [mini,j λij ,maxi,j λij ].

Proof. If v, w form an orthonormal basis for Π, then we have

Secg(Π) = g (Rmg(v ∧ w), v ∧ w) .

In this situation, the result is immediate.

Proposition 2.4

♥

Let {ei}1≤i≤m be an orthonormal basis for TpM and suppose that Rmg(ei, ej)ek = 0 if

the indices are mutually distinct; then ei∧ej diagonalize the Riemann curvature operator.

Proof. If we use

g (Rmg(ei ∧ ej), ek ∧ eℓ) = −g (Rmg(ei, ej)ek, eℓ) = g (Rmg(ei, ej)eℓ, ek) ,

then we see this expression is zero when i, j, k are mutually distinct, or if i, j, ` are mutually

distinct. Thus, the expression can only be nonzero when {k, `} = {i, j}.

Proposition 2.5

♥

Let {ei}1≤i≤m be an orthonormal basis for TpM and suppose that

g (Rmg(ei, ej)ek, eℓ) = 0

if three of indices are mutually distinct, then ei diagonalize Rcg.

Proof. By definition, we have

g (Rcg(ei), ej) =
∑

1≤k≤m
g (Rmg(ei, ek)ek, ej) .

If i 6= j, then g (Rmg(ei, ek)ek, ej) = 0 unless k is either i or j. If k = i, j, then the expression

is zero from the symmetry properties. Hence, ei must diagonalize Rcg.

2.4.1 Warped products

In this subsection we consider the rotationally symmetric metrics, doubly warped products,

and the Schwarzschild metric.

Example 2.9. (Spheres)
On (Rm, gcan) we have the standard distance function r(x) = |x| and the polar coordi-

nate:

gcan = dr ⊗ dr + gr = dr ⊗ dr + r2dsm−1 ⊗ dsm−1,

where dsm−1 ⊗ dsm−1 is the canonical metric on Sm−1(1). The level sets are Ur =

Sm−1(r) with the induced metric gr = r2dsm−1 ⊗ dsm−1. The gradient is

∂r =
1

r
xi∂i.
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♠

Since dsm−1 ⊗ dsm−1 is independent of r we compute the Hessian as follows:

2Hessgcanr = L∂rgcan = L∂r (dr ⊗ dr) + L∂r

(
r2dsm−1 ⊗ dsm−1

)
= ∂r(r

2)dsm−1 ⊗ dsm−1 = 2rdsm−1 ⊗ dsm−1 = 2
1

r
gr.

Hence Hessgcanr = 1
rgr. The tangent curvature equation then tells us that

Rmgr(X,Y )Z =
1

r2
(gr(Y, Z)X − gr(X,Z)Y ) .

If particular, if ei is any orthonormal basis, we see that Rmgr(ei, ej)ek = 0 when the

indices are mutually distinct. Therefore, (Sm−1(r), gcan) has constant sectional curvature
1
r2

, provided that m ≥ 3.

Example 2.10. (Product spheres)

♠

Consider the product spheres

Sna × Smb := Sn
(

1√
a

)
× Sm

(
1√
b

)
=

(
Sn × Sm,

1

a
dsn ⊗ dsn +

1

b
dsm ⊗ dsm

)
.

Let g = 1
adsn ⊗ dsn +

1
bdsm ⊗ dsm. If X,Y are tangent to Sm and U, V tangent to Sm,

Rmg(X ∧ V ) = 0, Rmg(X ∧ Y ) = aX ∧ Y, Rmg(U ∧ V ) = bU ∧ V.

By Proposition 2.3, all sectional curvatures lie in the interval [0,max{a, b}]. Moreover,

Rcg(X) = (n− 1)aX, Rcg(V ) = (m− 1)bV, Rg = n(n− 1)a+m(m− 1)b.

Therefore, Sna ×Smb always has constant scalar curvature, is an Einstein manifold exactly

when (n− 1)a = (m− 1)b (which requires n,m ≥ 2 or n = m = 1), and has constant

sectional curvature only when n = m = 1.

Example 2.11. (Rotationally symmetric metrics)
Consider the metric of the form

dr ⊗ dr + ϕ2(r)dsn−1 ⊗ dsn−1 = dr ⊗ dr + gr

on (a, b)× Sn−1. Then the Hessian of the distance function r is

Hessgr =
∂rϕ

ϕ
gr.

If X is tangent to Sn−1, then

Rcg(X) =

[
(n− 2)

1− ϕ̇2

ϕ2
− ϕ̈

ϕ

]
X;

if X = ∂r, then

Rcg(∂r) = −(n− 1)
ϕ̈

ϕ
∂r.

For the Riemann curvature operator, we have

Rmg(X ∧ ∂r) = − ϕ̈
ϕ
X ∧ ∂r, Rmg(X ∧ Y ) =

1− ϕ̇2

ϕ2
X ∧ Y
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♠

for any vector fields X,Y tangent to Sn−1. Thus, all sectional curvatures lie between the

two values − φ̈
φ and 1−φ̇2

φ2 . When n = 2, we have Secg = − φ̈
φ , since there are no tangential

curvatures.

(a) For the metric

dr ⊗ dr + sn2k(r)dsn−1 ⊗ dsn−1

on Sn
(

1√
k

)
, since ϕ(r) = snk(r), we see all sectional curvatures are equal to k.

(b) If the metric g is Ricci flat, then
ϕ̈

ϕ
= 0 = (n− 2)

1− ϕ̇2

ϕ2
− ϕ̈

ϕ
.

If n > 2, we must have ϕ̈ ≡ 0 and ϕ̇2 ≡ 1. Thus ϕ(r) = a± r. In case n = 2, we

only need ϕ̈ ≡ 0.

(c) If the metric g is scalar flat (n ≥ 3), then

2(n− 1)

[
− ϕ̈
ϕ
+
n− 2

2
· 1− ϕ̇2

ϕ2

]
= 0.

Thus, we suffices to solve the equation

−ϕϕ̈+
n− 2

2

(
1− ϕ̇2

)
= 0.

Introducing the variables

ϕ̇ = G(ϕ)

we find that the above ODE reduces to the first-order equation

−ϕG′G+
n− 2

2
(1−G2) = 0.

Using the separation of variables, we see that G and ϕ are related by

ϕ̇2 = G2 = 1 + Cϕ2−n.

Example 2.12. (Doubly warped products)
Consider the metric(

I × Sp × Sq, dt⊗ dt+ ϕ2(r)dsp ⊗ dsp + ψ2(r)dsq ⊗ dsq
)
.

The Hessian is

Hessgr = (∂rϕ)ϕdsp ⊗ dsp + (∂rψ)ψdsq ⊗ dsq.

Let X,Y be tangent to Sp and V,W tangent to Sq. Then

Rmg(∂r∧X) = − ϕ̈
ϕ
∂r∧X, Rmg(∂r∧V ) = − ψ̈

ψ
∂r∧V, Rmg(X∧V ) = − ϕ̇ψ̇

ϕψ
X∧V

Rmg(X ∧ Y ) =
1− ϕ̇2

ϕ2
X ∧ Y, Rmg(U ∧ V ) =

1− ψ̇2

ψ2
U ∧ V.

Moreover,

Rcg(∂r) =

(
−pϕ̈

ϕ
− q

ψ̈

ψ

)
∂r, Rcg(X) =

(
− ϕ̈
ϕ
+ (p− 1)

1− ϕ̇2

ϕ2
− q

ϕ̇ψ̇

ϕψ

)
X,
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♠
Rcg(V ) =

(
− ψ̈
ψ

+ (q − 1)
1− ψ̇2

ψ2
− p

ϕ̇ψ̇

ϕψ

)
V.

Example 2.13. (The Schwarzschild metric)

♠

We wish to find a Ricci flat metric on R2 × S2. Let p = 1 and q = 2 in the above doubly

warped product case. This means we have to solve the following equstions

− ϕ̈
ϕ
− 2

ψ̈

ψ
= 0,

− ϕ̈
ϕ
− 2

ϕ̇ψ̇

ϕψ
= 0,

− ψ̈
ψ

+
1− ψ̇2

ψ2
− ϕ̇ψ̇

ϕψ
= 0.

The first equation yields (ψ̇/ϕ̇) = α for some constant α. Hence the above system of

equations reduces to

2ψψ̈ − (1− ψ̇2) = 0,

− ϕ̈
ϕ
− 4α2ϕ̇2

1− α2ϕ2
= 0,

ψ̇ = αϕ.

One of solutions is ψ(r) = r and ϕ(r) = 1/a. To get more complicated solutions we can

assume ψ̇2 = G(ψ). Then G = 1 + Cψ−1 for some constant C ∈ R. Turning back to

the system of equations, we obtain lots of solutions.

2.4.2 Hyperbolic space

Example 2.14. (The rotationally symmetric model)

♠

Define g to be the rotationally symmetric metric dr ⊗ dr + sinh2(r)dsm−1 ⊗ dsm−1 on

Rm of constant sectional curvature −1.

Example 2.15. (The upper half plane model)

♠

Let

Hm = {(x1, · · · , xm) ∈ Rm : xm > 0}

and let

g =
dx1 ⊗ dx1 + · · ·+ dxm ⊗ dxm

(xm)2
.

Introducing r := ln (xm), we find the metric g can be written as

g = dr ⊗ dr + e−2r
(
dx1 ⊗ dx1 + · · ·+ dxm ⊗ dxm

)
.

This metric has constant sectional curvature −1.
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Example 2.16. (The Riemann model)

♠

If (M, g) is an m-dimensional Riemannian manifold and ϕ is positive on M, then we get

a new Riemannian manifold (M, ϕ2g). Such a change in metric is called a conformal
change, and ϕ2 is referred to as the conformal factor. On the upper half plane Hm we

can ask when

ϕ2 ·
(
dx1 ⊗ dx1 + · · ·+ dxm ⊗ dxm

)
has constant sectional curvature?

Note 2.21. (The Euler and Navier-Stokes equation on H2)
Recently, Khesin and Misioleka showed that non-uniqueness of the Leray-Hopf solutions

of the Navier-Stokes equation on the hyperbolic plane H2 observed by Chan-Czubak is a

consequence of the Hodge decomposition, and however, this phenomenon does not occur

on Hm whenever m ≥ 3.

Let (M, g) be a complete Riemannian manifold and consider the Lie algebra gg,0 :=

Vectg,0(M) of (sufficiently smooth) divergence-free vector fields on M with finite L2-

norm with respect to g. Its dual space g∗g,0 has a natural identification to the quotient

space Ω1
L2,g(M) \ dΩ0

L2,g
(M) of the L2 1-forms modulo (the L2 closure of) the exact

1-forms on M. The pairing between cosets [α] ∈ Ω1
L2,g(M) \ dΩ0

L2,g
(M) of L2 1-forms

α ∈ Ω1
L2,g(M) and vector fields X ∈ Vectg,0(M) is given by

〈[α], w〉g :=
∫
M

(ιXα) dVg,

where ιX is the contraction of a differential form with a vector field X . Note that this

definition is independent of the choice of representatives. Let

gg,0 −→ g∗g,0

denote the inertia operator assigning a vector fieldX ∈ Vectg,0(M) the coset [X♭] of the

corresponding 1-form X♭ via the Riemannian metric g.

The Euler equations read
∂

∂t
Xt +∇XtXt = −gradgp, divgXt = 0. (2.4.1)

Thus, in the Hamiltonian framework (2.4.1) becomes
d

dt
[X♭

t ] = −LXt [X
♭
t ]. (2.4.2)

By Hodge decomposition, the space Ω1
L2,g(M) of the L2 1-forms decomposes as

Ω1
L2,g(M) = dΩ0

L2,g
(M)⊕ δgΩ2

L2,g
(M)⊕H1

L2,g(M),

where δg denotes the adjoint operator of d relative to g. Therefore,

g∗g,0 = δgΩ2
L2,g

(M)⊕H1
L2,g(M). (2.4.3)

It turns out that the summand of the harmonic forms in (2.4.3) corresponds to steady

solutions of the Euler equation.
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(1) Each harmonic 1-form on a complete Riemannian manifold (M, g) which belongs

to L2 ∩ L4 defines a steady solution of the Euler equation (2.4.1) or (2.4.2) on M.

Let αt be a L2 harmonic 1-form on M corresponding toXt. According to Cartan’s

formula yields
d

dt
[αt] = −LXt [αt] = − [(ιXtd+ dιXt)αt] = − [d (ιXtαt)] .

By the assumption, it follows that

||ιXtαt||
2
L2,g =

∫
M

|ιXtαt|
2
g dVg =

∫
M

|αt(Xt)|2gdVg = ||αt||4L4,g <∞;

thus ιXtαt ∈ Ω0
L2,g(M). Consequently, d

dt [αt] = 0 ∈ g∗g,0. The latter means that

the 1-form αt defines a steady solution of the Euler equation.

(2) (L2-form conjecture of Dodziuk-Singer, 1979) Let (M, g) be a complete simply-

connected Riemannian manifold of sectional curvature Secg satisfying −a2 ≤
Secg ≤ −1, a ≥ 1. Let Hp

L2,g
(M) denote the space of L2 harmonic p-forms on

M, i.e., p-forms ω on M such that

∆H,gω = 0,

∫
M

|ω|2gdVg <∞.

It is clear Hp
L2,g

(M) is naturally isomorphic to Hm−p
L2,g

(M) and H0
L2,g(M) =

0. Dodziuk and Singer conjectured that Hp
L2,g

(M) = 0 if p 6= m/2 and

dim(Hm/2
L2,g

(M)) = ∞ if m is even. By means of the L2 index theorem for regular

covers of Atiyah, an affirmative solution of this conjecture implies a positive solu-

tion of the well-known Hopf conjecture: If M2m is a compact manifold of negative

sectional curvature, then (−1)mχ(M2m) > 0.

Dodziuk has proved the L2-form conjecture for rotationally symmetric metrics – in

particular for the space form Hm(−a2) of curvature −a2. However, this conjecture

is in general not true.

(3) (Khesin-Misiolek, 2012) (i) There are no stationary L2 harmonic solutions of the

Euler equations on Hm for any m > 2. (ii) There exists an infinite-dimensional

space of stationary L2 harmonic solutions of the Euler equations on H2. The

first result (i) follows from Dodziuk’s result. To prove (ii) we note that the space

of L2 harmonic 1-forms on H2 is infinite-dimensional. Consider the subspace

S ⊂ H1
L2,g(H

2) of 1-forms:

S := {dΦ : Φ is harmonic on H2 and dΦ ∈ L2(H2)}.

We claim that S is infinite-dimensional. Indeed, let us consider the Poincaré model

of H2, i.e., the unit disk D with the hyperbolic metric g, which we denote by Dg.

It is conformally equivalent to the standard unit disk with the Euclidean metric e,

denoted by De. Bounded harmonic functions on Dg can be obtained by solving the
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Dirichlet problem on De. First, the 1-form dΦ is harmonic:

∆H,gdΦ = −dδgdΦ = d∆H,gΦ = 0.

Secondly,

||dΦ||2L2,g =

∫
D
〈dΦ, dΦ〉gdVg =

∫
D
det(gij)〈dΦ, dΦ〉edet(gij)dVe

=

∫
D
〈dΦ, dΦ〉edVe = ||dΦ||2L2,e,

||dΦ||4L2,g =

∫
D
〈dΦ, dΦ〉2gdVg =

∫
D
det2(gij)〈dΦ, dΦ〉2edet(gij)dVg

=

∫
D
(1− |z|2)2〈dΦ, dΦ〉2edVe(z) ≤ ||dΦ||4L2,e,

where det(gij) = 1/(1 − |z|2)2 is the determinant of the hyperbolic metric g.

Furthermore, for sufficiently smooth boundary values ϕ ∈ C1,α(∂D) there is a

uniform upper bound C for its harmonic extension inside the disk: |dΦ(x)| ≤
C||ϕ||C1,α(∂D) for any x ∈ D and 0 < α < 1. This implies that (for sufficiently

smoothϕ) theL2 1-forms dΦ define an infinite-dimensional subspaceS of harmonic

forms in L2 ∩ L4. By (1), they define an infinite-dimensional space of stationary

solutions of the Euler equations on the hyperbolic plane H2.

(4) (Chan-Czubak, 2010) Since suitably rescaled steady solutions of the Euler equa-

tions solve the Navier-Stokes equations on (M, g)

∂

∂t
Xt +∇XtXt − LgXt = −gradgp, divgXt = 0, (2.4.4)

where Lg := −∆H,g − 2Rc♯g. Consider the hyperbolic plane H2 with Rc♯g = −1.

Letting αt := X♭
t yields
∂

∂t
αt +∇Xtαt +∆H,gαt − 2αt = −dp, δgαt = 0. (2.4.5)

Let αt = f(t)dΦ for some dΦ ∈ S . Then (2.4.5) is equivalent to

dp = d

[
(2f(t)− f ′(t))Φ− 1

2
f2(t)|dΦ|2g

]
;

consequently, the pair (f(t)dΦ, (2f(t) − f ′(t))Φ − 1
2f

2(t)|dΦ|2g), Φ ∈ S , solves

(2.4.5). We say that Xt is a Leray-Hopf solution of the Navier-Stokes equations if

X ∈ L∞([0,∞), L2) ∩ L2([0,∞),H1) and satisfies

||Xt||2L2,g + 4

∫ t

0
||DefgXs||2L2,g ds ≤ ||X0||2L2,g, lim

t→0
||Xt −X0||L2,g = 0

(2.4.6)

for any 0 ≤ t < ∞ and where (DefgXt)ij = 1
2(∇i(Xt)j + ∇j(Xt)i) is the

deformation tensor field ofXt. In the case of surface, it was showed that the Leray-

Hopf solutions are unique and regular. Any differentiable function f(t) satisfying

f2(t) + 4

∫ t

0
f2(s)ds

||∇2
gΦ||2L2,g

||dΦ||2
L2,g

≤ f2(0)
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♣

yields a vector field Xt which satisfies (2.4.6). In summary, Chan and Czubak

showed that There exist infinitely many real-valued functions f(t) for which Xt =

f(t)(dΦ)♯ is a Leray-Hopf solution of the Navier-Stokes equations.

aarXiv: math.AP/1205.5322

2.4.3 Metrics on Lie groups

Let G be a Lie group and (·, ·) := (·, ·)e the fixed Euclidean metric on TeG. Using left

translation Lg(x) = gx, we obtain the metric (·, ·)g on TgG for every g ∈ G. Since

(dLg)h =
(
dLghh−1

)
h
= (d (Lgh ◦ Lh−1))h = (dLgh)e ◦ (dLh−1)h = (dLgh)e ◦ (dLh)

−1
e

it follows that Lg is an isometry for each g ∈ G.

Let g be the space of all left-invariant vector fields (dLg ◦X = X ◦ Lg) on G. Then TeG

can be naturally identified with g. Note also that g is a Lie algebra. If X ∈ g, then the integral

curve γX(t) through e ∈ G is denoted by exp(tX):

γ̇X(t) = XγX(t), γX(0) = e.

Letting t = 0 in above yields γ̇X(0) = XγX(0) = Xe. By the uniqueness theorem in ODE, we

have

exp((t+ s)X) = exp(tX) exp(sX), t, s ∈ [0,∞).

The entire flow for X can now be written as

F tX(x) := x exp(tX) = Lx exp(tX) = Rexp(tX)(x). (2.4.7)

This flow F tX : G → G don’t act by isometries unless the metric is also invariant under right-

translations, i.e., the metric is bi-invariant.

The inner automorphism

adg : G −→ G, x 7−→ gxg−1 (2.4.8)

is called the adjoint action of G on G. If we define

ad : G −→ Aut(G), g 7−→ adg (2.4.9)

then ad is a representation of the Lie group G. The differential of this action at e ∈ G is a linear

map

Adg := (dadg)e : g −→ g (2.4.10)

is called the adjoint action ofG on g. This is a Lie algebra isomorphism. For each t, the integral

curve exp(tX) gives a map

exp(t·) : g −→ G, X 7−→ exp(tX). (2.4.11)
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Hence, we have the following commutative diagram:

g
exp(t·)−−−−→ G

Adg

y yadg

g −−−−→
exp(t·)

G

Proposition 2.6

♥

A left-invariant metric is bi-invariant if and only if the adjoint action on the Lie algebra

is by isometries.

Proof. In case the metric is bi-invariant we know both Lg andRg−1 act by isometries. Then also

adg = Lg ◦ Rg−1 acts by isometries. The differential is therefore a linear isometry on the Lie

algebra.

Conversely, we assume that Adg : g → g is an isometry. Using

(dRg)h = (dRhg)e ◦ ((dRh)e)−1

it suffices to show that (dRg)e is an isometry. This follows from

Rg = Lg ◦ adg−1 , (dRg)e = (dLg)e ◦Adg−1 .

Hence the metric is bi-invariant.

Let G be a Lie group. We define the adjoint action Ad : g → End(g) of the Lie algebra on

the Lie algebra:

Ad := (dAd)e, (2.4.12)

where

Ad : G −→ Aut(g). (2.4.13)

We claim that

AdXY = [X,Y ]. (2.4.14)

If we write adh = Rh−1 ◦ Lh, then

Adh = d (adh)e = d (Rh−1 ◦ Lh)e = (dRh−1)h ◦ (dLh)e.

Let F t be the flow for X . Then F t(g) = gF t(e) = Lg(F
t(e)) = RF t(e)g as both curves go

through g at t = 0 and have X as tangent everywhere since X is a left-invariant vector field.

This also shows that dF t = d
(
RF t(e)

)
. Calculate

(AdXY )e = (dAd)e(X)(Ye) =
d

dt

∣∣∣
t=0

(
AdF t(e)

)
(Ye)

=
d

dt

∣∣∣
t=0

((
dRF−t(e)

)
F t(e)

◦
(
dLF t(e)

)
e

)
(Ye)

=
d

dt

∣∣∣
t=0

(
dRF−t(e)

)
F t(e)

(
YF t(e)

)
=

d

dt

∣∣∣
t=0

(
dF−t(Y )

)
F t(e)

= (LXY )e = [X,Y ]e.
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By the left-invariance, we derive (2.4.14).

Proposition 2.7

♥

Let G be a Lie group with a bi-invariant metric (·, ·). If X,Y, Z,W ∈ g, then

∇YX =
1

2
[Y,X],

Rm(X,Y )Z = −1

4
[[X,Y ], Z],

Rm(X,Y, Z,W ) =
1

4
([X,Y ], [W,Z]) .

In particular, the sectional curvature is always nonnegative.

Proof. The bi-invariance of the metric shows that the image Ad(G) ⊂ O(g) lies in the group

of orthogonal linear maps on g. This shows that the image of Ad lies in the set of skew-adjoint

maps:

0 =
d

dt

∣∣∣
t=0

(Y, Z) =
d

dt

∣∣∣
t=0

(
Adexp(tX)(Y ),Adexp(tX)(Z)

)
= (AdXY, Z) + (Y,AdXZ) = ([X,Y ], Z) + (Y, [X,Z]).

For X,Y, Z ∈ g, since the metric is bi-invariant, it follows that

(Y, Z)g = (dLg(Ye), dLg(Ze))g = (Ye, Ze)e

so that (Y, Z) is constant and hence X(Y, Z) ≡ 0. Using the Koszul formula, we have

2(∇YX,Z) = X(Y, Z) + Y (Z,X)− Z(X,Y )− ([X,Y ], Z)− ([Y, Z], X) + ([Z,X], Y )

= −([X,Y ], Z)− ([Y, Z], X) + ([Z,X], Y )

= −([X,Y ], Z) + ([Y,X], Z) + ([X,Y ], Z) = ([Y,X], Z).

As for the curvature we then have

Rm(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

=
1

4
[X, [Y, Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X,Y ], Z]

=
1

4
[X, [Y, Z]] +

1

4
[Y, [Z,X]] +

1

4
[Z, [X,Y ]]− 1

4
[[X,Y ], Z]

which equals −1
4 [[X,Y ], Z] because of the Jaboci identity. Finally, by the definition,

Rm(X,Y, Z,W ) = (Rm(X,Y )Z,W ) = −1

4
([[X,Y ], Z],W )

=
1

4
([Z, [X,Y ]],W ) = −1

4
([Z,W ], [X,Y ]) = −1

4
([X,Y ], [Z,W ]).

In particular,

Rm∧(X ∧ Y, Z ∧W ) =
1

4
([X,Y ], [Z,W ])

(Rm(X ∧ Y ), Z ∧W ) =
1

4
([X,Y ], [Z,W ])

Sec(X,Y ) =
1

4

([X,Y ], [X,Y ])

(X,X)(Y, Y )− (X,Y )2
=

1

4

|[X,Y ]|2

|X ∧ Y |2
.

Thus the Lie groups with bi-invariant metrics always have non-negative sectional curvature and
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with a little work shows that the Rimann curvature operator is also non-negative.

Example 2.17. e2.17

♠

Let G be the 2-dimensional Lie group

G =


 α β

0 1

 : α > 0, β ∈ R

 .

The Lie algebra of G is

g =


 a b

0 0

 : a, b ∈ R

 .

If we define

X :=

 1 0

0 0

 , Y :=

 0 1

0 0

 ,

then

[X,Y ] := XY − Y X = Y.

We have the left-invariant metric whereX,Y form an orthonormal frame onG. Then use

the Koszul formula to compute

∇XX = 0, ∇Y Y = X, ∇XY = 0, ∇YX = −Y.

Hence

Rm(X,Y )Y = ∇X∇Y Y −∇Y∇XY −∇[X,Y ] = −X,

which implies that G has constant sectional curvature −1. We can also compute Ad:

Ad α β

0 1



 a b

0 0

 =

 a −aβ + bα

0 0

 = aX + (−aβ + bα)Y.

The orthonormal basis X,Y is therefore mapped to the basis 1 −β
0 0

 ,

 0 α

0 0

 .

This, however, is not an orthonormal basis unless β = 0 and α = 1. The metric is

therefore not bi-invariant.

Example 2.18. (Berger spheres)
The Lie algebra of

SU(2) = {A ∈ M2×2(C) : detA = 1, A∗ = A−1}

=


 z w

−w z

 : |z|2 + |w|2 = 1
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is

su(2) =


 √

−1α β +
√
−1γ

−β +
√
−1γ −

√
−1α

 : α, β, γ ∈ R


and is spanned by

X1 =

 √
−1 0

0 −
√
−1

 , X2 =

 0 1

−1 0

 , X3 =

 0
√
−1

√
−1 0

 .

We have the left-invariant metric where λ−1
1 X1, λ

−1
2 X2, λ

−1
3 X3 is an orthonormal frame

and [Xi, Xi+1] = 2Xi+2 (indices are mod 3). The Koszul formula is

2(∇XiXj , Xk) = ([Xi, Xj ], Xk) + ([Xk, Xi], Xj)− ([Xj , Xk], Xi).

From this we obtain

∇XiXi = 0.

On the other hand,

∇XiXi+1 =

(
λ2i+2 + λ2i+1 − λ2i

λ2i+2

)
Xi+2,

∇Xi+1Xi =

(−λ2i+2 + λ2i+1 − λ2i
λ2i+2

)
Xi+2.

Therefore,

Rm(Xi, Xi+1)Xi+2 = 0

that all curvatures between three distinct vectors vanish.

An interesting vase of the Berger spheres is λ1 = ε < 1, λ2 = λ3 = 1. In this case

∇X1X2 = (2− ε2)X3, ∇X2X1 = −ε2X3,

∇X2X3 = X1, ∇X3X2 = −X1,

∇X3X1 = ε2X2, ∇X1X3 = (ε2 − 2)X2,

Rm(X1, X2)X2 = ε2X1,

Rm(X3, X1)X1 = ε4X3,

Rm(X2, X3)X3 = (4− 3ε2)X2,

Rm(X1 ∧X2) = ε2X1 ∧X2,

Rm(X3 ∧X1) = ε2X3 ∧X1,

Rm(X2 ∧X3) = (4− 3ε2)X2 ∧X3.

Thus all sectional curvatures must lie in the interval [ε2, 4 − 3ε2]. Letting ε → 0−
we find that all sectional curvatures equal 1. As ε → 0+, the sectional curvature

Sec(X2, X3) → 4, which is the curvature of the base space S2(1/2) in the Hopf fibration.
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♠

The standard orthogonal basis X1, X2, X3 is mapped to

Ad z w

−w z


X1 =

(
|z|2 − |w|2

)
X1 − 2Re (wz)X2 − 2Im(wz)X3,

Ad z w

−w z


X2 = 2

√
−1Im(zw)X1 +Re

(
w2 + z2

)
X2

+ Im(w2 + z2)X3,

Ad z w

−w z


X3 = 2Re(zw)X1 +

√
−1Re(z2 − w2)X2

+
√
−1Im(z2 − w2)X3.

If the three vectors X1, X2, X3 have the same length, then we see that the adjoint action

is by isometries, otherwise it is not.

2.4.4 Riemannian submersions

Let ϕ : (Mm̄, g) → (M, g) be a Riemannian submersion. We say two points p ∈ Mm̄

and p ∈ M are ϕ-related if ϕ(p) = p. We also say tao vector fields X ∈ C∞(TMm̄) and

X ∈ C∞(TM) are ϕ-related if dϕ ◦X = X ◦ ϕ.

For each point p ∈ Mm̄, the tangent space TpMm̄ can be decomposed into

TpMm̄ = T
∥
pM

m̄ ⊕ T⊥
p Mm̄ (2.4.15)

where

T
∥
pM

m̄ := Ker ((dϕ)p) (2.4.16)

is the vertical distribution at p, and T⊥
p M is the orthogonal complement and called the

horizontal distribution at p. Any vector v in Mm̄ can be decomposed into horizontal and

vertical parts:

v = v∥ + v⊥. (2.4.17)

Set

T ∥Mm̄ :=
⋃
p

T
∥
pM

m̄, T⊥Mm̄ :=
⋃
p

T⊥
p Mm̄. (2.4.18)

Hence, any vector field X in Mm̄ can be written as

X = X
∥
+X

⊥
. (2.4.19)

The fact that ϕ is a Riemannian submersion means that (dϕ)p : T⊥
p Mm̄ → TpM, where

p = ϕ(p), is an isometry for all p ∈ Mm̄. Consequently, given a vector field X on M we can

always find a unique horizontal vector field X⋄ ∈ C∞(T⊥Mm̄) on Mm̄ that is ϕ-related to X .

We say that X⋄ is the basic horizontal lift of X .
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Proposition 2.8

♥

Let V be a vector field on Mm̄ and X,Y, Z vector fields on M with basic horizontal lifts

X
⋄
, Y

⋄
, Z

⋄.

(1)
[
V ∥, X

⋄
]

is vertical.

(2)
(
L
V

∥g
)(

X
⋄
, Y

⋄
)
= V

∥
g
(
X

⋄
, Y

⋄
)
= 0.

(3) g
([
X

⋄
, Y

⋄
]
, V

∥
)
= 2g

(
(∇ḡ)X⋄Y

⋄
, V

∥
)
= −2g

(
(∇ḡ)V ∥X

⋄
, Y

⋄
)

and further-

more, g
([
X

⋄
, Y

⋄
]
, V

∥
)
= 2g

(
(∇ḡ)Y ⋄V

∥
, X

⋄
)

.

(4) (∇ḡ)X⋄Y
⋄
= (∇g)XY

⋄
+ 1

2

([
X

⋄
, Y

⋄
])∥

.

Proof. (1) Since X⋄ is ϕ-related to X and V ⊥ is ϕ-related to the zero vector field on M , it

follows that

dϕ
([
V

∥
, X

⋄
])

=
[
dϕ
(
V

∥
)
, dϕ

(
X

⋄
)]

= [0, X ◦ ϕ] = 0.

(2) Using (1) yields(
L
V

∥g
)(

X
⋄
, Y

⋄
)

= V
∥
(
g
(
X

⋄
, Y

⋄
))

− g
([
V

∥
, X

⋄
]
, Y

⋄
)

− g
(
X

⋄
,
[
V

∥
, Y

⋄
])

= V
∥
(
g
(
X

⋄
, Y

⋄
))

= V
∥
(g(X,Y ))

since ϕ is a Riemannian submersion. But this implies that the inner product is constant in the

direction of the vertical distribution.

(3) Recall the Koszul formula

2g
(
(∇ḡ)YX,Z

)
= X

(
g
(
Y , Z

))
+ Y

(
g
(
Z,X

))
− Z

(
g
(
X,Y

))
− g

([
X,Y

]
, Z
)
− g

([
Y , Z

]
, X
)
+ g

([
Z,X

]
, Y
)
.

In particular,

2g
(
(∇ḡ)X⋄Y

⋄
, V

∥
)

= Y
⋄
(
g
(
X

⋄
, V

∥
))

+X
⋄
(
g
(
V

∥
, Y

⋄
))

− V
∥
(
g
(
Y

⋄
, X

⋄
))

− g
([
Y

⋄
, X

⋄
]
, V

∥
)

− g
([
X

⋄
, V

∥
]
, Y

⋄
)
+ g

([
V

∥
, Y

⋄
]
, X

⋄
)

= g
([
X

⋄
, Y

⋄
]
, V

∥
)
.

Similarly, we can prove other identities.

(4) From (3) we have showed that for any vector field V on Mm̄

g

(
1

2

[
X

⋄
, Y

⋄
]
− g∇X

⋄Y
⋄
, V

∥
)

= 0

which implies (
(∇ḡ)X⋄Y

⋄
)∥

=
1

2

([
X

⋄
, Y

⋄
])∥

.

Hence it suffices to show that the horizontal vector field (∇g)XY
⋄ is the horizontal component

of (∇ḡ)X⋄Y
⋄. Using the Koszul formula, ϕ-relatedness, and the fact that inner products are the
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same in Mm̄ and M, shows that

2g
(
(∇ḡ)X⋄Y

⋄
, Z

⋄
)
= 2g ((∇g)XY, Z) = 2g

(
(∇g)XY

⋄
, Z

⋄
)
.

Thus, we proved (4).

The map

C∞(Mm, T⊥Mm̄)× C∞(Mm, T⊥Mm̄) −→ C∞(Mm, T ∥Mm̄),(
X

⊥
, Y

⊥
)

7−→
[
X

⊥
, Y

⊥
]∥

(2.4.20)

measures the extent to which the horizontal distribution in integrable in the sense of Frobenius.

It is in fact tensorial as well as skew-symmetric since[
X

⊥
, fY

⊥
]∥

=
(
f
[
X

⊥
, Y

⊥
]
+X

⊥
f · Y ⊥

)∥
= f

[
X

⊥
, Y

⊥
]∥
.

The map is called the integrability tensor.

Theorem 2.6. (O’Neill-Grey)

♥

For vector fields X,Y on (M, g), we have

g (Rmg(X,Y )Y,X) = g
(
Rmg

(
X

⋄
, Y

⋄
)
Y

⋄
, X

⋄
)
+

3

4

∣∣∣∣[X⋄
, Y

⋄
]∥∣∣∣∣2

g

. (2.4.21)

Proof. By tensors properties we may assume that [X,Y ] = 0. Then in this case

0 = dϕ
[
X

⋄
, Y

⋄
]
=
[
dϕ
(
X

⋄
)
, dϕ

(
Y

⋄
)]

= [X ◦ ϕ, Y ◦ ϕ] = 0.

Hence
[
X

⋄
, Y

⋄
]

is vertical. Calculate

g
(
Rmg

(
X

⋄
, Y

⋄
)
Y

⋄
, X

⋄
)

= g
(
∇X

⋄∇Y
⋄Y

⋄ −∇Y
⋄∇X

⋄Y
⋄ −∇[X

⋄
,Y

⋄
]Y

⋄
, X

⋄
)

= g
(
∇X

⋄

(
∇Y Y

⋄
)
, X

⋄
)
− g

(
∇Y

⋄

(
∇XY

⋄
+

1

2

[
X

⋄
, Y

⋄
])

, X
⋄
)

+ frac12g
([
Y

⋄
, X

⋄
]
,
[
X

⋄
, Y

⋄
])

= g

(
∇X∇Y Y

⋄
+

1

2

([
X

⋄
,∇Y Y

⋄
])∥

, X
⋄
)
− 1

2

∣∣∣[X⋄
, Y

⋄
]∣∣∣2
g

− g

(
∇Y∇XY

⋄
+

1

2

([
Y

⋄
,∇XY

⋄
])∥

+
1

2
∇Y

⋄

[
X

⋄
, Y

⋄
]
, X

⋄
)

= g (Rmg(X,Y )Y,X)− 1

2
g
(
∇Y

⋄

[
X

⋄
, Y

⋄
]
, X

⋄
)
− 1

2

∣∣∣[X⋄
, Y

⋄
]∣∣∣2
g

= g (Rmg(X,Y )Y,X)− 3

4

∣∣∣[X⋄
, Y

⋄
]∣∣∣2
g
.

More generally, one can find formulae for Rmg where the variables are various combinations of

basic horizontal and vertical fields.
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2.5 Exterior differential calculus and Bochner formulas

Introduction

h Differential forms

h The rough Laplacian acting on tensor

fields

h Bochner technique

h The Bochner technique in general and

the Weitzenböck formula

2.5.1 Differential forms

The volume form dVg of an oriented m-dimensional Riemannian manifold (M, g) is

defined in terms of a positively oriented orthonormal coframe (ωi)mi=1 by

dVg = ω1 ∧ · · · ∧ ωm.

The volume satisfies m!(dVg)(e1, · · · , em) = 1, where (ei)mi=1 is the orthonormal frame dual to

(ωi)mi=1. In a positively oriented local coordinate system x1, · · · , xm, we have

dVg =
√

det(gij)dx
1 ∧ · · · ∧ dxm. (2.5.1)

Note 2.22

♣

The wedge product of a p-form α and a q-form β is defined by

(α∧β)(X1, · · · , Xp+q) =
1

(p+ q)!

∑
(J,K)

sign(J,K)α(Xj1 , · · · , Xjp)β(Xk1 , · · · , Xkq),

where J := (j1, · · · , jp) and K := (k1, · · · , kq) are multi-indices and sign(J,K) is the

sign of the permutation (1, · · · , p+ q) 7→ (j1, · · · , jp, k1, · · · , kq).

The exterior derivative of a p-form β satisfies

(dβ)(X0, · · · , Xp)

=
1

p+ 1

p∑
j=0

(−1)jXj

(
β(X0, · · · , X̂j , · · · , Xp)

)
+

1

p+ 1

∑
0≤i<j≤p

(−1)i+jβ
(
[Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xp

)
(2.5.2)

=
1

p+ 1

p∑
j=0

(−1)j
(
∇Xjβ

) (
X0, · · · , X̂j , · · · , Xp

)
.

In local coordinates, this is

(dβ)i0i1···ip =
1

p+ 1

p∑
j=0

(−1)j∇ijβi0i1···îj ···ip , (2.5.3)

where βi1···ip := β
(
∂i1 , · · · , ∂ip

)
. If β is a 1-form, then

(dβ)ij =
1

2
(∇iβj −∇jβi). (2.5.4)

If β is a 2-form, then

(dβ)ijk =
1

3
(∇iβjk +∇jβki +∇kβij). (2.5.5)
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The divergence of a p-form α is

divg(α)i1···ip−1 := gjk∇jαki1···ip−1 = ∇kαki1···ip−1 . (2.5.6)

In particular, if α = αidx
i is a 1-form, then

divg(X) = gij∇iXj = ∇jXj . (2.5.7)

More generally, we define the divergence of a (p, 0)-tensor field α with p ≥ 1 by

divg(α)i1···ip−1 := gjk∇jαki1···ip−1 .

Given a p-form β and a vector field X , we define the interior product by

(ιXβ)(Y1, · · · , Yp−1) := p · β(X,Y1, · · · , Yp−1) (2.5.8)

for all vector fields Y1, · · · , Yp−1. Recall the Cartan formula

LX = d ◦ ιX + ιX ◦ d. (2.5.9)

The inner product on Ap(M) := C∞(∧pT ∗M) is defined by

〈α, β〉g := p!gi1j1 · · · gipjpαi1···ipβj1···jp . (2.5.10)

For example, for any positively orthonormal coframe (ωi)mi=1,〈
ωi1 ∧ · · · ∧ ωip , ωj1 ∧ · · · ∧ ωjp

〉
g
= det

(
δikjℓ

)
.

For given p-forms α and β, their L2-inner product is defined by

(α, β)L2,g :=

∫
M
〈α, β〉gdVg. (2.5.11)

The Hodge star operator ∗g : Ap(M) → Am−p(M), p = 0, · · · ,m, is defined

〈α, β〉gdVg = α ∧ ∗gβ (2.5.12)

for any α, β ∈ Ap(M). For instance,

∗g
(
ω1 ∧ · · · ∧ ωp

)
= ωp+1 ∧ · · · ∧ ωm

for a positively oriented orthonormal coframe (ωi)mi=1.

Note 2.23

♣
Show that acting on Ap(M), we have ∗2g = (−1)p(m−p).

The adjoint operator δg of d acting on a p-form α is defined in terms of d and the Hodge

star operator by the formula

δgα := (−1)mp+m+1 ∗g d ∗g α. (2.5.13)

In terms of covariant derivatives, the adjoint δg is given by

(δgα)(X1, · · · , Xp−1) = −p
m∑
i=1

(∇eiα) (ei, X1, · · · , Xp−1), (2.5.14)

where (ei)mi=1 is an orthonormal frame. That is, δg = −pdivgα, or

(δgα)i1···ip−1 = −pgjk∇jαki1···ip−1 . (2.5.15)
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Note 2.24

♣

Show that

(dβ, α)L2,g = (β, δgα)L2,g. (2.5.16)

where α ∈ Ap(M) and β ∈ Ap−1(M). Directly calculate

(β, δgα)L2,g =

∫
M
β ∧ ∗gδgαdVg =

∫
M
β ∧ ∗g(−1)mp+m+1 ∗g d ∗g αdVg

= (−1)mp+m+1

∫
M
β(−1)(m−p+1)(p−1)d ∗g αdVg = (−1)p

2

∫
M
β ∧ d ∗g αdVg

= (−1)p
2
(−1)p

(∫
M
dβ ∧ ∗gαdVg −

∫
M
d(β ∧ ∗gα)dVg

)
=

∫
M
dβ ∧ ∗gαdVg

since (M, g) is closed.

The Hodge Laplacian acting on differential p-forms is defined by

∆H,g := − (dδg + δgd) (2.5.17)

where we have adopted the opposite of the usual sign convention. Note that ∆H,g is a self-adjoint

operator. Acting on functions, it is the same as the usual Laplcian operator defined in (2.5.18).

2.5.2 The rough Laplacian acting on tensor fields

Let ∆g denote the Laplacian, also called the Laplace-Beltrami operator, acting on
functions, which is globally defined as the divergence of the gradient and is given in local

coordinates by

∆g := divg∇g = gij∇i∇j = gij
(
∂i∂j − Γkij∂k

)
. (2.5.18)

If {ei}mi=1 is an orthonormal frame, then

∆gf =

m∑
i=1

ei(eif)− (∇eiei)f. (2.5.19)

Note 2.25

♣

If M is the Euclidean space Rm with the standard metric gstand, then ∆ = ∆stand =∑
1≤i≤m ∂i∂i and the heat equation is (∂t −∆)u = 0.

Note 2.26

♣

(1) For any function f and any vector fields X and Y we define the Hessian Hessgf =

∇g∇gf = ∇2
gf as follows:

∇2
gf(X,Y ) := X(Y f)− (∇XY ) f.

Then ∆gf = trg
(
∇2
gf
)
= ∆H,gf .

(2) If |g| := det(gij), then

∆gf =
1√
|g|
∂i

(√
|g|gij∂jf

)
. (2.5.20)
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More generally, the rough Laplacian operator acting on tensor fields is given by

∆g := divg∇g = trg∇2
g = gij∇i∇j = ∇j∇j . (2.5.21)

More explicitly, given an (r, s)-tensor field β, ∇2
gβ is an (r+2, s)-tensor field, which we contract

to

∆gβ(X1, · · · , Xr) =

m∑
i=1

∇2
gβ(ei, ei, X1, · · · , Xr) (2.5.22)

for all vector fields X1, · · · , Xr.

2.5.3 Bochner technique

The Bochner technique was invented by Bochne. Yano fuether refined the Bochner tech-

nique, but it seems to be Lichnerowicz who really put things into gear, when around 1960 he

presented his formulae for the Laplacian on forms and spinors. After this work, Bergerm Meyer,

Gallot, Gromov-Lawson, Witten, and many others have made significant contributions to this

tremendously important subject.

Prior to Bochners work Weitzenböck also developed a formula very similar to the Bochner

formula.

Lemma 2.3. (Commutator of ∆g and ∇g on functions)

♥

For any function f ,

∆g∇if = ∇i∆gf +Rij∇jf. (2.5.23)

Proof. By definition, one has

∆g∇if = gkℓ∇k∇ℓ∇if = gkℓ∇k∇i∇ℓf = gkℓ
(
∇i∇k∇ℓf −Rpkiℓ∇pf

)
= ∇i∆gf − gklRkiℓp∇pf = ∇i∆gf + gkℓRkipℓ∇pf = ∇i∆gf +Rip∇pf.

Here our convenience is that gpqRpkiℓ = Rkiℓq.

Lemma 2.4. (Bochner formula for |∇gf |2g)

♥

Suppose that (M, g) is a compact oriented Riemannian manifold. Show that for any

function f ,

∆g|∇gf |2g = 2|∇2
gf |2g + 2Rij∇if∇jf + 2∇if∇i(∆gf). (2.5.24)

Conclude from this that if Rcg ≥ 0, ∆gf ≡ 0 and |∇gf |g ≡ 0, then ∇2
gf ≡ 0, and

Rcg(∇gf,∇gf) = 0. (This lemma is interesting only in noncompact case.)

Proof. Calculate

∆g|∇gf |2g = gij∇i∇j(g
kℓ∇kf∇ℓf) = gijgkℓ∇i(∇j∇kf · ∇ℓf +∇kf · ∇j∇ℓf)

= gijgkℓ(2∇i∇j∇kf · ∇ℓf + 2∇j∇kf · ∇i∇ℓf)

= 2|∇2
gf |2g + 2gijgkℓ∇i∇k∇jf · ∇ℓf ;
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since

2gijgkℓ∇i∇k∇jf · ∇ℓf = 2gijgℓ(∇k∇i∇jf −Rpikj∇pf) · ∇ℓf

= 2〈∇g∆gf,∇gf〉g − 2gijRikjp∇pf · ∇kf

we have

∆g|∇gf |2g = 2|∇2
gf |2g + 2〈∇g∆gf,∇gf〉g + 2Rkp∇pf · ∇kf

which implies (2.5.24). If ∆gf ≡ 0, then∫
M

∆g|∇gf |2gdVg =
∫
M

2|∇2
gf |2gdVg +

∫
M

2Rcg(∇gf,∇gf)dVg.

By another hypothesis that Rcg ≥ 0, we conclude that∫
M

|∇2
gf |2gdVg = 0 =

∫
M

Rcg(∇gf,∇gf)dVg.

Both integrands are nonnegative so that they must vanish identically.

Lemma 2.5

♥

One has

∆g|∇gf |g =
1

|∇gf |g

(
〈∇gf,∇g(∆gf)〉g +Rcg(∇gf,∇gf) + |∇2

gf |2g
)

− 1

|∇gf |g

∣∣∣∣∣
〈
∇2
gf,

∇gf

|∇gf |g

〉
g

∣∣∣∣∣
2

(2.5.25)

wherever |∇gf |g 6= 0, and conclude that if Rcg ≥ 0, then

∆g|∇gf |g ≥
〈

∇gf

|∇gf |g
,∇g(∆gf)

〉
g

.

In particular, if ∆gf = 0, then

∆g|∇gf |g ≥ 0. (2.5.26)

Since ifM is compact and oriented, the assumption∆gf = 0 implies∇gf ≡ 0 so (2.5.26)

is automatically valid. Hence, this lemma is also interesting in the noncompact case.

Proof. Calculate

∆g|∇gf |g = gij∇i∇j

(
gkℓ∇kf · ∇ℓf

)1/2
= gijgkℓ∇i

(
∇j∇kf · ∇ℓf

(gpq∇pf · ∇qf)1/2

)
=
gijgkℓ(∇i∇j∇kf · ∇ℓf +∇j∇kf · ∇i∇ℓf)

|g∇f |g
− gijgkl∇j∇kf · ∇ℓf

|∇gf |3g
(gpq∇i∇pf · ∇qf) .

Since

gijgkℓ∇i∇j∇kf · ∇ℓf = 〈∇g∆gf,∇gf〉g +Rcg(∇gf,∇gf)

it follows that

∆g|∇gf |g =
1

|∇gf |g
(
〈∆gf,∇gf〉g +Rcg(∇gf,∇gf) + |∇2

gf |2g
)

− 1

|∇gf |3g
gij〈∇j∇gf,∇gf〉g〈∇i∇gf,∇gf〉g

that is (2.5.25).
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Note 2.27

♣

In (2.5.25) 〈∇2
gf,

∇gf
|∇gf |g 〉g is the 1-form given by(〈

∇2
gf,

∇gf

|∇gf |g

〉
g

)
i

:=

〈
∇i∇gf,

∇gf

|∇gf |g

〉
g

= gjk∇i∇jf
∇kf

|∇gf |g
= ∇i|∇gf |g.

Hence ∣∣∣∣∣
〈
∇2
gf,

∇gf

|∇gf |g

〉
g

∣∣∣∣∣
2

= |∇g|∇gf |g|2g .

Related to this is the fact that if T1 and T2 are (r, s)-tensor fields, then

∇g〈T1, T2〉g = 〈∇gT1, T2〉g + 〈T1,∇gT2〉g, (2.5.27)

where

〈∇gT1, T2〉g := (∇iT1)
j1···jr
k1···ks (T2)

k1···ks
j1···jr (2.5.28)

and similarly for 〈T1,∇gT2〉g.

Note 2.28

♣

If ∂tg(t) = −2Rcg(t), then(
∆g(t) − ∂t

) ∣∣∇g(t)f
∣∣2
g(t)

= 2
∣∣∣∇2

g(t)f
∣∣∣2
g(t)

(2.5.29)

+ 2
〈
∇g(t)f,∇g(t)

((
∆g(t) − ∂t

)
f
)〉
g(t)

.

Calculate

∂t
∣∣∇g(t)f

∣∣2
g(t)

= ∂t
(
gij∇if∇jf

)
= −∂tgij · ∇if · ∇jf + 2gij∇i(∂tf) · ∇jf

= 2Rcg(t)
(
∇g(t)f,∇g(t)f

)
+ 2

〈
∇g(t)f,∇g(t) (∂tf)

〉
g(t)

.

Combining it with (2.5.24), we complete the proof.

Note 2.29

♣

Here |∇2
gf |2g = gikgjℓ∇i∇jf · ∇k∇ℓf . Similarly we denote for a p-form α

|α|2 := gi1j1 · · · gipjpαi1···ipαj1···jp . (2.5.30)

Note 2.30

♣

Show that for any tensor field A

∇g∆gA−∆g∇gA = Rmg ∗ ∇gA+ (∇gRcg) ∗A. (2.5.31)

Here, given tensor fieldsA andB,A∗B denotes some linear combination of contractions

of A⊗B. Calculate

∇i∆gA = gpq∇i∇p∇qA = gpq (∇p∇i∇qA+Rmg ∗ ∇gA)

= gpq∇p(∇q∇iA+Rmg ∗A)+Rmg ∗∇gA = ∆g∇iA+∇gRmg ∗A+Rmg ∗∇gA;

the formula (2.5.31) follows by ∇gRmg = ∇gRcg.



2.5 Exterior differential calculus and Bochner formulas – 121 –

Lemma 2.6. (Bochner, 1946)

♥

Show that if X is a 1-form, then

∆gXi − gjkRikXj = ∆H,gXi. (2.5.32)

In particular, if the Ricci curvature of a closed manifold is positive, then there are no

nontrivial harmonic 1-forms. By the Hodge theorem, this implies the first Betti number

b1(M) is zero.

Proof. By the definition, one has

∆H,gXi = − (d (δgX))i − (δg(dX))i

where

δgX = −gjk∇jXk,

−d (δgX) = d
(
gjk∇jXk

)
= ∇ℓ

(
gjk∇jXk

)
dxℓ =

(
gjk∇ℓ∇jXk

)
dxℓ,

(δgdX)i = −2gjk∇j(dX)ki = −gjk (∇j∇kXi −∇j∇iXk) .

Therefore,

∆H,gXi = gjk∇i∇jXk + gjk (∇j∇kXi −∇j∇iXk) = ∆gXi + gjkRℓijkXℓ

implying (2.5.32). If there is a nontrivial harmonic 1-form X , that is, ∆H,gX = 0, then

∆gXi ·Xi = RijX
iXj = Rcg(X,X) and

−
∫
M

|∇gX|2g dVg =
∫
M

Rcg(X,X)dVg ≥ 0;

consequently, Rcg(X,X) ≡ 0 = |∇gX|g. We must have that Xp = 0 if the Ricci tensor is

positive on TpM. But then X ≡ 0 since X is parallel. We get a contradiction.

Note 2.31

♣

In Lemma 2.6, we have proved that if (M, g) is compact, oriented, and has Rcg ≥ 0,

then every harmonic 1-form is parallel. By the Hodge theorem, b1(M) = dimH1(M).

Now, all harmonic 1-forms are parallel, so the linear map

H1(M) −→ T ∗
pM, ω 7−→ ωp

is injective. In particular, dimH1(M) ≤ m. Furthermore, we can show that b1(M) = m

if and only if (M, g) is a flat torus.

If β is a 2-form, then

(∆H,gβ)ij = ∆gβij + 2Rikℓjβ
kℓ −Rikβ

k
j −Rjkβi

k. (2.5.33)

Let α be a p-form. In local coordinates we may write the Hodge Laplacian as

(∆H,gα)i1···ir = (−1)j+1gkl∇ij∇kαli1···ij−1ij+1···ir + gkℓ∇k∇ℓαi1···ir

+ (−1)jgkℓ∇k∇ijαℓi1···ij−1ij+1···ir (2.5.34)

= (∆gα)i1···ir + (−1)jgkℓ
(
∇k∇ij −∇ij∇k

)
αℓi1···ij−1ij+1···ir .
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Using the notation ∗, (2.5.34) can be written as

∆H,gα = ∆gα+Rmg ∗ α. (2.5.35)

2.5.4 The Bochner technique in general and the Weitzenböck formula

Let (E , h) → (M, g) be a vector bundle over an oriented closed Riemannian manifold. Let

Γ(M, E) denote the sections s : M → E . The connection on E is a map

∇E : Γ(M, E) −→ Γ(M,Hom(TM, E)), s 7−→ ∇Es. (2.5.36)

We assume the connection is linear in s, tensorial in X , and compatible with the metric h:

X〈s1, s2〉h =
〈
∇E
Xs1, s2

〉
h
+
〈
s1,∇E

Xs2
〉
h
. (2.5.37)

Since Hom(TM, E) ∼= T ∗M ⊗ E , the vector bundle has the induced metric gT ∗M ⊗ h,

where gT ∗M is the bundle metric on the cotangent bundle T ∗M; usually we write it as g ⊗ h,

if there is no confusion. Using the pointwise inner product structures on Γ(E),Γ(TM), and

integration, we get global L2-inner product structures on Γ(E) and Γ(Hom(TM, E)):

(s1, s2)L2(Γ(E)) :=

∫
M
〈s1, s2〉hdVg, (2.5.38)

(S1, S2)L2(Γ(Hom(TM,E))) :=

∫
M

〈S1, S2〉g⊗h dVg. (2.5.39)

From (2.5.36), we define the adjoint connection:

∇E,∗ : Γ(Hom(TM, E)) −→ Γ(E) (2.5.40)

defined by ∫
M

〈
∇E,∗S, s

〉
h
dVg =

∫
M

〈
S,∇Es

〉
g⊗h dVg. (2.5.41)

Note 2.32

♣

We use the notation ∇E,∗ to denote the adjoint connection of ∇E . The induced connection

on the dual bundle E∨ is denoted by ∇E∨ or ∇E,∨. Here we use the operation "∨" to make

the dual bundle; in this situation, the dual bundle of the tangent bundle TM is written

as T∨M, but we adopt the classical notation that is T ∗M. The metric g induces the

Levi-Civita connection ∇g on M, which can be viewed as a bundle connection ∇TM on

TM. In the bundle setting, we use ∇TM to denote the induced connection rather than

the classical notation ∇g.

The connection Laplacian of a section is defined as

∆E
H,gs := −∇E,∗∇Es. (2.5.42)

There is a different way of defining the connection Laplacian. Consider the second covariant

derivative
Γ(M, E) ∇E

−−−−→ Γ(Hom(M, TM, E))
∇T∗M⊗E
−−−−−−→ Γ(M, T ∗M⊗ T ∗M⊗E).
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We write it as (
∇E)2

X,Y
s := ∇T ∗M⊗E ◦ ∇E(s)(X,Y )−∇E

∇TM
X Y

s. (2.5.43)

Take the trace
∑

1≤i≤m
(
∇E)2

∂i,∂i
s with respect to the orthonormal basis of TM. This is easily

seen to be invariantly defined. We shall use the notation

∆E
L,gs := trg

((
∇E)2 s) :=

∑
1≤i≤m

(
∇E)2

∂i,∂j
s. (2.5.44)

Proposition 2.9

♥

Let (M, g) be an oriented closed Riemannian manifold, and E → M a vector bundle

with an inner product h and compatible connection ∇E , then

∆E
H,gs = ∆E

L,gs (2.5.45)

for all sections s of E .

Note 2.33

♣

According to Proposition 2.9, we write

∆E
g s := ∆E

H,gs = ∆E
L,gs. (2.5.46)

Proof. Let s1, s2 be two sections of E and (ei)
m
i=1 be an orthonormal frame on M. Calculate(

∆E
H,gs1, s2

)
L2(Γ(E))

=

∫
E

〈
∆E
H,gs1, s2

〉
h
dVg

= −
∫
M

〈
∇Es1,∇Es2

〉
g⊗h dVg = −

∑
1≤i≤m

∫
M

〈
∇E
eis1,∇

E
eis2

〉
h
dVg.

The right hand side is equal to(
∆E
L,gs1, s2

)
L2(Γ(E))

=

∫
M

〈
∆E
L,gs1, s2

〉
h
dVg

=
∑

1≤i≤m

∫
M

〈
∇E
ei∇

E
eis1 −∇E

∇TM
ei

ei
s1, s2

〉
h
dVg

= −
∑

1≤i≤m

∫
M

〈
∇E
eis1,∇

E
eis2

〉
h
dVg +

m∑
i=1

∫
M

∇TM
ei

〈
∇E
eis1, s2

〉
h
dVg

−
∑

1≤i≤m

∫
M

〈
∇E

∇TM
ei

ei
s1, s2

〉
h
dVg

=
(
∆E
H,gs1, s2

)
L2(Γ(E))

+

∫
M

divgXdVg

where X is defined by g(X,Y ) :=
〈
∇E
Y s1, s2

〉
h
. Setting Y = ∂i, we have Xi = g(X, ∂i) =〈

∇E
∂i
s1, s2

〉
h
; hence divgX = ∇iX

i = ∇TM
∂i

〈
∇E
∂i
s1, s2

〉
h

which verifies the above identity.

Since M is closed, it follows that
(
∆E
L,gs1, s2

)
L2(Γ(E))

=
(
∆E
H,gs1, s2

)
L2(Γ(E))

. Thus, we

must have ∆E
L,gs1 = ∆E

H,gs1 for all sections s1.

By our notation, we have ∆TM
L,g = ∆L,g and ∆TM

H,g = ∆H,g. For sections s1, s2 ∈ Γ(E),
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we have

∆L,g

(
1

2
〈s1, s2〉h

)
=

∑
1≤i≤m

(
∇TM)2

ei,ei

(
1

2
〈s1, s2〉h

)

=
∑

1≤i≤m

(
∇TM
ei ∇TM

ei −∇TM
∇TM

e ei

)(1

2
〈s1, s2〉h

)

=
∑

1≤i≤m

1

2

[
∇TM
ei

(〈
∇E
eis1, s2

〉
h
+
〈
s1,∇E

eis2
〉
h

)
−
〈
∇E

∇TM
ei

ei
s1, s2

〉
h
−
〈
s1,∇E

∇TM
ei

ei
s2

〉
h

]
=

∑
1≤i≤m

(〈
∇E
ei∇

E
eis1, s2

〉
h
+ 2

〈
∇E
eis1,∇

E
e2s2

〉
h
+
〈
s1,∇E

ei∇
E
eis2

〉
h

)
− 1

2

∑
1≤i≤m

(〈
∇E

∇TM
ei

ei
s1, s2

〉
h
+
〈
s1,∇E

∇TM
ei

ei
s2

〉
h

)

=
〈
∇Es1,∇Es2

〉
g⊗h +

1

2

〈
∆E
L,gs1, s2

〉
h
+

1

2

〈
s1,∆

E
L,gs2

〉
h

=
〈
∇Es1,∇Es2

〉
g⊗h +

1

2

〈
∆E
H,gs1, s2

〉
h
+

1

2

〈
s1,∆

E
H,gs2

〉
h
.

In particular,

∆L,g

(
1

2
|s|2h
)

=
∣∣∇Es

∣∣2
g⊗h +

〈
∆E
H,gs, s

〉
h
. (2.5.47)

For the connection ∇E we define the curvature

RE : Γ(M, TM)⊗ Γ(M, TM)⊗ Γ(M, E) −→ Γ(M, E)

by

RE(X,Y )s :=
(
∇E)2

X,Y
s−

(
∇E)2

Y,X
s = ∇E

X∇E
Y s−∇E

Y∇E
Xs−∇E

[X,Y ]s. (2.5.48)

Then the operator

∆E
H,g + C

(
RE) : Γ(M, E) −→ Γ(M, E)

is a map on Γ(M, E), where C
(
RE) is a trace of the curvatureRE . We say a first-order operator

D : Γ(M, E) → Γ(M, E) is the Dirac-type operator of the vector bundle E → M if

D2 = ∆E
H,g + C

(
RE) . (2.5.49)

Such a formulae are called Weitzenböck formulae. Here, we use the word “are” because there

are lots of way to contract the curvature RE .

(1) Riemannian geometry: Let (M, g) be anm-dimensional Riemannian manifold. We take

E := ⊕m
p=0 ∧p T ∗M. In this case the Dirac-type operator D : Γ(M, E) → Γ(M, E) is

d+ δg. Moreover, −D2 = ∆H,g, and the Weitzenböck formula now becomes

∆H,g = ∆E
H,g +

1

2
Rmg(ei, ej)ω

iωj . (2.5.50)

Here we denote by (ωi)mi=1 the dual coframe of an orthonormal frame (ei)mi=1 of M. This

was certainly known to both Bochner and Yano. However, in this case ∆E
H,g = ∆E

L,g =

∆L,g, so that (2.5.50) is exact the formula (2.5.32).
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(2) Spin geometry: Let (M, g) be anm-dimentional spin manifold. It induces the spinor bun-

dle SM. In this case the Dirac-type operator is just the Dirac operator D : Γ(M,SM) →
Γ(M,SM), and the Weitzenböck formula reads

−D2 = ∆SM
H,g −

1

4
Rg. (2.5.51)

The formula was discovered and used by Lichnerowicz, as well as Singer, to show that

the Â-genus vanishes for spin manifolds with positive scalar curvature. Using some

generalization of this formula, Gromov-Lawson showed that any metric on a torus with

nonnegative scalar curvature is in fact flat. Much of Witten’s work, e.g., the positive mass

conjecture, uses these ideas. Also, the work of Seiberg-Witten on 4-manifold geometry, is

related to these ideas.

In the following we shall prove the Weitzenböck formula (2.5.50) for p-forms. As before,

let (M, g) be anm-dimensional Riemannian manifold, and let A∗(M) = ⊕m
p=0Ap(M) denotes

the space of all forms on M. On this space we can define a product structure that is different

rom the wedge product. This product is called Clifford multiplication, and for ω ∈ A1(M)

and θ ∈ Ap(M), then

ω > θ := ω ∧ θ − ιω♯θ, (2.5.52)

θ > ω := θ ∧ ω + (−1)pιω♯θ. (2.5.53)

If ω1, ω2 are 1-forms, then by (2.5.52) we have

ω1 > ω2 = ω1 ∧ ω2 − ι
ω♯
1
ω2.

On the other hand, using (2.5.53) yields

ω1 > ω2 = ω1 ∧ ω2 − ι
ω♯
2
ω1.

To verify the well-defined operation >, we shall check ι
ω♯
1
ω2 = ι

ω♯
2
ω1. By definition we have

ι
ω♯
1
ω2 = ω2

(
ω♯1

)
= (ω2)k dx

k
(
gij (ω1)i ∂j

)
= gij (ω1)i (ω2)j = ω1

(
ω♯2

)
= ι

ω♯
2
ω1.

By declaring the product to be bilinear and associate, we can use these properties to define the

product between any two forms. For example

(ω1 ∧ ω2)> θ := ω1 > (ω2 > θ) + ι
ω♯
1
ω2 · θ.

Note that even when θ is a p-form, the Clifford product with a 1-form gives a mixed form.

For 1-form ω we have

ω > ω = −|ω|2g ≤ 0. (2.5.54)

In general, for 1-forms ω1 and ω2 we obtain

ω1 > ω2 + ω2 > ω1 = −2g(ω1, ω2). (2.5.55)

If (ωi)mi=1 is an orthonormal coframe of M, then

ωi > ωj = −ωj > ωi, ωi > ωj = ωi ∧ ωj , i 6= j. (2.5.56)

Hence, we see that Clifford multiplication not only depends on the inner product, wedge product,
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and interior product, but actually reproduces there three items.

Proposition 2.10

♥

For θ1, θ2 ∈ A∗(M), ω ∈ A1(M), and ψ ∈ A2(M), we have

g (ω > θ1, θ2) = −g (θ1, ω1 > θ2) , (2.5.57)

g ([ψ, θ1]>, θ2) = −g (θ1, [ψ, θ2]>) (2.5.58)

where [θ1, θ2]> := θ1 > θ2 − θ2 > θ1.

Proof. The proof is based on the definition of the Clifford multiplication and the fact that the

two maps

Ap(M) −→ Ap+1(M), θ 7−→ εωθ := ω ∧ θ,

Ap+1(M) −→ Ap(M), θ 7−→ ιω♯θ

are ajoint to each other. We write

θ1 =
∑

0≤p≤m
θ
(p)
1 , θ2 =

∑
0≤p≤m

θ
(p)
2 .

Then

ω > θ1 = −ιω♯θ
(1)
1 +

∑
0≤p≤m−2

(
εωθ

(p)
1 − ιω♯θ

(p+2)
1

)
+ εωθ

(m−1)
1 .

The left hand side of (2.5.57) becomes

g (ω > θ1, θ2) = g
(
−ιω♯θ

(1)
1 , θ

(0)
2

)
+

∑
0≤p≤m−2

g
(
εωθ

(p)
1 − ιω♯θ

(p+2)
1 , θ

(p+1)
2

)
+ g

(
εωθ

(n−1)
1 , θ

(n)
2

)
= g

(
θ
(1)
1 ,−εωθ(0)2

)
+

∑
0≤p≤m−2

g
(
θ
(p)
1 , ιω♯θ

(p+1)
2

)
−

∑
0≤p≤m−2

g
(
θ
(p+2)
1 , εωθ

(p+1)
2

)
+ g

(
θ
(n−1)
1 , ιω♯θ

(n)
2

)
.

Rearranging the terms yields

−

g (ιω♯θ
(1)
2 , θ

(0)
1

)
+

∑
0≤p≤m−2

g
(
εωθ

(p)
2 ιω♯θ

(p+2)
2 , θ

(p+1)
1

)
+ g

(
εωθ

(m−1)
2 , θ

(m)
1

)
which equals the right hand side of (2.5.57). To prove the second formula (2.5.58), it suffices to

prove

g ([ψ, θ]>, θ) = 0 (2.5.59)

for any form θ ∈ A∗(M). Since ψ is a 2-form, we shall verify (2.5.59) for a special case that

ψ = ω1 ∧ ω2 where ω1, ω2 ∈ A1(M). By definition, one has

g ([ω1 ∧ ω2, θ]>, θ) = g ((ω1 ∧ ω2)> θ, θ)− g (θ > (ω1 ∧ ω2), θ)

= g
((
ω1 > ω2 + ι

ω♯
1
ω2

)
> θ, θ

)
− g

(
θ >

(
ω1 > ω2 + ι

ω♯
1
ω2

)
, θ
)

= g (ω1 > (ω2 > θ) , θ)− g ((θ > ω1)> ω2, θ)
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so that (2.5.59) holds for ψ = ω1 ∧ ω2 if and only if

g (ω1 > (ω2 > θ) , θ) = g ((θ > ω1)> ω2, θ) . (2.5.60)

For convenience, we set

ψ := ω2 > θ =
∑

0≤p≤m
ψ(p), ϕ := θ > ω1 =

∑
0≤p≤m

ϕ(p), θ =
∑

0≤p≤m
θ(p).

Since

ω2 > θ = −ι
ω♯
2
θ(1) +

∑
0≤p≤m

(
εω2θ

(p) − ι
ω♯
2
θ(p+2)

)
+ εω2θ

(m−1), (2.5.61)

it follows that

ψ(0) = −ι
ω♯
2
θ(1),

ψ(p) = εω2θ
(p−1) − ι

ω♯
2
θ(p+1), p = 1, · · · ,m− 1,

ψ(n) = εω2θ
(m−1).

Using formula (2.5.61) again implies

ω1 > (ω2 > θ) = ω1 > ψ = −ι
ω♯
1
ψ(1) +

∑
0≤p≤m−2

(
εω1ψ

(p) − ι
ω♮
1
ψ(p+2)

)
+ εω1ψ

(m−1)

= −ι
ω♯
1

(
εω2θ

(0) − ι
ω♮
2
θ(2)
)
+ εω1

(
−ι

ω♮
2
θ(1)
)
− ι

ω♮
1

(
εω2θ

(1) − ι
ω♮
2
θ(3)
)

+
∑

1≤p≤m−3

[
εω1

(
εω2θ

(p−1) − ι
ω♯
2
θ(p+1)

)
− ι

ω♯
1

(
εω2θ

(p+1) − ι
ω♯
2
θ(p+3)

)]
+ εω1

(
εω2θ

(n−3) − ι
ω♯
2
θ(m−1)

)
− ι

ω♯
1

(
εω2θ

(m−1)
)
+ εω1

(
εω2θ

(m−2) − ι
ω♯
2
θ(m)

)
.

On the other hand, it is easy to see that

θ > ω1 = −ι
ω♯
1
θ(1) +

∑
0≤p≤m−2

(−1)p
(
εω1θ

(p) + ι
ω♯
1
θ(p+2)

)
+ (−1)m−1εω1θ

(m−1). (2.5.62)

Thus

ϕ(0) = −ι
ω♯
1
θ(1),

ϕ(p) = (−1)p−1
(
εω1θ

(p−1) + ι
ω♯
1
θ(p+1)

)
, p = 1, · · · ,m− 1,

ϕ(m) = (−1)m−1εω1θ
(m−1).

Again, from (2.5.62) we deduce that

(θ > ω1)> ω2 = ϕ> ω2

= − ι
ω♯
2

(
εω1θ

(0) + ι
ω♯
1
θ(2)
)
+ εω2

(
−ι

ω♯
1
θ(1)
)
− ι

ω♯
2

(
εω1θ

(1) + ι
ω♯
1
θ(3)
)

−
∑

1≤p≤m−3

[(
εω2

(
εω1θ

(p−1)
)
+ ι

ω♯
1
θ(p+1)

)
+ ι

ω♯
2

(
εω1θ

(p+1) + ι
ω♯
1
θ(p+3)

)]
− εω2

(
εω1θ

(n−3) + ι
ω♮
1
θ(n−1)

)
− ι

ω♯
2

(
εω1θ

(n−1)
)
− εω2

(
εω1θ

(n−2) + ι
ω♯
1
θ(n)

)
.

For degree 0, we have

g (ω1 > (ω2 > θ) , θ)0 = g
(
−ι

ω♯
1

(
εω2θ

(0) − ι
ω♯
2
θ(2)
)
, θ(0)

)
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= − g
(
εω2θ

(0) − ι
ω♯
2
θ(2), εω1θ

(0)
)

= −g
(
εω1θ

(0), εω0θ
(2)
)
+ g

(
θ(2), εω2εω1θ

(0)
)

= − g
(
ι
ω♯
2
εω1θ

(0), θ(0)
)
− g

(
θ(2), εω1εω2θ

(0)
)

= g
(
−ι

ω♯
2

(
εω1θ

(0) + ι
ω♯
1
θ(2)
)
, θ(0)

)
= g ((θ > ω1)> ω2, θ)0 .

Similarly, we can verify for other degrees.

Proposition 2.11

♥

For θ1, θ2 ∈ A∗(M) and vector fields X,Y we have the derivation properties:

∇X (θ1 > θ2) = ∇Xθ1 > θ2 + θ1 >∇Xθ2, (2.5.63)

and

Rmg(X,Y ) (θ1 > θ2) = (Rmg(X,Y )θ1)> θ2 + θ1 > (Rmg(X,Y )θ2) . (2.5.64)

Proof. In case θ1 = θ2 = ω is a 1-form, we have

∇X(ω > θ) = −∇X |ω|2g = −2g (∇Xω, ω) = ∇Xω > ω + ω >∇Xω.

In case θ1 = ω is a 1-form and θ2 = θ is a general form, we have

∇X (ω > θ) = ∇X (εωθ − ιω♯θ) = ε∇Xωθ + εω∇Xθ − ι(∇Xω)
♯θ − ιω♯∇Xθ

= ∇Xω > θ + ω >∇Xω.

The same formula holds for any forms. The second formula follows from the first formula.

Let {ei}1≤i≤m and {ωi}1≤i≤m denote the orthonormal frame and coframe, respectively.

The Dirac operator on forms is given by

D : A∗(M) −→ A∗(M), θ 7−→
∑

1≤i≤m
ωi >∇eiθ. (2.5.65)

The definition is independent of the choice of the frame fields and coframe fields.

Proposition 2.12

♥

Given a frame {ei}1≤i≤m and its dual coframe {ωi}1≤i≤m, we have

dθ = εωi∇eiθ, (2.5.66)

d∗gθ = −ι
(ωi)♯

∇eiθ, (2.5.67)

D = d+ δg. (2.5.68)

Proof. (2.5.66) and (2.5.67) hold for functions and 1-forms, so that it also holds for any forms.

(2.5.68) is a direct consequence of the previous two formulas.

The square of the Dirac operator satisfies

−D2 = − (d+ δg)
2 = − (dδg + δgd) = ∆H,g. (2.5.69)
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Corollary 2.1

♥

If X be a vector field, then

∆H,gX
♭ = ∆∧∗T ∗M

H,g X♭ − Rcg(X)♭. (2.5.70)

Proof. Calculate

∆H,gX
♭(ei) = −d

(
δgX

♭
)
(ei)− δg

(
dX♭

)
(ei)

= −∇eiδgX
♭ + 2

∑
1≤j≤m

(
∇ejdX

♭
)
(ei, ej)

= ∇ei

∑
1≤j≤m

∇ejX
♭(ej) + 2

∑
1≤j≤m

(
∇ejdX

♭
)
(ei, ej)

=
∑

1≤j≤m

(
∇2
ei,ejX

♭
)
(ej) +

∑
1≤j≤m

∇ej

[(
∇eiX

♭
)
(ej)−

(
∇ejX

♭
)
(ei)
]

=
∑

1≤j≤m

(
∇2
ei,ejX

♭ −∇2
ej ,eiX

♭
)
(ej)−

∑
1≤j≤m

(
∇2
ej ,ejX

♭
)
(ei)

= ∆∧∗T ∗M
H,g X♭ +

∑
1≤j≤m

(
Rmg(ei, ej)X

♭
)
(ej).

By definition, one has∑
1≤j≤m

(
Rmg(ei, ej)X

♭
)
(ej) =

∑
1≤j≤m

(
Rmg(ei, ej)(X

♭(ej))−X♭ (Rmg(ei, ej)ej)
)

= −
∑

1≤j≤m
X♭ (Rmg(ei, ej)ej) = −X♭ (Rcg(ei))

= − g (X,Rcg(ei)) = −g (Rcg(X), ei) = −Rc(X)♭(ei).

Extending to any linear combinations of ei, we prove the corollary.

Proposition 2.13

♥

For any form θ, we have

D2θ = ωi > ωj >∇2
ei,ejθ (2.5.71)

=
(
∇2
ei,ejθ

)
> ωj > ωi. (2.5.72)

Proof. Recall that

∇2
ei,ej = ∇ei∇ej −∇∇eiej

is tensorial in both ei and ej , and thus the two expressions on the right hand side are invariantly

defined. We may assume that ∇ei = 0 at a point and consequently ∇ωi = 0. Calculate at this

point,

D2θ = ωi>∇ei (Dθ) = ωi>∇ei

(
ωj >∇ejθ

)
= ωi>

(
∇eiω

j >∇ejθ + ωj >∇ei∇ejθ
)

= ωi > ωj >∇ei∇ejθ + ωi >∇eiω
j >∇ejθ
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= ωi > ωj >∇ei∇ejθ − ωi > ωj >∇∇eiej
θ = ωi > ωj >∇2

ei,ejθ.

Similarly, we can prove the second formula.

We can now establish the relevant Weitzenböck formula.

Theorem 2.7

♥

For any form θ, we have

−D2θ = ∆∧∗T ∗M
H,g θ − 1

2
ωi > ωj > Rmg(ei, ej)θ, (2.5.73)

= ∆∧∗T ∗M
H,g θ − 1

2
Rmg(ei, ej)θ > ωj > ωi. (2.5.74)

Proof. Using Proposition 2.13, it suffices to check

∆∧∗T ∗M
H,g θ − 1

2
ωi > ωj > Rmg(ei, ej)θ = −ωi > ωj >∇2

ei,ejθ. (2.5.75)

The left hand side of (2.5.75) equals∑
1≤i≤m

∇2
ei,eiθ −

∑
i ̸=j

ωi > ωj >∇2
ei,ejθ = ∆∧∗T ∗M

H,g θ −
∑
i<j

ωi > ωj >
(
∇2
ei,ejθ∇

2
ej ,eiθ

)
= ∆∧∗T ∗M

H,g θ −
∑
i<j

ωi > ωj > Rmg(ei, ej)θ = ∆∧∗T ∗M
H,g θ − 1

2
ωi > ωj > Rmg(ei, ej)θ

where we use the fact that ωi > ωi = −1 and ωi > ωj = −ωj > ωi.

2.6 Integration and Hodge theory

Introduction

h Integration by parts

h De Rham theorem and Hodge decom-

position theorem

h Killing vector fields

h Affine vector fields

2.6.1 Integration by parts

Let (M, g) be an oriented n-dimensional Riemannian manifold with boundary ∂M. The

orientation on M defines an orientation on ∂M. Locally, on the boundary, choose a positively

oriented frame field {ei}1≤i≤m such that e1 = ν is the unit outward normal. Then the frame

field {ei}2≤i≤m is positively oriented on ∂M.

Theorem 2.8. (Stokes’s theorem)

♥

If α is an (m−1)-form on a compact orientedm-dimensional manifold M with (possibly

empty) boundary ∂M, then ∫
M
dα =

∫
∂M

α. (2.6.1)
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Let {ωi}1≤i≤m denote the orthonormal coframe field dual to {ei}1≤i≤m. The volume form

of M is dVg = ω1 ∧ · · · ∧ωm and the volume form of ∂M is dV ′
g := ω2 ∧ · · · ∧ωm. According

to (2.5.8), we have

(ινdVg) (e2, · · · , em) = m · dVg(e1, e2, · · · , em) =
m

m!
=

1

(m− 1)!

and hence

dV ′
g = ιV (dVg) . (2.6.2)

Theorem 2.9. (Divergence theorem)

♥

Let (M, g) be a compact oriented m-dimensional Riemannian manifold. If X is a vector

field, then ∫
M

divg(X)dVg =

∫
∂M

〈X, ν〉gdV ′
g , (2.6.3)

where divg(X) = ∇iX
i.

Proof. Define the (m− 1)-form α by α := ιX (dVg). Using (2.5.9) and d2 = 0, we compute

dα = d ◦ ιX (dVg) = LX (dVg) .

In an orthonormal frame e1, · · · , em, one has

LX (dVg) (e1, · · · , em) =
∑

1≤i≤m
dVg (e1, · · · ,∇eiX, · · · , em) = divg(X)dVg(e1, · · · , em)

so that dα = divg(X)dVg. Now Theorem 2.8 implies∫
M

divg(X)dVg =

∫
M
dα =

∫
∂M

α =

∫
∂M

ιX (dVg) .

Since

(ιX (dVg)) (e2, · · · , em) = m dVg(X, e2, · · · , em) = m〈X, ν〉gdVg(e1, · · · , em) =
〈X, ν〉g
(m− 1)!

so that ιX(dVg) = 〈X, ν〉gdV ′
g .

Lemma 2.7

♥

Let (M, g) be an m-dimensional compact oriented Riemannian manifold.

(1) If M is closed, then ∫
M

∆gudVg = 0.

(2) We have the following Green formula∫
M

(u∆gv − v∆gu) dVg =

∫
∂M

(
u
∂v

∂ν
− v

∂u

∂ν

)
dV ′

g .

In particular, on a closed manifold∫
M
u∆gvdVg =

∫
M
v∆gudVg.

(3) If f is a function and α is a 1-form, then∫
M
fdivgαdVg = −

∫
M
〈∇gf, α〉gdVg +

∫
∂M

f〈α, ν〉gdV ′
g .
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Proof. Since ∆gu = divg (∇gu), (1) follows. For (2), we note divg(u∇gv− v∇gu) = u∆gv−
v∆gu. For (3), we note fdivgα = f∇iαi = ∇i(fαi)−∇if · αi, where α = αidx

i.

Corollary 2.2

♥

Let (M, g) be a closedm-dimensional Riemannian manifold. If α is an (r, s)-tensor field

and β is an (r − 1, s)-tensor field, then∫
M
〈α,∇gβg〉gdVg = −

∫
M
〈divg(α), β〉gdVg. (2.6.4)

Proof. Let γj := αji2···irk1···ks β
k1···ks
i2···ir . Since

divg(γ) = ∇jγj = ∇j
(
αji2···irk1···ks β

k1···ks
i2···ir

)
= ∇jαji2···irk1···ks · βi2···irk1···ks + αk1···ksji2···ir · ∇

jβk1···ksi2···ir = 〈divg(α), β〉g + 〈α,∇gβ〉g .

Hence, (2.6.5) follows by applying the divergence theorem.

Note 2.34. (Norm of 2-tensor dominates trace)

♣

Show that for any 2-tensor α on anm-dimensional Riemannian manifold (M, g), we have

|α|2g ≥
1

m
(trgα)

2 . (2.6.5)

More generally, for a p-tensor α (p ≥ 2),

|α|2g ≥
1

m

∣∣gijαijk3···kp∣∣2g . (2.6.6)

Choose a normal coordinate system x1, · · · , xm so that gij = δij at a point. Then

(trgα)
2 =

 ∑
1≤i≤m

αii

2

≤

 ∑
1≤i≤m

12

 ∑
1≤i≤m

α2
ii

 = m|α|2g.

Lemma 2.8. (Bochner formula and inequality)

♥

On a closed oriented m-dimensional Riemannian manifold (M, g),∫
M

∣∣∇2
gf
∣∣2
g
dVg +

∫
M

Rcg (∇gf,∇gf) dVg =

∫
M

(∆gf)
2 dVg. (2.6.7)

In particular, ∫
M

Rcg (∇gf,∇gf) dVg ≤
m− 1

m

∫
M

(∆gf)
2 dVg. (2.6.8)

Proof. Taking the integral on both sides of (2.5.24) yields

0 =

∫
M

∣∣∇2
gf
∣∣2
g
dVg +

∫
M

Rcg (∇gf,∇gf) dVg +

∫
M

〈∇gf,∇g (∆gf)〉g dVg.

By (2.6.5), the last integral equals

−
∫
M

〈divg (∇gf) ,∆gf〉g dVg = −
∫
M

|∆gf |2g dVg.

Thus we prove (2.6.7). For (2.6.8) we use the inequality∣∣∇2
gf
∣∣2
g
≥ 1

m
(∆gf)

2 (2.6.9)

that is a consequence of (2.6.6).
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Lemma 2.9. (Lichnerowicz)

♥

Suppose that f is a non-zero eigenfunction of the Laplacian with eigenvalue λ > 0,

∆gf + λf = 0,

on a closed orientedm-dimensional Riemannian manifold (M, g). If Rcg ≥ (m−1)Kg,

where K > 0 is a constant, then

λ ≥ mK. (2.6.10)

Proof. By (2.6.8) we deduce that

(m− 1)K

∫
M

|∇gf |2g dVg ≤
m− 1

m

∫
M

(∆gf)
2 dVg =

m− 1

m

∫
M
λ2f2dVg.

On the other hand, ∫
M

|∇gf |2g dVg = −
∫
M
f∆gfdVg =

∫
M
λf2dVg

so that mKλ ≤ λ2. Since λ > 0, we must have λ ≥ mK.

2.6.2 De Rham theorem and Hodge decomposition theorem

Let M be a closed oriented m-dimensional manifold. Consider the following complex

induced from the exterior differentiation d,

d : 0 → A0(M) → A1(M) → · · · → Am−1(M) → Am(M) → 0, (2.6.11)

where d2 = 0. Hence Im(d) ⊂ Ker(d) and we define the p-th de Rham cohomology group

Hp
deR(M) :=

Ker
(
d|Ap(M)

)
Im
(
d|Ap−1(M)

) . (2.6.12)

Theorem 2.10. (De Rham)

♥

If M is a closed oriented n-dimensional Riemannian manifold, then the p-th de Rham

cohomology group is isomorphic to the p-th singular real coholomogy group:

Hp
deR(M) ∼= Hp

sing(M;R)

and consequently, the de Rham cohomology groups Hp
deR(M) are all finite.

A differential form α is called harmonic if

∆H,gα = 0. (2.6.13)

The space of harmonic p-forms is denoted by

Hp
g(M) := {α ∈ Ap(M) : ∆H,gα = 0}. (2.6.14)

Since ∫
M

〈∆H,gα, α〉g dVg = −
∫
M

(
|dα|2g + |δgα|2g

)
dVg,

we have that α is harmonic if and only if dα = 0 = δgα. Therefore

Hp
g(M) = {α ∈ Ap(M) : dα = δgα = 0} .
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Given a p-form γ, we want to find a condition that ∆H,gα = γ has a solution for some

α ∈ Ap(M). If β ∈ Hp
g(M) is a harmonic p-form, then

(γ, β)L2,g = (∆H,gα, β)L2,g = (α,∆H,dβ)L2,g = 0.

Hence a necessary condition to solve ∆H,gα = γ is (γ, β)L2,g = 0 for all β ∈ Hp
g(M). The

converse of this is also true.

Theorem 2.11. (Hodge decomposition theorem)

♥

Let (M, g) be a closed oriented m-dimensional Riemannian manifold. Given γ ∈
Ap(M), the equation

∆H,gα = γ

has a solution α ∈ Ap(M) if and only if (γ, β)L2,g = 0 for all β ∈ Hp(M). Conse-

quently, we have the following decomposition of the space of p-forms

Ap(M) = ∆H,g (Ap(M))⊕Hp
g(M) (2.6.15)

= dδg (Ap(M))⊕ δgd (Ap(M))⊕Hp
g(M).

Moreover, the space Hp
g(M) is finite-dimensional.

Corollary 2.3

♥

In each de Rham cohomology class, there is a unique harmonic form representing the

cohomology class. In particular, the p-th de Rham cohomology group Hp
deR(M) is

isomorphic to the space of harmonic p-forms Hp
g(M).

Corollary 2.4

♥

If (M, g) is a closed oriented n-dimensional Riemannian manifold and if f : M → R is

a smooth function with ∫
M
f dVg = 0,

then there exists a smooth function u : M → R such that ∆gu = f . The function u is

uniquely determined up to an additive constant.

Proof. By the Hodge decomposition theorem, we have f = ∆gu+ h for some smooth function

u : M → R and h ∈ H0
g(M). Thus ∆gh = 0 and hence g = 0 since M is compact. The

uniqueness is obvious.

The Hodge Laplacian ∆H,g commutes with the Hodge star operator ∗g:

∆H,g ◦ ∗g = ∗g ◦∆H,g. (2.6.16)

Thus, if α ∈ Hp
g(M) is a harmonic p-form, then ∗gα is a harmonic (m− p)-form, i.e.,

∗g : Hp
g(M) −→ Hm−p

g (M)



2.6 Integration and Hodge theory – 135 –

is an isomorphism. By Corollary 2.3,

Hp
DR(M) ∼= Hm−p

DR (M), (2.6.17)

which is known as the Poincaré duality theorem for de Rham cohomology.

2.6.3 Killing fields

A vector field X on an m-dimensional Riemannian manifold (M, g) is called a Killing
field if the local flows generated byX act by isometries. This translates into the following simple

characterization.

Proposition 2.14

♥A vector field X is a Killing field if and only if LXg = 0.

Proof. Let F t be the local flow for X . Recall that

(LXg) (V,W ) =
d

dt

∣∣∣
t=0

g
(
dF t(V ), dF t(W )

)
.

Thus we have
d

dt

∣∣∣
t=0

g
(
dF t(V ), dF t(W )

)
=

d

dt

∣∣∣
t=0

g
(
dF t−t0dF t0(V ), dF t−t0dF t0(W )

)
=

d

ds

∣∣∣
s=0

g
(
dF sdF t0(V ), dF sdF t0(W )

)
= LXg

(
dF t0(V ), dF t0(W )

)
.

This shows that LXg = 0 if and only if t 7→ g(dF t(V ), dF t(W )) is constant. Since F 0 is the

identity map this is equivalent to assuming the flow acts by isometries.

Proposition 2.15

♥X is a Killing field if and only if V 7→ (∇g)VX is a skew-symmetric (1, 1)-tensor.

Proof. Recall that

dX♭(V,W ) =
1

2

(
(∇g)VX

♭(W )− (∇g)WX
♭(V )

)
=

1

2

(
V (X♭(W ))−W (X♭(V ))−X♭([V,W ])

)
− 1

2
(V g(X,W )−Wg(X,V )− g(X, [V,W ]))

=
1

2
[g ((∇g)VX,W ) + g (X, (∇g)VW )− g ((∇g)WX,V )− g (X, (∇g)WV )

− g (X, (∇g)VW ) + g (X, (∇g)WV )] =
1

2
[g ((∇g)VX,W )− g ((∇g)WX,V )]

and

LXg(V,W ) = g ((∇g)VX,W ) + g (V, (∇g)WX) .

Hence

dX♭(V,W ) +
1

2
LXg(V,W ) = g ((∇g)VX,W ) .
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Thus, LXg ≡ 0 if and only if V 7→ (∇g)VX is skew-symmetric.

In the following we consider Killing fields in negative Ricci curvature and positive Ricci

curvature. It is related to the Hopf conjecture which states that any even-dimensional manifold

with positive sectional curvature has positive Euler characteristic.

Proposition 2.16

♥

Let X be a Killing field and V any vector field. If we set f := 1
2 |X|2g, then

∇gf = −(∇g)XX,

Hessgf(V, V ) = g ((∇g)VX, (∇g)VX)− Rmg(V,X,X, V ),

∆gf = |∇gX|2g − Rcg(X,X).

Proof. Since X is a Killing field, it follows that LXg(V,W ) = 0 for any vector fields V and

W . Consequently, g ((∇g)VX,W ) + g (V, (∇g)WX) = 0. For (1),

g (V,∇gf) = (∇g)V f = g ((∇g)VX,X) = −g (V, (∇g)XX) .

For (2), we use the fact that g (V, (∇g)VX) = 0 to derive

Hessgf(V, V ) = g ((∇g)V∇gf, V ) = g ((∇g)V (−(∇g)XX) , V )

= −g ((∇g)X(∇g)VX,V )− g (Rmg(V,X)X,V )− g
(
(∇g)[V,X]X,V

)
= −Rmg(V,X,X, V )−g ((∇g)X(∇g)VX,V )+g

(
(∇g)(∇g)XVX,V

)
−g
(
(∇g)(∇g)VXX,V

)
= g ((∇g)VX, (∇g)VX)−Rmg(V,X,X, V )−g ((∇g)X(∇g)VX,V )−g ((∇g)XV, (∇g)VX)

= −Rmg(V,X,X, V ) + g ((∇g)VX, (∇g)VX)− (∇g)Xg (V, (∇g)VX)

= −Rmg(V,X,X, V ) |(∇g)VX|2g .

For (3), we select an orthonormal frame {ei}1≤i≤m and calculate

∆gf =
∑

1≤i≤m
Hessgf(ei, ei) =

∑
1≤i≤m

|∇eiX|2g −
∑

1≤i≤m
Rmg(ei, X,X, ei)

= −Rcg(X,X) + |∇gX|2g .

Thus, we complete the proof.

Theorem 2.12. (Bochner, 1946)

♥

Suppose (M, g) is a compact and oriented m-dimensional Riemannian manifold and

has non-positive Ricci curvature. Then every Killing field is parallel. Furthermore, if

Rcg < 0, then there are no nontrivial Killing fields.

Proof. Set f = 1
2 |X|2g. Using Proposition 2.16 yields

0 =

∫
M

∆gf dVg =

∫
M

(
−Rcg(X,X) + |∇gX|2g

)
dVg ≥

∫
M

|∇gX|2g dVg ≥ 0.
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Thus, |∇gX| ≡ 0 and X must be parallel. In addition∫
M

−Rcg(X,X)dVg = 0, −Rcg(X,X) ≥ 0.

So Rcg(X,X) = 0. If Rcg < 0 this implies X ≡ 0.

Theorem 2.13

♥

Suppose that (M, g) is a compact and oriented m-dimensional Riemannian manifold

and has quasi-negative Ricci curvature, i.e., Rcg ≤ 0 and Rcg(V, V ) ≤ 0 for all V ∈
TpM\ {0} for some p ∈ M. Then (M, g) admits no nontrivial Killing fields.

Proof. We have proved in Theorem 2.13 that every Killing field is parallel. Thus a Killing field

is always zero or never zero. In the latter holds, then Rcg(X,X)(p) < 0, but this contracts with

0 = ∆gf(p) = −Rcg(X,X)(p) > 0.

Problem 2.1. (Hopf)

♠

Any even-dimensional closed manifold with positive sectional curvature has positive Euler

characteristic.

We will show that H1(M;R) = 0 provided the Ricci curvature is positive. Assume

this, the Hopf conjecture holds in dimension 2; in dimension 4, Poincaré duality implies that

H1(M;R) = H3(M;R) = 0. Hence χ(M) = 1 + dim(H2(M;R)) + 1 ≥ 2.

Theorem 2.14. (Berger, 1965)

♥

If (M, g) is a closed, even-dimensional Riemannian manifold of positive sectional curva-

ture, then every Killing field has a zero.

Proof. Let X be a Killing field and consider the function f = 1
2 |X|2g. If X has no zeros, f will

have a positive minimum at some point p ∈M . Then (Hessgf)p ≥ 0. We also know that

Hessgf(V, V ) = g ((∇g)VX, (∇g)VX)− Rmg(V,X,X, V ).

Since (∇gf)p = − ((∇g)XX)p and f has a minimum at p, ((∇g)XX)p = 0. Thus, we

have a skew-symmetric map TpM → TpM with at least one zero eigenvalue. But then, even

dimensionality of TpM ensures us that there must be at least one more zero eigenvector v ∈ TpM
linearly independent from X . Thus

Hessgf(v, v) = 〈(∇g)vX, (∇g)vX〉g(p) − Rmg(v,X,X, v) = −Rmg(v,X,X, v) ≤ 0

by assumption.

Theorem 2.15. (Rong, 1995)

♥

If a closed Riemannian m-manifold (M, g) admits a nontrivial Killing field, then the

fundamental group has a cyclic subgroup of index ≤ c(m).
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We define the Betti number of an m-manifold M as

bp(M) := dim(Hp(M;R)) = dim(Hp(M;R)) (2.6.18)

and the Euler characteristic as the alternating sum

χ(M) :=
∑

0≤p≤m
(−1)pbp(M). (2.6.19)

It is a key result in algebraic topology thatHp(M;R) andHp(M;R) have the same dimension

when we use real coefficients. Note that Poincaré duality implies that bp(M) = bm−p(M).

Theorem 2.16. (Conner, 1957)

♥

Let X be a Killing field on a compact Riemannian manifold M. If Ni ⊂ M are the

components of the zero set for X , then

χ(M) =
∑
i

χ(Ni),∑
p

b2p(M) ≥
∑
i

∑
p

b2p(Ni),∑
p

b2p+1(MM) ≥
∑
i

∑
p

b2p+1(Ni).

Here we use the fact that the zero set of a Killing field is a disjoint union of totally geodesic

submanifolds each of even codimension.

Corollary 2.5

♥

If M is a compact 6-manifold with positive sectional curvature that admits Killing field,

then χ(M) > 0.

Proof. We know that the zero set for a Killing field is non-empty and that each component has

even codimension. Thus each component is a 0, 2, or 4-dimensional manifold with positive

sectional curvature. This shows that M has positive Euler characteristic.

Theorem 2.17. (Hsiang-Kleiner, 1989)

♥

If M is a compact orientable positively curved 4-manifold that admits a Killing field, then

the Euler characteristic is ≤ 3. In particular, M is topologically equivalent to S4 or

CP2.

The rank of a compact Lie group is the maximal dimension of an Abelian subalgebra in

the corresponding Lie algebra. The symmetry rank of a compact Riemannian manifold is the

rank of the isometry group.

Theorem 2.18. (Grove-Searle, 1994)
(1)Let M be a compact m-manifold with positive sectional curvature and symmetry rank

k. If k ≥ m
2 , then M is diffeomorphic to either a sphere, complex projective space or

a cyclic quotient of a sphere Sm/Zq, where Zq is a cyclic group of order q acting by
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♥

isometries on the unit sphere.

(2) LetM be a closedm-manifold with positive sectional curvature. IfM admits a Killing

field such that the zero set has a componentN of codimension 2, then M is diffeomorphic

to Sm, CPm/2, or a cyclic quotient of a sphere Sm/Zq.

Theorem 2.19. (Püttmann-Searle, 2002)

♥

If M is a compact 2m-manifold with positive sectional curvature and symmetry rank

k ≥ 2m−4
4 , then χ(M) > 0.

Theorem 2.20. (Wilking, 2003)

♥

Let M be a compact simply-connected positively curved m-manifold with symmetry rank

k. If k ≥ m
4 + 1, then M has the topology of a sphere, complex projective space or

quaternionic projective space.

Theorem 2.21. (Rong-Su, 2005)

♥

If M is a compact 2m-manifold with positive sectional curvature and symmetry rank

k > 2m−4
8 , then χ(M) > 0.

The theorem also holds if we only assume that k ≥ 2m−4
8 as well as k ≥ 2 when 2m = 12.

2.6.4 Affine vector fields

Let (M, g) be an n-dimensional Riemannian manifold. For a vector field X we define the

Lie derivative of the connection as

(LX∇g) (U, V ) := LX ((∇g)UV )− (∇g)LXUV − (∇g)ULXV (2.6.20)

= [X, (∇g)UV ]− (∇g)[X,U ]V − (∇g)U [X,V ]. (2.6.21)

Lemma 2.10

♥LX∇g is a (2, 1)-tensor field.

Proof. For any smooth function f on M, we have

(LX(∇g)g) (fU, V ) = [X, (∇g)fUV ]− (∇g)[X,fU ]V − (∇g)fU [X,V ]

= [X, f(∇g)UV ]− (∇g)[X,fU ]V − f(∇g)U [X,V ]

= f [X, (∇g)UV ] +Xf · (∇g)UV − (∇g)f [X,U ]+Xf ·UV − f(∇g)U [X,V ]

= f
(
[X, (∇g)UV ]− (∇g)[X,U ]V − (∇g)U [X,V ]

)
= f (LX∇g) (U, V ).

For the second factor, one has

(LX∇g) (U, fV ) = [X, (∇g)UfV ]− (∇g)[X,U ]fV − (∇g)U [X, fV ]
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= [X,Uf · V + f · (∇g)UV ]−
(
[X,U ]f · V + f · (∇g)[X,U ]V

)
−(∇g)U (f [X,V ] +Xf · V )

= [X,Uf ·V ] + f [X, (∇g)UV ] +Xf · (∇g)UV − [X,V ]f ·V − f(∇g)[X,U ]V −Uf · [X,V ]

− f · (∇g)U [X,V ]− UXf · V −Xf · (∇g)UV = f (LX∇g) (U, V ).

Hence LX∇g is a (2, 1)-tensor field.

We say a vector field X is an affine vector field if LX∇g = 0.

Lemma 2.11

♥

(1) For an affine vector field X , we have

(∇g)
2
U,VX = −Rmg(X,U)V.

(2) Show that Killing vector fields are affine.

Proof. Calculate for any vector fields X,U, V ,

(LX∇g) (U, V )− Rmg(X,U)V = [X, (∇g)UV ]− (∇g)[X,U ]V − (∇g)U [X,V ]

− (∇g)X(∇g)UV + (∇g)U (∇g)XV + (∇g)[X,U ]V

= (∇g)X(∇g)UV − (∇g)(∇g)UVX − (∇g)U ((∇g)XV − (∇g)VX)

− (∇g)X(∇g)UV + (∇g)U (∇g)XV = (∇g)U (∇g)VX − (∇g)∇UVX = (∇g)
2
U,VX.

Hence, if X is affine, we obtain the desired result.

Lemma 2.12. (Yano, 1958)

♥

LetX be a vector field on a closed orientedm-dimensional Riemannian manifold (M, g).

Then ∫
M

[
Rcg(X,X) + trg

(
(∇gX)2

)
− (divgX)2

]
dVg = 0,∫

M

[
Rcg(X,X) + g

(
trg∇2

gX,X
)
+

1

2
|LXg|2g − (divgX)2

]
dVg = 0.

Proof. Calculate

divg ((∇g)XX) = ∇i ((∇g)XX)i = ∇i

(
∇jX

i ·Xj
)

= ∇i∇jX
i ·Xj +∇jX

i · ∇iX
j =

(
∇j∇iX

i +RiijkX
k
)
Xj +∇jX

i · ∇iX
j

= ∇j∇iX
i ·Xj +RjkX

jXk +∇jX
i · ∇iX

j .

The first term can be computed by

divg (divgX ·X) = ∇j

(
∇iX

i ·Xj
)
= ∇j∇iX

i ·Xj +∇iX
i · ∇jX

j .

Hence

divg ((∇g)XX)− divg (divgX ·X) = Rcg(X,X) +∇jX
i · ∇iX

j − (divgX)2 .
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Since X is compact and oriented, taking the integral on both sides implies the first integral

formula.

Note 2.35. (Yano)

♣

IfX is an affine vector field then trg∇2
gX = −Rcg(X) and that divgX is constant. Using

Lemma 2.12 yields on closed oriented manifolds affine fields are Killing fields.

2.7 Curvature decomposition and LCF manifolds

Introduction

h Decomposition of the curvature ten-

sor field

h Locally conformally flat manifolds

Let (M, g) be a Riemannian m-manifold. The Riemann curvature (4, 0)-tensor field Rmg

is a section of the bundle �2 ∧2 T ∗M := ∧2T ∗M ⊗S ∧2T ∗M, where ∧2T ∗M denotes the

vector bundle of 2-forms and ⊗S denotes the symmetric tensor product bundle.

2.7.1 Decomposition of the curvature tensor field

By the first Bianchi identity, Rmg is a section of the subbundle Ker(b), the kernel of the

linear map:

b : �2 ∧2 T ∗M −→ ∧3T ∗M⊗S T
∗M (2.7.1)

defined by

b(Ω)(X,Y, Z,W ) :=
1

3
(Ω(X,Y, Z,W ) + Ω(Y, Z,X,W ) + Ω(Z,X, Y,W )) . (2.7.2)

We shall call C(M) := Ker(b) the bundle of curvature tensor fields. For every x ∈ M, the

fiber Cx(M) has the structure of an O(T ∗
xM)-module, given by

× : O(T ∗
xM)×Cx(M) −→ Cx(M) (2.7.3)

where

A× ((α ∧ β)⊗ (γ ∧ δ)) := (Aα ∧Aβ)⊗ (Aγ ∧Aδ) (2.7.4)

for A ∈ O(T ∗
xM) and α, β, γ, δ ∈ T ∗

xM. As an O(T ∗
xM) representation space, Cx(M) has a

natural decomposition into its irreducible components. Consider the Kulkarni-Nomizu product

� : �2T ∗M×�2T ∗M −→ C(M) (2.7.5)

defined by

(α� β)ijkℓ := αiℓβjk + αjkβiℓ − αikβjℓ − αjℓβik. (2.7.6)

The irreducible decomposition of Cx(M) as an O(T ∗
xM)-module is given by

C(M) = (Rg � g)⊕
(
�2

0T
∗M� g

)
⊕W(M) (2.7.7)
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where �2
0T

∗M is the bundle of symmetric, trace-free 2-forms and

W(M) := Ker(b) ∩Ker(c) (2.7.8)

is the bundle of Weyl curvature tensor fields. Here

c : �2 ∧2 T ∗M −→ �2T ∗M (2.7.9)

is the contraction map defined by

c(Ω)(X,Y ) :=
m∑
i=1

Ω(ei, X, Y, ei). (2.7.10)

Note that

(g � g)ijkℓ = 2(giℓgjk − gikgjℓ). (2.7.11)

The irreducible decomposition of C(M) yields the following irreducible decomposition of

the Riemann curvature tensor field:

Rmg = f · g � g + h� g +W, (2.7.12)

where f ∈ C∞(M), h ∈ C∞(M,�2
0T

∗M), and W ∈ C∞(M,W(M)). Taking the contrac-

tion c of this equation implies

Rjk = 2(n− 1)fgjk + (m− 2)hjk; (2.7.13)

taking the contraction again we have

Rg = 2(m− 1)mf + (m− 2)trgh = 2m(m− 1)f, (2.7.14)

since h is trace-free. Hence

f =
Rg

2m(m− 1)
, h =

1

m− 2
Rcg −

1

m(m− 2)
Rg · g. (2.7.15)

Using (2.7.12) and (2.7.15) we deduce that for m ≥ 3,

Rmg =
Rg

2(m− 1)(m− 2)
g � g +

1

m− 2
Rcg � g +Weylg (2.7.16)

=
Rg

2m(m− 1)
g � g +

1

m− 2
Rc◦g � g +Weylg, (2.7.17)

where Rc◦g := Rcg − Rg

m g is the traceless Ricci tensor field and Weylg is the Weyl tensor field,

which is defined by (2.7.16). We let

Wijkl := Weylg(∂i, ∂j , ∂k, ∂l). (2.7.18)

In local coordinates, (2.7.16) says that for m ≥ 3,

Wijkℓ = Rijkℓ +
Rg

(m− 1)(m− 2)
(giℓgjk − gikgjℓ) (2.7.19)

− 1

m− 2
(Riℓgjk + giℓRjk −Rikgjℓ − gikRjℓ).

Hence

Wijkℓ = −Wjikℓ = −Wijℓk =Wkℓij . (2.7.20)

We claim that

gikWijkℓ = 0. (2.7.21)
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Indeed,

gikWijkℓ = −Rjℓ +
Rg

(m− 1)(m− 2)
(gjℓ − ngjℓ)−

1

m− 2
(Rjℓ +Rjℓ −Rgjℓ − nRjℓ)

= −Rjℓ −
Rg

m− 2
gjℓ −

1

m− 2
((2−m)Rjℓ −Rgjℓ)

= −Rjℓ −
Rg

m− 2
gjℓ +Rjℓ +

Rg
m− 2

gjℓ = 0.

Note 2.36

♣

The Weyl tensor field vanishes when m ≤ 3. For m = 2, the possibly non-trivial

component is W1212. Using (2.7.21), we have

0 =W1212 +W2222 =W1212.

For m = 3 there are only two possible types of nonzero components of W . Either there

are three distinct indices such as W1231 or there are two distinct indices such as W1221.

First we compute, using the trace-free property,

W1231 = −W2232 −W3233 = 0.

Next, we have

W1221 = −W2222 −W3223 = −W3223 =W3113 = −W2112 = −W1221

which implies W1221 = 0.

By Note 2.36, (2.7.12), (2.7.13), and (2.7.14), we conclude that for m = 2,

Rijkℓ =
Rg
2
(giℓgjk − gikgjℓ), Rjk =

Rg
2
gjk. (2.7.22)

Similarly, for m = 3, we have

Rijkℓ = Riℓgjk +Rjkgiℓ −Rikgjℓ −Rjℓgik −
Rg
2
(giℓgjk − gikgjℓ). (2.7.23)

Lemma 2.13

♥

If g̃ = e2fg for some function f , then

R̃ℓijk = Rℓijk − aℓigjk − ajkδ
ℓ
i + aikδ

ℓ
j + aℓjgik, (2.7.24)

where

aij := ∇i∇jf −∇if∇jf +
1

2
|∇gf |2g gij . (2.7.25)

That is,

e−2fRmg̃ = Rmg − a� g. (2.7.26)

From this deduce the Weyl tensor field is conformally invariant:

Weyle2fg = e2fWeylg. (2.7.27)

Proof. First we compute that

Γ̃kij = Γkij +∇if · δkj +∇jf · δki −∇kf · gij .
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If we set Akij := Γ̃kij − Γkij , then

R̃ℓijk = Rℓijk +∇iA
ℓ
jk −∇jA

ℓ
ik +AmjkA

ℓ
im −AmikA

ℓ
jm.

Simplifying it gives (2.7.24) and hence (2.7.26).

From (2.7.7) we have the (reducible) decomposition:

C(M) ∼=
(
�2T ∗M� g

)
⊕W(M). (2.7.28)

Then

Rmg =
1

m− 2
Sg � g +Weylg (2.7.29)

where Sg := Rcg − Rg

2(m−1)g is the Weyl-Schouten tensor field. If m ≥ 3, then

∇ℓWijkℓ =
m− 3

m− 2
Cijk (2.7.30)

where (Sik := Sg(∂i, ∂k))

Cijk := ∇iSjk −∇jSik (2.7.31)

= ∇iRjk −∇jRik −
1

2(m− 1)
(∇iRg · gjk −∇jRg · gik)

are the components of the Cotton tensor field Cg.

Note 2.37

♣

(1) Form ≥ 4, if the Weyl tensor field of anm-dimensional Riemannian manifold (M, g)

vanishes, then the Cotton tensor field vanishes. Whenm = 3, the Weyl tensor field always

vanishes but the Cotton tensor field does not vanishes in general.

(2) If m = 3, then

Ce2fg = e2fCg. (2.7.32)

2.7.2 Locally conformally flat manifolds

We say that a m-dimensional Riemannian manifold (M, g) is locally conformally flat if

for every point p ∈ M, there exists a local coordinate system {xi}1≤i≤m in a neighborhood U
of p such that

gij = v · δij

for some function v defined on U , e.g., v−1g is a flat metric.

Note 2.38

♣

Any Riemannian surface is locally conformally flat. Indeed, if (M, g) is a Riemannian

surface and u is a function on M, then

Reug = e−u (Rg −∆gu) .

To find u locally so thatReug = 0 we need to solve the Poisson equation ∆gu = Rg which

is certainly possible.
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Proposition 2.17. (Weyl, Schouten)

♥

An m-dimensional Riemannian manifold (M, g) is locally conformally flat if and only if

(1) for m ≥ 4 the Weyl tensor field vanishes,

(2) for m = 3 the Cotton tensor field vanishes.

Corollary 2.6

♥

If a Riemannian manifold (M, g) has constant sectional curvature, then (M, g) is locally

conformally flat.

Proof. If the sectional curvature is constant, then

Rmg =
Rg

2m(m− 1)
g � g

so that the Weyl tensor field vanishes. By Proposition 2.17, (M, g) is locally conformally

flat.

Corollary 2.7

♥

(1) If (N , gN ) and (P, gP) are Riemannian manifolds such that

SecgN ≡ C, SecgPp ≡ −C, for some C ∈ R,

then their Riemannian product (N ×P, gN + gP) is locally conformally flat.

(2) If (N , gN ) has SecgN ≡ C, then the Riemannian product (N ×R, gN +dt2) is locally

conformally flat.

Proof. (1) Since

RmgN×Pp = RmgN +RmgPp =
C

2
gN � gN − C

2
gPp � gPp

=
C

2
(gN − gPp)� (gN + gPp) ,

the uniqueness of the decomposition tells WeylN×Pp = 0.

(2) The Riemann curvature tensor field of the product is

RmgN×R =
C

2
gN � gN =

C

2

(
gN − dt2

)
�
(
gN + dt2

)
where we used the fact that dt2 � dt2 = 0. Therefore WeylN×R = 0.

We say that two Riemannian manifolds (M, g) and (N , h) are conformally equivalent if

there exist a diffeomorphism ϕ : M → N and a function f : M → R such that g = efϕ∗h.

Theorem 2.22. (Kuiper)

♥

If (M, g) is a simply-connected, locally conformally flat, closed m-dimensional Rieman-

nian manifold, then (M, g) is conformally equivalent to the standard sphere Sm.

A map ψ from one Riemanian manifold (M, g) to another (N , h) is said to be conformal
if there exists a function f : M → R such that g = efψ∗h.
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Theorem 2.23. (Schoen-Yau, 1988)

♥

If (M, g) is a simply-connected, locally conformally flat, complete m-dimensional Rie-

mannian manifold in the conformal class of a metric with nonnegative scalar curvature,

then there exists a one-to-one conformal map of (M, g) into the standard sphere Sm.

When (M, g) is not simply-connected, we can apply the above results to the universal cover

(M̃m, g̃).

Note 2.39

♣

If (Mm1
1 , g1) and (Mm2

2 , g2) are Riemannian manifolds, then the product Riemannian

manifold (Mm1
1 ×Mm2

2 , g1 + g2) satisfies

Rmg1+g2(X,Y, Z,W ) = Rmg1(X1, Y1, Z1,W1) + Rmg2(X2, Y2, Z2,W2),

Rcg1+g2(X,Y ) = Rcg1(X1, Y1) + Rcg2(X2, Y2)

where X = (X1, X2), etc.

2.8 Moving frames and the Gauss-Bonnet formula

Introduction

h Cartan structure equations

h Curvature under conformal change of

metric

h The Gauss-Bonnet formula

h Moving frames adapted to hypersur-

faces

2.8.1 Cartan structure equations

Let {ei}1≤i≤m be a local orthonormal frame field in an open set U of an m-dimensional

Riemannian manifold (M, g). The dual orthonormal basis (or coframe field) {ωi}1≤i≤m of

C∞(M, T ∗M) is defined by ωi(ej) = δij for all i, j = 1, · · · ,m. We can write the metric g as

g =
∑

1≤i≤m
ωi ⊗ ωi. (2.8.1)

The connection 1-forms ωji are the components of the Levi-Civita connection with respect to

{ei}1≤i≤m:

(∇g)Xei :=
∑

1≤j≤m
ωji (X)ej , (2.8.2)

for all i, j = 1, · · · ,m and all vector fields X on U . Since for all X

0 = X〈ei, ej〉g = 〈(∇g)Xei, ej〉g + 〈ei, (∇g)Xej〉g ,

the connection 1-forms are anti-symmetric:

ωji = −ωij . (2.8.3)
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From ωi(ej) = δij and the product rule we see that

(∇g)Xω
i = −ωij(X)ωj . (2.8.4)

The curvature 2-forms Ωji := Rmj
i on U are defined by

Rmj
i (X,Y )ej :=

1

2
Rmg(X,Y )ei (2.8.5)

so that

Rmj
i (X,Y ) :=

1

2
〈Rmg(X,Y )ei, ej〉g . (2.8.6)

Theorem 2.24. (Cartan structure equations)

♥

The first and second Cartan structure equations are

dωi = ωj ∧ ωij , (2.8.7)

Ωji = dωji − ωki ∧ ω
j
k. (2.8.8)

Proof. Calculate

dωi(X,Y ) =
1

2

(
(∇g)Xω

i
)
(Y )− 1

2

(
(∇g)Y ω

i
)
(X)

= −1

2
ωij(X)ωj(Y ) +

1

2
ωij(Y )ωj(X) = (ωj ∧ ωij)(X,Y )

implying (2.8.7). From (2.2.8) and ∇2
gei = ∇gω

k
i · ek + ωki∇gek, we have

Ωji (X,Y ) = Rmj
i (X,Y ) =

1

2

〈
(∇g)

2
X,Y ei, (∇g)

2
Y,Xei, ej

〉
g

= dωki (X,Y )〈ek, ej〉g +
1

2

(
ωki (Y )ωℓk(X)− ωki (X)ωℓk(Y )

)
〈eℓ, ej〉g

that (2.8.8) follows.

For a surface M, we have

dω1 = ω2 ∧ ω1
2, dω2 = ω1 ∧ ω2

1, Ω1
2 = dω1

2.

The Gauss curvature is defined by

Kg := 2Rm1
2(e1, e2) = 2dω1

2(e1, e2). (2.8.9)

Note 2.40
Show that

dωk(ei, ej) =
1

2
ωki (ej)−

1

2
ωkj (ei).

Consequently,

ωki (ej) = dωi(ej , ek) + dωj(ei, ek)− dωk(ej , ei). (2.8.10)

By definition, we have

dωk(ei, ej) = −1

2
ωkl (ei)ω

l(ej) +
1

2
ωkℓ (ej)ω

ℓ(ei) = −1

2
ωkj (ei) +

1

2
ωki (ej).

Therefore

dωi(ej , ek) + dωj(ei, ek)− dωk(ej , ei)
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♣

=
1

2

(
ωij(ek)− ωik(ej) + ωji (ek)− ωjk(ei)− ωkj (ei) + ωki (ej)

)
=

1

2

(
ωki (ej) + ωki (ej)

)
= ωki (ej).

Note that the similarity between this and the formula for the Christoffel symbols.

Note 2.41

♣

Prove

dΩji = ωki ∧ Ωjk − ωjk ∧ Ωki . (2.8.11)

From (2.8.8), we have

dΩji = d
(
dωji − ωki ∧ ω

j
k

)
= −dωki ∧ ω

j
k + ωki ∧ dω

j
k

= ωki ∧
(
dωjk − ωℓk ∧ ω

j
ℓ

)
− ωjk ∧

(
dωki − ωℓi ∧ ωkℓ

)
= ωki ∧ Ωjk − ωjk ∧ Ωki .

The identity (2.8.11) implies that ∇gΩ
j
i = 0 that is equivalent to the second Bianchi

identity.

Note 2.42

♣

If (M2, g) is a Riemannian surface and u : M2 → R is a function, then

Reug = e−u (Rg −∆gu) . (2.8.12)

2.8.2 Curvature under conformal change of metric

Let g̃ := e2ug and let {ωi}1≤i≤m be a local orthonormal coframe field for g. Then

{ω̃i}1≤i≤m, where ω̃i := euωi, is a local orthonormal coframe field for g̃. Also, let {ei}1≤i≤m
and {ẽi}1≤i≤m denote the orthonormal frame fields dual to {ωi}1≤i≤m and {ω̃}1≤i≤m, respec-

tively, so that ẽi = e−uei.

Note 2.43

♣

Show that

Ω̃ji = Ωji +∇ek∇eiu · ωk ∧ ωj −∇ek∇eju · ωk ∧ ωi (2.8.13)

+ |∇gu|2g ω
i ∧ ωj + du ∧

[
ej(u)ω

i − ei(u)ω
j
]
,

where ∇g denotes the Levi-Civita connection with respect to the metric g.

According to (2.8.6) and (2.8.13), we calculate the Ricci curvatures by

Rcg̃ (ẽℓ, ẽi) = 2
n∑
k=1

〈
Ω̃ji (ẽk, ẽℓ) ẽj , ẽk

〉
g
= 2

n∑
k=1

Ω̃ki (ẽk, ẽℓ)

= e−2u [Rcg(eℓ, ei) + (2−m)∇el∇eiu− δℓi∆gu +(2−m)
(
|∇gu|2g δiℓ − eℓ(u)ei(u)

)]
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so, the scalar curvatures of g and g̃ are related by

Re2ug = e−2u
[
Rg − 2(m− 1)∆gu− (m− 2)(m− 1) |∇gu|2g

]
. (2.8.14)

If we let u := −f/m, where f ∈ C∞(M), then

Re−2f/mg = e2f/m
[
Rg + 2

(
1− 1

m

)
∆gf −

(
1− 2

m

)(
1− 1

m

)
|∇gf |2g

]
. (2.8.15)

If we take m→ ∞ then

lim
m→∞

Re−2f/mg = Rg + 2∆gf − |∇gf |2g . (2.8.16)

2.8.3 The Gauss-Bonnet formula

The Gauss-Bonnet formula says that the integral of the Gaussian curvature (which is the

half of the scalar curvature) on a closed Riemannian surface (M, g) is equal to 2π times the

Euler characteristic of M.

Theorem 2.25. (Gauss-Bonnet)

♥

If (M, g) is a closed oriented Riemannian surface, then
1

2π

∫
M2

KgdAg = χ(M). (2.8.17)

Let e1, e2 be a local positively oriented orthonormal basis for TM in an open set U ⊂ M
so that

dAg = ω1 ∧ ω2.

The Gauss-Bonnet integrand is locally the exterior derivative of the connection 1-form −ω2
1:

KgdAg = 2dω1
2(e1, e2)(ω

1 ∧ ω2) = dω1
2. (2.8.18)

For higher dimension m, we have the following Gauss-Bonnet-Chern formula:

χ(M) =
2(m− 1)!

2mπm/2
(
m
2 − 1

)
!

∫
M
KgdVg (2.8.19)

where m is even and

K :=
1

m!

∑
i1,··· ,im

sign (i1, · · · , im)Ωi1i2 ∧ Ωi3i4 ∧ · · · ∧ Ω
im−1

im
.

For m = 4, it was shown by Allendoerfer and Weil that

χ(M) =
1

8π2

∫
M

(
|Rmg|2g −

∣∣∣∣Rcg − Rg
4
g

∣∣∣∣2
g

)
dVg, m = 4. (2.8.20)

2.8.4 Moving frames adapted to hypersurfaces

Let (M, ḡ) be an m-dimensional Riemannian manifold and let ∇ denote the associated

Levi-Civita connection. Given a hypersurface M → M, let {ei}1≤i≤m be a moving frame

in a neighborhood U ⊂ M of a point in M. The connection 1-form ωji of (M, ḡ) satisfy

∇Xei = ωji (X)ej . We assume that the frame is adopted to M, that is, em := ν is normal to
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M. The first fundamental form is defined by

g(X,Y ) := ḡ(X,Y ) (2.8.21)

forX,Y ∈ C∞(TM). This is also the induced Riemannian metric on the hypersurface M. The

second fundamental form is

h(X,Y ) :=
〈
∇Xν, Y

〉
ḡ
= ωjn(X)〈Y, ej〉ḡ (2.8.22)

for X and Y tangent to M. The second fundamental form measures the extrinsic geometry of

the hypersurfce, e.g., how nonparallel the normal is. Let

hij := h(ei, ej) = ωjm(ei) (2.8.23)

so that

ωjm =
∑

1≤i≤m−1

hijω
i. (2.8.24)

The mean curvature is the trace of the second fundamental form:

H :=
∑

1≤i≤m
h(ei, ei) =

∑
1≤i≤m

hii. (2.8.25)

The induced Levi-Civita connection ∇ of g satisfies

∇Xei :=
(
∇Xei

)⊤
=

∑
1≤j≤m−1

ωji (X)ej , (2.8.26)

where > denotes the tangent component of a vector. Thus {ωji }1≤i,j≤m−1 are the connection

1-forms of (M, g).

Ω
j
i = dωji −

∑
1≤k≤m

ωki ∧ ω
j
k, i, j = 1, · · · ,m, (2.8.27)

Ω
j
i = dωji −

∑
1≤k≤m−1

ωki ∧ ω
j
k, i, j = 1, · · · ,m− 1. (2.8.28)

Thus, for i, j = 1, · · · ,m − 1, we have Ωji = Ω
j
i + ωmi ∧ ωjm = Ω

j
i − hikhjℓω

k ∧ ωℓ. Hence,

we obtain the Gauss equation

Rijkℓ = R̄ijkℓ + hiℓhjk − hikhjℓ. (2.8.29)

Lemma 2.14

♥

One has

Rjk = R̄jk − R̄mjkm +Hhjk − giℓhjℓhik, (2.8.30)

Rg = R̄ḡ − 2Rmm +H2 − |h|2g. (2.8.31)

Proof. CalculateRjk = giℓRijkℓ = R̄jk− R̄mjkm+Hhjk−giℓhjℓhik. HenceRg = gjkRjk =

R̄ḡ − 2R̄mm +H2 − |h|2g.

For j = 1, · · · ,m− 1, we have

Ω
j
m = dωjm −

∑
1≤k≤m−1

ωkm ∧ ωjk. (2.8.32)
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The (1, 1)-tensor field W :=
∑m−1

j=1 ωjmej is the Weingarten map. Considering W as a 1-form

with values in TM, we have

∇gW =
∑

1≤j≤m−1

Ω
j
mej , (2.8.33)

which is a 2-form with values in TM.

Note 2.44. (Codazzi equations)

♣

Show that for X,Y, Z tangent to M,

((∇g)Xh) (Y, Z)− ((∇g)Y h) (X,Z) = −
〈
Rmḡ(X,Y )Z, ν

〉
ḡ
. (2.8.34)

Consider a smooth function f : M → R on a (m − 1)-dimensional manifold. For any

regular value c ∈ R of f (i.e., ∇gf(x) 6= 0 for all x ∈ M such that f(x) = c), the level set

f−1(c) is a smooth hypersurface by the implicit function theorem. The second fundamental form

of the level set f−1(c) is the given by

h(V,W ) :=
Hessg(f)(V,W )

|∇gf |g
. (2.8.35)

Indeed, ν := ∇gf/|∇gf |g is a unit normal vector for f−1(c). For V,W tangent to f−1(c) we

have

h(V,W ) = 〈(∇g)V ν,W 〉g =

〈
(∇g)V

∇gf

|∇gf |g
,W

〉
g

=
1

|∇gf |g
〈(∇g)V∇gf,W 〉g =

1

|∇gf |g
Hessg(f)(V,W )

since 〈∇gf,W 〉g = 0. In particular, if f is (strictly) convex (∇2
gf ≥ 0) ∇2

gf > 0, then any

smooth hypersurface f−1(c) is (strictly) convex (h ≥ 0) h > 0.

2.9 Variation of arc length, energy and area

Introduction

h First variation of arc length

h Second variation of arc length

h Long stable geodesics

h Jacobi fields in relation to the index

form

h First and second variation of energy

h First and second variation of area

Let (M, g) be an m-dimensional Riemannian manifold.

2.9.1 First variation of arc length

Given a path γ : [a, b] → M, its length is defined by

Lg(γ) :=

∫ b

a
|γ̇(u)|gdu. (2.9.1)
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The distance function is defined by

dg,p(x) := dg(p, x) := inf
γ
Lg(γ), (2.9.2)

where the infimum is taken over all paths γ : [0, 1] → M with γ(0) = p and γ(1) = x. A

geodesic segment is minimal if its length is equal to the distance between the two endpoints.

Let γr : [a, b] → M, r ∈ r ⊂ R, be a 1-parameter family of paths. We define the map

Υ : [a, b]× r → M by

Υ(s, r) := γr(s). (2.9.3)

We define the vector fields R and S along Υ by

R := Υ∗

(
∂

∂r

)
, S := Υ∗

(
∂

∂s

)
. (2.9.4)

We call R the variation vector field and S the tangent vector field. More precisely, the map Υ

induces a map between tangent spaces at each point (s, r) ∈ [a, b]× r:

Υ∗,(s,r) : T(s,r) ([a, b]× r) −→ Tγr(s)M.

Then

S(γr(s)) = Sγr(s) = Υ∗,(s,r)

((
∂

∂s

∣∣∣
s

)
, 0

)
= Υ∗,(s,r)

(
∂

∂s

∣∣∣
s

)
,

R(γr(s)) = Rγr(s) = Υ∗,(s,r)

(
0,

(
∂

∂r

∣∣∣
r

))
= Υ∗,(s,r)

(
∂

∂r

∣∣∣
r

)
.

Thus,

S,R ∈ C∞
(
Υ([a, b]× r) , TM

∣∣∣
Υ([a,b]×r)

)
By the above notation, we have

∂

∂r

∣∣∣
r
〈S(γr(s)), S(γr(s))〉g =

∂

∂r

∣∣∣
r
〈S(Υ(s, r)), S(Υ(s, r))〉g

=
∂

∂r

∣∣∣
r
((〈S, S〉g ◦Υ) (s, r)) = (R〈S, S〉g) (γr(s)).(2.9.5)

We also note that

S(γ0(s)) = γ̇0(s). (2.9.6)

The length of γr is given by

Lg(γr) :=

∫ b

a
|S(γr(s))|g ds. (2.9.7)

Lemma 2.15. (First variation of arc length)

♥

Suppose 0 ∈ r. If γ0 is parametrized by arc length, that is, |S(γ0(s))|g ≡ 1, then

d

dr

∣∣∣
r=0

Lg(γr) = −
∫ b

a
〈R,∇SS〉g (γ0(s))ds+ [〈R,S〉g(γ0(s))]

∣∣∣b
a
. (2.9.8)
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Proof. Calculate (use the formula (2.9.5))
d

dr
Lg(γr) =

1

2

∫ b

a
|S(γr(s))|−1

g

∂

∂r

∣∣∣
r
〈S(γr(s)), S(γr(s))〉g ds

=
1

2

∫ b

a
|S(γr(s))|−1

g (R〈S, S〉g) (γr(s))ds.

By the assumption that |S(γ0(s))|g ≡ 1, we conclude that

d

dr

∣∣∣
r=0

Lg(γr) =
1

2

∫ b

a
(R〈S, S〉g) (γ0(s))ds =

∫ b

a
〈S, (∇g)RS〉g (γ0(s))ds.

However,

(∇g)RS − (∇g)SR = [R,S] = Υ∗

([
∂

∂r
,
∂

∂s

])
= 0

which implies that
d

dr

∣∣∣
r=0

Lg(γr) =

∫ b

a
〈S, (∇g)SR〉g (γ0(s))ds

Integrating by parts yields the formula (2.9.8).

Corollary 2.8

♥

If γr : [0, b] → M, r ∈ r ⊂ R, is a 1-parameter family of paths emanating from a fixed

point p ∈ M (i.e., γr(0) = p) and γ0 is a geodesic parametrized by arc length, then
d

dr

∣∣∣
r=0

Lg(γr) =

〈
∂

∂r

∣∣∣
r=0

γr(b), γ̇0(b)

〉
g

. (2.9.9)

Note 2.45

♣

If we do not assume γ0 is parametrized by arc length, then we have
d

dr

∣∣∣
r=0

Lg(γr) = −
∫ b

a

〈
R, (∇g)S

(
S

|S|g

)〉
g

(γ0(s))ds (2.9.10)

+

[〈
R,

S

|S|g

〉
g

(γ0(s))

] ∣∣∣b
a
.

Hence, among all paths fixing two endpoints, the critical points of the length functional

are the geodesics γ, which satisfy

(∇g)γ̇

(
γ̇

|γ̇|g

)
= 0.

2.9.2 Second variation of arc length

Now we suppose that we have a 2-parameter family of paths γq,r : [a, b] −→ M with

q ∈ q ⊂ R and r ∈ r ⊂ R. Define Φ : [a, b]× q× r → M by

Φ(s, q, r) := γq,r(s). (2.9.11)

The map Φ induces a map between tangent spaces at each point (s, q, r) ∈ [a, b] × q × r:

Φ∗,(s,q,r) : T(s,q,r)([a, b]× q× r) −→ Tγq,r(s)M. We define vector fields Q, R, and S along Φ
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as follows:

S(γq,r(s)) = Sγq,r(s) = Φ∗,(s,q,r)

((
∂

∂s

∣∣∣
s

)
, 0, 0

)
= Φ∗,(s,q,r)

(
∂

∂s

∣∣∣
s

)
,

Q(γq,r(s)) = Qγq,r(s) = Φ∗,(s,q,r)

(
0,

(
∂

∂s

∣∣∣
q

)
, 0

)
= Φ∗,(s,q,r)

(
∂

∂s

∣∣∣
q

)
,

R(γq,r(s)) = Rγq,r(s) = Φ∗,(s,q,r)

(
0, 0,

(
∂

∂s

∣∣∣
r

))
= Φ∗,(s,q,r)

(
∂

∂r

∣∣∣
r

)
.

Then S,R,Q ∈ C∞(Φ([a, b]× q× r), TM|Φ([a,b]×q×r)).

Lemma 2.16. (Second variation of arc length)

♥

Suppose 0 ∈ q and 0 ∈ r. If γ0,0 is parametrized by arc length, then
∂2

∂q∂r

∣∣∣
(q,r)=(0,0)

Lg(γq,r)

=

∫ b

a

(
〈(∇g)SQ, (∇g)SR〉g − 〈(∇g)SQ,S〉g 〈(∇g)SR,S〉g

)
(γ0,0(s))ds

−
∫ b

a
〈Rmg(Q,S)S,R〉g (γ0,0(s))ds (2.9.12)

−
∫ b

a
〈(∇g)QR, (∇g)SS〉g (γ0,0(s))ds+

[
〈(∇g)QR,S〉g (γ0,0(s))

] ∣∣∣b
a
.

Proof. Differentiating the first variation of arc length we have
∂2

∂q∂r

∣∣∣
(q,r)=(0,0)

Lg(γq,r) =
∂

∂q

∣∣∣
(q,r)=(0,0)

∫ b

a

〈
S

|S|g
, (∇g)SR

〉
g

(γq,r(s))ds

=
∂

∂q

∣∣∣
(q,r)=(0,0)

∫ b

a

(
Q

〈
S

|S|g
, (∇g)SR

〉
g

)
(γq,r(s))ds

=

∫ b

a

(〈
S

|S|g
, (∇g)Q(∇g)SR

〉
g

+

〈
(∇g)Q

(
S

|S|g

)
, (∇g)SR

〉
g

)
(γq,r(s))ds

∣∣∣
(q,r)=(0,0)

=

∫ b

a
〈S, (∇g)S(∇g)QR+Rmg(Q,S)R〉g (γ0,0(s))ds

+

∫ b

a

〈
∇QS − 〈S, (∇g)QS〉g S, (∇g)SR

〉
g
(γ0,0(s))ds

where we use the identity that

(∇g)Q

(
S

|S|g

)
= |S|−1

g (∇g)QS − |S|−3
g 〈S, (∇g)QS〉g S. (2.9.13)

Then the result follows from an integration by parts.

Corollary 2.9
If γr is a 1-parameter family of piecewise smooth paths with fixed endpoints and such that

γ0 is a geodesic parametrized by arc length, then
d2

dr2

∣∣∣
r=0

Lg(γr) =

∫ b

a

(∣∣∣((∇g)SR)
⊥
∣∣∣2
g
− 〈Rmg(R,S)S,R〉g

)
(γ0(s))ds, (2.9.14)
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♥

where ((∇g)SR)
⊥ is the projection of (∇g)SR onto S⊥, i.e., ((∇g)SR)

⊥ := (∇g)SR−
〈(∇g)SR,S〉g S.

Proof. It suffices to show that |((∇g)SR)
⊥|2g = 〈(∇g)SQ, ((∇g)SR)

⊥〉g which is equivalent to

prove
〈
〈(∇g)SR,S〉g S, ((∇g)SR)

⊥
〉
g
= 0. By the definition, the left side of above equals〈

〈(∇g)SR,S〉g S, (∇g)SR− 〈(∇g)SR,S〉g S
〉
g
=
∣∣∣〈(∇g)SR,S〉g

∣∣∣2
g
−
∣∣∣〈(∇g)SR,S〉g

∣∣∣2
g
|S|2g

which is zero, since γ0 is parametrized by arc length.

A geodesic is stable if the second variation of arc length, with respect to variation vector

fields which vanish at the endpoints, is nonnegative.

Corollary 2.10

♥

If, in addition, (M, g) has nonnegative sectional curvature and the paths γr are smooth

and closed, then
d2

dr2

∣∣∣
r=0

Lg(γr) ≥ 0.

That is, any smooth closed geodesic γ0 is stable.

Theorem 2.26. (Synge)

♥

If (M, g) is an even-dimensional, orientable, closed Riemannian manifold with positive

sectional curvature, then M is simply-connected.

If γr : [0, b] → M is a 1-parameter family of paths, r ∈ (−ε, ε), γ0 is a unit speed geodesic,

and R(γ0(0)) = 0, then
d2

dr2

∣∣∣
r=0

Lg(γr) = 〈(∇g)RR,S〉g (γ0(b))

=

∫ b

0

(∣∣∣((∇g)SR)
⊥
∣∣∣2
g
− 〈Rmg(R,S)S,R〉g

)
(γ0(s))ds. (2.9.15)

Given a V ∈ Tγ0(b)M, we extend V along γ0 by defining

V (γ0(s)) :=
b

s
R(γ0(s)), (2.9.16)

where V (γ0(s)) is the parallel translation of V along γ0, i.e.,
(
(∇g)SV

)
(γ0(s)) = 0. Note that

V = V (γ0(b)) = R(γ0(b)). Then ((∇g)SR)(γ0(s)) = (∇g)S(γ0(s))(
s
bV (γ0(s))) =

1
bV (γ0(s))

so that (∇g)SR = 1
bV . Since V (γ0(s)) is the parallel translation of V along γ0, it follows that∣∣∣((∇g)SR)

⊥
∣∣∣2
g
=

1

b2

∣∣∣V ⊥
∣∣∣2
g
=

1

b2

∣∣∣V ⊥
∣∣∣2
g

where V ⊥
:= V − 〈V , S〉gS and V ⊥ := V − 〈V, S(γ0(b))〉gS(γ0(b)) = V − 〈V, γ̇0(b)〉gγ̇0(b).

Hence ∫ b

0

∣∣∣((∇g)SR)
⊥
∣∣∣2
g
(γ0(s))ds =

∫ b

0

1

b2

∣∣∣V ⊥
∣∣∣2
g
ds =

1

b

∣∣∣V ⊥
∣∣∣2
g



2.9 Variation of arc length, energy and area – 156 –

and
d2

dr2

∣∣∣
r=0

Lg(γr) = 〈(∇g)RR,S〉g (γ0(b))

=
1

b

∣∣∣V ⊥
∣∣∣2
g
−
∫ b

0
〈Rmg(R,S)S,R〉g (γ0(s))ds. (2.9.17)

Lemma 2.17

♥

If γr : [0, b] → M, r ∈ (−ε, ε), is a 1-parameter family of paths emanating from a fixed

point p ∈ M, i.e., γr(0) = p and γ0 is a geodesic parametrized by arc length, then

dg(p, βV (r)) ≤ Lg(γr), dg(p, βV (0)) = Lg(γ0) (2.9.18)

where βV : (−ε, ε) → M where βV (r) := γr(b) so that β̇V (0) = V ∈ Tγ0(b)M. Thus,

the function r 7→ dg(p, βV (r)) is a lower support function for r 7→ Lg(γr) at r = 0.

Proof. According to Corollary 2.8, we have
d

dr

∣∣∣
r=0

Lg(γr) =

〈
∂

∂r

∣∣∣
(s,r)=(b,0)

γr(s),
∂

∂s

∣∣∣
(s,r)=(b,0)

γr(s)

〉
g(γ0(b))

= 0.

Hence dg(p, β(0)) = Lg(γ0).

Definition 2.2

♣

Suppose that u ∈ C0(M) and V ∈ TpM. Let βV : (−ε, ε) → M be the constant speed

geodesic with βV (0) = p and β̇V (0) = V . If v : (−ε, ε) → R is a C2-function such that

u(βV (r)) ≤ v(r), r ∈ (−ε, ε), u(βV (0)) = v(0),

then we say that

(∇g)V (∇g)V u ≤ v′′(0) (2.9.19)

in the sense of support functions with respect to p and V . If (2.9.19) holds for all p

and V , then we say (2.9.19) in the sense of support functions.

Note 2.46

♣

Show that if u : M → R satisfies ∇2
gu ≤ 0 in the sense of support functions, then u is

concave; that is, for every unit speed geodesic βV : [a, b] → M we have

u (βV ((1− s)a+ sb)) ≥ (1− s)u(βV (a)) + su(βV (b)), for all s ∈ [0, 1].

Returning to our discussion, we assume βV is a geodesic so that (∇g)QQ = 0. If the

sectional curvatures are nonnegative and dg,p(x) := dg(p, x) is the distance function, then

(∇g)V (∇g)V dg,p ≤
d2

dr2

∣∣∣
r=0

Lg(γr) ≤
(

1

dg,p
|V |2g

)
(γ0(b)) (2.9.20)

in the sense of support functions, since

b =

∫ b

0
|S(γ0(s))|gds = Lg(γ0) = dg(γ0(b), p) = dg,p(γ0(b))
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and

〈V, S(γ0(b))〉g =

〈
∂

∂r

∣∣∣
r=0

γr(b),
∂

∂s

∣∣∣
s=b

γ0(s)

〉
g

=

〈
∂

∂r

∣∣∣
(s,r)=(b,0)

γr(s),
∂

∂s

∣∣∣
(s,r)=(b,0)

γr(s)

〉
g

= 0.

The inequality (2.9.20) is a special case (K = 0) of the Hessian comparison theorem. Note

that this inequality holds in the usual C2-sense at points where dg,p are smooth.

Lemma 2.18

♥

Assuming the sectional curvature is nonnegative, one has

(∇g)V (∇g)V d
2
g,p ≤ 2|V |2g. (2.9.21)

Proof. Calculate
d2

dr2

∣∣∣
r=0

Lg(γr)
2 =

d

dr

∣∣∣
r=0

(
2Lg(γr) ·

d

dr
Lg(γr)

)
= 2

(
d

dr

∣∣∣
r=0

Lg(γr)

)2

+2Lg(γr) ·
d2

dr2

∣∣∣
r=0

Lg(γr) ≤ 2

(
d

dr

∣∣∣
r=0

Lg(γr)

)2

+2b · 1
b

∣∣∣V ⊥
∣∣∣2
g(γ0(b))

= 2
∣∣∣V ⊥

∣∣∣2
g(γ0(b))

+ 2

(
d

dr

∣∣∣
r=0

Lg(γr)

)2

= 2
∣∣∣V ⊥

∣∣∣2
g
= 2|V |2g.

So, (∇g)V (∇g)V d
2
g,p ≤ 2|V |2g. Equivalently, ∇2

gd
2
g,p ≤ 2g(γ0(b)) for any V ∈ Tγ0(b)M.

2.9.3 Long stable geodesics

Let γ : [0, s̄] → M be a stable unit speed geodesic in an m-dimensional Riemannian

manifold (M, g) with Rcg ≤ (m − 1)K in Bg(γ(0), r) and Bg(γ(s̄), r) where K > 0 and

2r < s̄. Let {Ei}1≤i≤m−1 be a parallel orthonormal frame along γ perpendicular to γ̇. By the

second variation of arc length, we have

0 ≤
∑

1≤i≤m−1

∫ s

0

(∣∣∣((∇g)γ̇(ϕEi(γ)))
⊥
∣∣∣2
g
− 〈Rmg(ϕEi(γ), γ̇)γ̇, ϕEi(γ)〉g

)
ds

=

∫ s̄

0

[
(m− 1)

(
dϕ

ds

)2

− ϕ2Rcg(γ̇, γ̇)

]
ds

for any function ϕ : [0, s̄] → R. Consider the piecewise smooth function

ϕ(s) :=


s
r , 0 ≤ s ≤ r,

1, r < s < s̄− r,

s̄−s
r , s̄− r ≤ s ≤ s̄.

(2.9.22)

We then have ∫ s

0
Rcg(γ̇, γ̇)ds ≤ 2(m− 1)

r
+

∫ s

0
(1− ϕ2)Rcg(γ̇, γ̇)ds

=
2(m− 1)

r
+

∫ r

0
(1− ϕ2)Rcg(γ̇, γ̇)ds+

∫ s

s−r
(1− ϕ2)Rcg(γ̇, γ̇)ds
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≤ 2(m− 1)

r
+ (m− 1)K · 4r

3
≤ 2(m− 1)

(
1

r
+Kr

)
.

Proposition 2.18

♥

If γ : [0, L] → M is a stable unit speed geodesic in a Riemannian m-manifold with

Rcg ≤ (m− 1)K, in Bg

(
γ(0), 1/

√
K
)
∪Bg

(
γ(L), 1/

√
K
)
,

where K > 0, then ∫ L

0
Rcg(γ̇, γ̇)ds ≤ 4(m− 1)

√
K.

The above computation is useful in obtaining an estimate for the rate of change of the

distance function under the Ricci flow.

2.9.4 Jacobi fields in relation to the index form

Let γr : [a, b] → M, r ∈ r ⊂ R, be a 1-parameter family of paths. Assume γ0 is a geodesic.

Then S(γ0(s)) = γ̇0(s), and hence ((∇g)SS) (γ0(s)) = 0. For the variation vector field R, we

have

0 = (∇g)R(∇g)SS = (∇g)S(∇g)RS +Rmg(R,S)S = (∇g)S(∇g)SR+Rmg(R,S)S.

Thus

(∇g)γ̇0(s)(∇g)γ̇0(s)R(γ0(s)) + Rmg (R(γ0(s)), γ̇0(s)) γ̇0(s) = 0.

A Jaboci field J is a variation of geodesic and satisfies the Jabobi equation

(∇g)S(∇g)SJ +Rmg(J, S)S = 0. (2.9.23)

Given p ∈ M and V,W ∈ TpM, we define a 1-parameter family of geodesics γr :

[0,∞) → M by

γr(s) := expp (s(V + rW )) = γV+rW (s). (2.9.24)

We may define a Jacobi field JV,W along γ0 = γV by

JV,W (s) :=
∂

∂r

∣∣∣
r=0

γV+rW (s). (2.9.25)

Definition 2.3

♣

A point x ∈ M is a conjugate point of p ∈ M if x is a singular value of expp : TpM →
M. That is, x = expp(V ), for some V ∈ TpM, where (expp)∗,V : TV (TpM) →
Texpp(V )M is singular (i.e., has nontrivial kernel).

Note 2.47
(1) Equivalently, γ(r) is a conjugate point to p along γ if there is a nontrivial Jacobi field

along γ vanishing at the endpoints.

(2) Given a geodesic γ : [0, L] → M without conjugate points and vectors A ∈ Tγ(0)M
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♣

and B ∈ Tγ(L)M with 〈A,S〉g = 〈B,S〉g = 0, there exists a unique Jacobi field J with

J(0) = A and J(L) = B.

If γ : [a, b] → M is a path and V and W are vector fields along γ, we define the index
form of V and W by

Ig,γ(V,W ) :=

∫ b

a

(
〈(∇g)SV, (∇g)SW 〉g − 〈(∇g)SV, S〉g 〈(∇g)SW,S〉g

− 〈Rmg(V, S)S,W 〉g
)
ds, (2.9.26)

where S := ∂
∂s |s=0γs and γs is a 1-parameter family of γ.

If γq,r is a 1-parameter family of paths with fixed endpoints and if γ0,0 is a unit speed

geodesic, then by Lemma 2.16,
∂2

∂q∂r

∣∣∣
(q,r)=(0,0)

Lg(γq,r) = Ig,γ0,0(Q,R).

Lemma 2.19. (Index lemma)

♥

Suppose γ : [0, L] → M is a geodesic without conjugate points. In the space VectA,B(γ)

of vector fields X along γ with 〈X,S〉g ≡ 0, X(0) = A and X(L) = B, the Jacobi field

minimizes the (modified) index form:

Ig,γ(X) :=

∫ L

0

(
|(∇g)SX|2g − 〈Rmg(X,S)S,X〉g

)
ds. (2.9.27)

Proof. If X and Y are vector field along γ, then

Ig,γ(X + tY ) =

∫ L

0

(
|(∇g)S(X + tY )|2g − 〈Rmg(X + tY, S)S,X + tY 〉g

)
ds

=

∫ L

0

(
|(∇g)SX + t(∇g)SY |2g − 〈Rmg(X,S)S,X〉g

)
ds

−
∫ L

0

(
2t 〈Rmg(X,S)S, Y 〉g + t2 〈Rmg(Y, S)S, Y 〉g

)
ds

so that
1

2

d

dt

∣∣∣
t=0

Ig,γ(X + tY ) =

∫ L

0

(
〈(∇g)SX, (∇g)SY 〉g − 〈Rmg(X,S)S, Y 〉g

)
ds.

(Note that the tangent space TXVectA,B(γ) is the space of all vector fields along γ which vanish

at the endpoints) If furthermore Y satisfies Y (0) = Y (L) = 0 , using
d

ds
〈Y, (∇g)SX〉g = 〈(∇g)SY, (∇g)SX〉g + 〈Y, (∇g)S(∇g)SX〉g ,

we obtain
1

2

d

dt

∣∣∣
t=0

Ig,γ(X + tY ) = −
∫ L

0
〈(∇g)S(∇g)SX +Rmg(X,S)S, Y 〉g ds

and
1

2

d2

dt2

∣∣∣
t=0

Ig,γ(X) =

∫ L

0

(
|(∇g)SY |2g − 〈Rmg(Y, S)S, Y 〉g

)
ds.

Hence the critical points of Ig,γ on VectA,B(γ) are the Jacobi fields.
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We claim that ∫ L

0

(
|(∇g)SY |2g − 〈Rmg(Y, S)S, Y 〉g

)
ds > 0

for any nonzero vector field Y ∈ TXVectA,B(γ), so that the index form Ig,γ is convex. Hence

the Jacobi fields minimize Ig,γ inVectA,B(γ). We now give a variational proof of this inequality.

Normalize the index by defining

ι(t) := inf
0̸=Z∈TXVectA,B(γ)

Ig,γ,t(Z)∫ t
0 |Z(s)|2gds

where

Ig,γ,t(Z) :=
∫ t

0

(
|(∇g)SY |2g − 〈Rmg(Y, S)S, Y 〉g

)
ds

for t ∈ [0, L].

(i) First we have
d

ds
|Z|g ≤ |(∇g)SZ|g , 〈Rmg(Z, S)S,Z〉g ≤ C|Z|2g

for some constant C depending only on g. Indeed,
d

ds
|Z|g =

d

ds
〈Z,Z〉1/2g =

1

|Z|
〈(∇g)SZ,Z〉g ≤

1

|Z|
|Z|g |(∇g)SZ|g = |(∇g)SZ|g .

(ii) Second we have λ1([0, t]) = π2

t2
, where λ1([0, t]) is the first eigenvalue of d2/ds2 with

Dirichlet boundary conditions. Hence

ι(t) ≥ inf
0̸=Z∈TXVectA,B(γ)

∫ t
0

((
d
ds |Z|g

)2 − C|Z|2g
)
ds∫ t

0 |Z|2gds
≥ π2

t2
− C.

For t ∈ (0, L] where γ[0,t] is minimizing (e.g., for t > 0 small enough), we have ι(t) ≥ 0.

SinceIg,γ,t is a second variation of γ|[0,t] vanishing at the endpoints 0 and t, and ι(t) is continuous,

if the claim is not ture, we can find t0 ∈ (0, L] such that ι(t0) = 0. Then Ig,γ,t0(Z0) = 0 for some

vector field Z0 with Z0(0) = 0, Z0(t0) = 0, and Z0 6= 0. By considering the Euler-Lagrange

equation for

E(Z) :=
Ig,γ,t0(Z)∫ t0
0 |Z(s)|2gds

at Z0, we have for all W vanishing at 0 and t0,

0 =
1

2

d

du

∣∣∣
u=0

E(Z0 + uW ) =
−1∫ t0

0 |Z0(s)|2gds

∫ t0

0
〈(∇g)S(∇g)SZ0 +Rmg(Z0, S)S,W 〉g ds

sinceIg,γ,t0(Z0) = 0. ThusZ0 is a nontrivial Jacobi field along γ|[0,t0] withZ0(0) = 0 = Z0(t0).

This contradicts the assumption that there are no conjugate points along γ. Hence ι(t) > 0 for

all t ∈ (0, L].

2.9.5 First and second variation of energy

Given a path γ : [a, b] → M, its energy is defined by

Eg(γ) :=
1

2

∫ b

a
|γ̇(s)|2g ds. (2.9.28)
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Let γr : [a, b] → M denote a 1-parameter family of paths, r ∈ r ∈ R. We also use the variation

vector field R and the tangent vector field S. The length of γr is given by

Eg(γr) :=
1

2

∫ b

a
|γ̇r(s)|2g ds.

Lemma 2.20. (First variation of energy)

♥

Suppose 0 ∈ r. The first variation of energy is
d

dr

∣∣∣
r=0

Eg(γr) = −
∫ b

a

(
〈R, (∇g)SS〉g

)
(γ0(s))ds+ [〈R,S〉g(γ0(s))]

∣∣∣b
a
. (2.9.29)

Proof. Calculate
d

dr

∣∣∣
r=0

Eg(γr) =
1

2

∫ b

a

∂

∂r

∣∣∣
r=0

〈γ̇r(s), γ̇r(s)〉g (γr(s))ds =
1

2

∫ b

a
(R〈S, S〉g) (γ0(s))ds

=

∫ b

a

(
〈(∇g)RS, S〉g

)
(γ0(s))ds =

∫ b

a

(
〈(∇g)SR,S〉g

)
(γ0(s))ds

that implies the lemma.

Note 2.48

♣

The critical points of the energy, among all paths fixing two endpoints, are the constant

speed geodesics γ, which satisfy

(∇g)γ̇ γ̇ = 0.

The speed of γ is constant since γ̇|γ̇|2g = 2 〈(∇g)γ̇ γ̇, γ̇〉g = 0.

Let γq,r : [a, b] → M with q ∈ q ⊂ R and r ∈ r ⊂ R, be a 2-parameter family of paths.

Recall the definition of vector fields Q,R, and S.

Lemma 2.21. (Second variation of energy)

♥

Suppose 0 ∈ q and 0 ∈ r. Then the second variation of energy is
∂2

∂q∂r

∣∣∣
(q,r)=(0,0)

Eg(γq,r) =

∫ b

a

(
〈(∇g)SQ, (∇g)SR〉g

)
(γ0,0(s))ds

+

∫ b

a
〈Rmg(Q,S)R,S〉g (γ0,0(s))ds (2.9.30)

−
∫ b

a
〈(∇g)QR, (∇g)SS〉g (γ0,0(s))ds+

[
〈(∇g)QR,S〉g

]
(γ0,0(s))

∣∣∣b
a
.

Proof. Since
∂2

∂q∂r

∣∣∣
(q,r)=(0,0)

Eg(γq,r) =

∫ b

a

(
Q 〈S, (∇g)SR〉g

)
(γ0,0(s))ds

=

∫ b

a

(
〈(∇g)QS, (∇g)SR〉g + 〈S, (∇g)Q(∇g)SR〉g

)
(γ0,0(s))ds

we prove the lemma.
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2.9.6 First and second variation of area

Let xr : Sm−1 → M be a parametrized hypersurface in an m-dimensional Riemannian

manifold (M, g) evolving by

∂rxr = βrνr (2.9.31)

where βr is some function on Sm−1
r := xr(Sm−1). In terms of local coordinates (xi)m−1

i=1 on

Sm−1, the area element of Sm−1
r is

dS′
V =

√
det(gij)dx

1 ∧ · · · ∧ dxm−1. (2.9.32)

Then

∂rgij = 2βrhij . (2.9.33)

Hence

∂rdV
′
r =

1

2
gij (∂rgij) dV

′
r = βrHrdV

′
r . (2.9.34)

Thus the first variation of

Ag(Sm−1
r ) :=

∫
Sm−1
r

dV ′
r (2.9.35)

is
d

dr
Ag(Sm−1

r ) =

∫
Sm−1
r

βrHrdV
′
r . (2.9.36)

Under the hypersurface flow (2.9.31), we have

∂rHr = −∆grβr − |hr|2grβr − Rcgr(νr, νr)βr. (2.9.37)

When βr = −Hr, the mean curvature flow, we have

∂rHr = ∆grHr + |hr|2grHr +Rcg (νr, νr)Hr. (2.9.38)

Now, we can compute the second variation of area:
d2

dr2
Ag(Sm−1

r ) =

∫
Sm−1
r

βr
(
−∆grβr − |hr|2grβr − Rcg (νr, νr)βr +H2

rβr
)
dS′

r

=

∫
Sm−1
r

(
|∇grβr|

2
gr

+
(
H2
r − |hr|2gr − Rcg (νr, νr)

)
β2r

)
dS′

r.

If ∂rxr = νr, then
d2

dr2
Ag(Sm−1

r ) = −
∫
Sm−1
r

(
H2
r − |hr|2gr − Rcg(νr, νr)

)
dS′

r.

However,

Rgr = Rg − 2Rcg(νr, νr) +H2
r − |hr|2gr . (2.9.39)

Therefore, if ∂rxr = νr, then the second variation of area is given by
d2

dr2
Ag(Sm−1

r ) =
1

2

∫
Sm−1
r

(
Rgr −Rg +H2

r − |hr|2gr
)
dS′

r. (2.9.40)
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Theorem 2.27. (Schoen-Yau, 1979)

♥

If S2 is an orientable closed stable minimal surface in a 3-manifold (M3, g) with positive

scalar curvature, then S2 is diffeomorphic to a 2-sphere.

Proof. Let S2
r be a variation of S2 with S2

0 = S2 and β = 1, by (2.9.35), H ≡ 0, and the

Gauss-Bonnet formula, we have

0 ≤ 2
d2

dr2

∣∣∣
r=0

Ag(S2
r ) =

∫
S2

(
RS2 −RM3 − |h|2g

)
dV ′

g4πχ(S2)−
∫
S2

(
RM3 + |h|2g

)
dV ′

g .

Since RM3 > 0 and |h|2g ≥ 0, it follows that χ(S2) > 0. Since M3 is orientable, S2 ∼= S2.

2.10 Geodesics and the exponential maps

Introduction

h Exponential maps

h Gauss lemma and the Hopf -Rinow

theorem

h Cut locus and injectivity radius

Let (M, g) be an m-dimensional Riemannian manifold and p ∈ M. For V ∈ TpM, there

is a unique constant speed geodesic γV : [0, bV ) → M is the constant speed geodesic emanating

from p with γ̇V (0) = V . Here [0, bV ) is the maximal time interval on which γV is defined.

2.10.1 Exponential map

For all α > 0 and t < bαV , we have

γαV (t) = γV (αt), bαV = α−1bV . (2.10.1)

LetOp ⊂ TpM be the set of vectors V such that 1 < bV , so that γV (t) is defined on [0, 1]. Then

define the exponential map at p by

expp : Op −→ M, V 7−→ γV (1). (2.10.2)

If bV > t, then btV = t−1bV > 1 and

expp(tV ) = γtV (1) = γV (t). (2.10.3)

Note 2.49

♣

If M is compact, then for each p ∈ M and V ∈ TpM, there is a unique constant speed

geodesic γV : [0,∞) → M with γ(0) = p and γ̇V (0) = V .

Let O := ∪p∈MOp. Then the exponential map expp induces a map

exp : O −→ M (2.10.4)

by setting exp|Op
= expp. This map is also called the exponential map. Furthermore, the

set O is open in TM and exp : O → M is smooth. In addition, Op ⊂ TpM is open and

expp : Op → M is also smooth.
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Proposition 2.19

♥

(1)If p ∈ M, then

d expp : T0(TpM) −→ TpM (2.10.5)

is nonsingular at the origin of TpM. Consequently expp is a local diffeomorphsm.

(2) Define Exp : O → M×M by

Exp(V ) =
(
π(V ), expπ(V ) V

)
,

where π(V ) is the base point of V , i.e., V ∈ Tπ(V )M. Then for each p ∈ M and with it

the zero vector, 0p ∈ TpM,

dExp(p,0p) : T(p,0p)(TM) −→ T(p,p)(M×M)

is nonsingular. Consequently, Exp is a diffeomorphism from a neighborhood of the zero

section of TM onto an open neighborhood of the diagonal in M×M.

Proof. Let I0 : TpM → T0(TpM) be the canonical isomorphism, i.e.,

I0(V ) :=
d

dt
(tV )

∣∣∣
t=0

. (2.10.6)

Recall that if V ∈ Op, then γV (t) = γtV (1) for all t ∈ [0, 1]. Thus,

d expp(I0(V )) =
d

dt

∣∣∣
t=0

expp(tV ) =
d

dt

∣∣∣
t=0

γtV (1) =
d

dt

∣∣∣
t=0

γV (t) = γ̇V (0) = V.

In other words, d expp ◦I0 is the identity map on TpM. This shows that d expp is nonsingular.

For (2), we note that the tangent space T(p,p)(M×M) is naturally identified with TpM×
TpM. The tangent space T(p,0p)(TM) is also naturally identified to TpM × T0p(TM) ∼=
TpM×TpM. We know that dExp(p,0p) takes (p, V ) to (p, expp(V )). Under above identification,

if we consider the map dExp(p,0p) as a linear map TpM× TpM → TpM× TpM, then it looks

like I 0

∗ I


which is clearly nonsingular.

Note 2.50
Suppose that N is an embedded submanifold of M. The normal bundle of N in M is

the vector bundle over N consisting of the orthogonal complements of the tangent spaces

TpN ⊂ TpM:

T⊥N := {(p, V ) : V ∈ TpM, p ∈ N , V ∈ (TpN )⊥ ⊂ TpM}. (2.10.7)

So for each p ∈ N ,

TpM = TpN ⊕ T⊥
p N

is an orthogonal direct sum. Define the normal exponential map exp⊥ by restricting
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♣

exp to O ∩ T⊥N , so

exp⊥ : O ∩ T⊥N → M.

As in part (2) of Proposition 2.19, d exp⊥ is nonsingular at 0p, p ∈ N . Then it follows

that there is an open neighborhood U of the zero section in T⊥N on which exp⊥ is

a diffeomorphism onto its image in M. Such an image exp⊥(U) is called a tubular
neighborhood of N in M.

Theorem 2.28

♥

Suppose that (M, g) is a Riemannian manifold, p ∈ M, and ε > 0 is such that

expp : B(0p, ε) ⊂ TpM −→ U ⊂ M

is a diffeomorphism onto its image U := expp(B(0p, ε)) in M. Then U = Bg(p, ε) and

for each V ∈ B(0p, ε), the geodesic γV : [0, 1] → M defined by

γV (t) := expp(tV )

is the unique minimal geodesic in M from p to expp(V ).

OnU we have the function r(x) := | exp−1
p (x)|. That is, r is the Euclidean distance function

from the origin on B(0p, ε) ⊂ TpM in exponential coordinates.

2.10.2 Gauss lemma and the Hopf-Rinow theorem

Let (M, g) be a Riemannian manifold and p ∈ M. Suppose that V ∈ TpM and for some

L > 0 the constant speed geodesic γṼ with γ̇
Ṽ
(0) = Ṽ is defined on [0, L] for every Ṽ in some

neighborhood of V . Given u ∈ (0, L), let

Lemma 2.22. (Gauss)

♥

If W ∈ TuV (TpM) ∼= TpM is perpendicular to V , then the image (expp)∗,uV (W ) of W

is perpendicular to (expp)∗,p(V ) = γ̇V (u):〈
(expp)∗,uV (W ), (expp)∗,uV (V )

〉
g
= 0. (2.10.8)

If the distance function r := dg(p, ·) is smooth at a point x, we then have

∇gr(x) = γ̇0(b), (2.10.9)

where γ0 : [0, b] → M is the unique unit speed minimal geodesic from p to x. Thus, if

γ0 = γV0 for some unit vector V0, then ∇gr = (expp)∗,0(V0).

Proof. Given V,W ∈ TpM, we define the family of geodesics

γr(s) := expp(s(uV + rW )), 0 ≤ s ≤ 1.
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Then Lg(γr) = |uV + rW |g(p) and
d

dr

∣∣∣
r=0

Lg(γr) =
d

dr

∣∣∣
r=0

〈uV + rW, uV + rW 〉1/2g(p)

=
2u〈V,W 〉g(p)

2|uV + rW |g(p)

∣∣∣
r=0

=
1

|V |g(p)
〈V,W 〉g(p).

On the other hand, we have
d

dr

∣∣∣
r=0

Lg(γr) = − 1

u|V |g(p)

∫ 1

0
〈R, (∇g)SS〉gds+

1

u|V |g(p)
〈R,S〉g

∣∣∣1
0

=
1

u|V |g(p)
〈
(expp)∗,uV (W ), (expp)∗,uV (uV )

〉
g

=
1

|V |g(p)
〈
(expp)∗,uV (W ), (expp)∗,uV (V )

〉
g

since γr are geodesics. Thus〈
(expp)∗,uV (W ), (expp)∗,uV (V )

〉
g
= 〈V,W 〉g = 0

which proves the first part.

Let γr : [0, b] → M, r ∈ r, be an arbitrary variation of γ0 with γr(0) = p. Since γ0 is

a minimal geodesic, we have Lg(γr) ≥ dg(p, γr(b)) and Lg(γ0) = dg(p, γ0(b)). Hence, since

∇gr exists at x,

〈∇gr,X〉g(x) =
d

dr

∣∣∣
r=0

Lg(γr),

where X := ∂
∂r |r=0γr(b). On the other hand, by the first variation formula (2.9.8),

d

dr

∣∣∣
r=0

Lg(γr) =

〈
∂

∂s

∣∣∣
s=0

γs(b), X

〉
g

= 〈γ̇0(b), X〉g.

Therefore, ∇gr = γ̇0(b).

Let ∂/∂r denote the radial unit outward pointing vector field on TpM\ {0} and consider

the map, where X ∈ TpM,

(expp)∗,X : TX(TpM) −→ Texpp(X)M.

We denote by ∂X the canonical isomorphism

∂X : TpM −→ TX(TpM), Y 7−→ ∂XY :=
d

dt

∣∣∣
t=0

(X + tY ). (2.10.10)

Hence we obtain

(expp)∗,X := (expp)∗,X ◦ ∂0 : TpM −→ Texpp(X)M. (2.10.11)

Since (expp)∗,0 = idTpM is invertible, there exists an ε > 0 such that expp restricted on the

punctured ball B(0, ε) \ {0} ⊂ TpM is an embedding. We denote

rg(x) :=
∣∣exp−1

p (x)
∣∣
g(p)

, x ∈ Bg(p, ε) := expp(B(0, ε)).

If {r, θ1, · · · , θm−1} are spherical coordinates in TpM, then we set
∂

∂rg

∣∣∣
expp(X)

:= (expp)∗,X

(
∂

∂r
(X)

)
,

∂

∂θig

∣∣∣
expp(X)

:= (expp)∗,X

(
∂

∂θi
(X)

)
.
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For every X ∈ TxM, we may write it as

X = a
∂

∂rg

∣∣∣
x
+

m−1∑
i=1

bi
∂

∂θig

∣∣∣
x
;

By Gauss lemma, Lemma 2.22, one has〈
∂

∂rg

∣∣∣
x
,
∂

∂θig

∣∣∣
x

〉
g

= 0

and hence 〈
∂

∂rg

∣∣∣
x
, X

〉
g

= a = X(rg) =
〈
gradg(rg(x)), X

〉
g
.

Thus
∂

∂rg

∣∣∣
x
= gradg(rg)(x), x ∈ Bg(p, ε). (2.10.12)

Lemma 2.23. l2.23

♥

or every V ∈ B(0, ε), γV : [0, 1] → M is the unit path, up to reparametrization, joining

p and γV (1) = expp(V ) whose length realizes the distance dg(p, expp(V )) = |V |g. In

particular, short geodesics are minimal and rg(x) = dg(p, x) for x ∈ Bg(p, ε).

Proof. Since ∂/∂r is unit, it follows from (2.10.12) that

|β̇(u)|g ≥
〈
β̇(u),

∂

∂rg

∣∣∣
β(u)

〉
g

=
〈
β̇(u), gradg(rg)(β(u))

〉
g
= β̇(u)(rg) =

d

du
rg(β(u))

for any path β from p to expp(V ) that stays inside Bg(p, ε), so that

|V |g = rg(expp(V )) =

∫ 1

0

d

du
rg(β(u))du ≤

∫ 1

0
|β̇(u)|g(β(u))du ≤ dg(p, expp(V )).

Hence γV realizes the distance from p to expp(V ).

Theorem 2.29. (Hopf-Rinow)

♥

Let (M, g) be a Riemannian manifold. Then the following are equivalent:

(1) (M, dg) is a complete metric space.

(2) There exists p ∈ M such that expp is defined on all of TpM.

(3) For all p ∈ M, expp is defined on all of TpM.

Any one of these conditions implies

(4) For any p, q ∈ M there exists a smooth minimal geodesic form p to q.

2.10.3 Cut locus and injectivity radius

Let (M, g) be a Riemannian manifold.

Definition 2.4. *Lipschitz functions)
A function f : M → R is a globally Lipschitz function with Lipschitz constant C if for

all x, y ∈ M we have

|f(x)− f(y)| ≤ Cdg(x, y).
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♣

If for every z ∈ M there exists a neighborhood Uz of z and a constant Cz such that

|f(x)− f(y)| ≤ Cz · dg(x, y)

for all x, y ∈ Uz , then we say that f is a locally Lipschitz function.

The distance function dg(p, ·) is a globally Lipschitz function with Lipschitz constant 1.

Given a point p ∈ M and a unit speed geodesic γ : [0,∞) → M with γ(0) = p, either γ

is a geodesic ray (i.e., minimal on each finite subinterval) or there exists a unique rγ ∈ (0,∞)

such that dg(p, γ(r)) = r for r ≤ rγ and dg(p, γ(r)) < r for r > rγ . We say that γ(rγ) is a cut
point to p along γ.

(i) If γ(r) is a conjugate point to p along γ, then r ≥ rγ .

(ii) The cut locus Cutg(p) of p in M is the set of all cur points of p.

(iii) Let

Dg(p) := {V ∈ TpM : dg(p, expp(V )) = |V |g}, (2.10.13)

which is a closed subset of TpM. We define Cg(p) := ∂Dg(p) to be the cut locus of p in

the tangent space. We have

Cutg(p) = expp(Cg(p)) (2.10.14)

and

expp : int(Dg(p)) ⊂ TpM −→ M\ Cutg(p)

is a diffeomorphism. We call int(Dg(p)) the interior to the cut locus in the tangent space

TpM.

Lemma 2.24

♥

A point γ(r) is a cut point to p along γ if and only if r is the smallest positive number

such that either γ(r) is a conjugate point to p along γ or there exist two distinct minimal

geodesics joining p and γ(r).

Given V ∈ TpM and r > 0, we have γV (r) = expp(rV ). For each unit vector V ∈ TpM
there exists at most a unique rV ∈ (0,∞) such that γV (rV ) is a cut point of p along γV .

Furthermore, if we set rV = ∞ when γV is a ray, then the map from the unit tangent space at p

to (0,∞] given by V 7→ rV is a continuous function. Hence we have

Cg(p) = ∂Dg(p) = {rV V : V ∈ TpM, |V |g(p) = 1, γV is not a ray} (2.10.15)

has measure zero with respect to the Euclidean measure on (TpM, g(p)).

Lemma 2.25

♥

Cutg(p) = expp(Cg(p)) has measure zero with respect to the Riemannian measure on

(M, g).
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If x /∈ Cutg(p) and x 6= p, then dg(p, ·) is smooth at x and |∇gdg(p, x)|g(x) = 1 by (2.10.9).

Since Cutg(p) has measure zero, we have |∇gdg(p, ·)|g = 1 a.e. on M.

Definition 2.5. (Injectivity radius)

♣

The injectivity radius injg(p) of a point p ∈ M is defined to the supremum of all r > 0

such that expp is an embedding when restricted to B(0, r). Equivalently,

(1) injg(p) is the distance from 0 to Cg(p) with respect to g(p).

(2) injg(p) is the Riemannian distance from p to Cutg(p).

The injectivity radius of a Riemannian manifold (M, g) is defined to be

injg(M) := inf
p∈M

injg(p). (2.10.16)

When M is compact, the injectivity radius is always positive.

Theorem 2.30. (Klingenberg)

♥

(1) If (M, g) is a compact Riemannian manifold with Secg ≤ K, then

injg(M) ≥ min

{
π√
K
,
1

2
· length of shortest closed geodesic

}
. (2.10.17)

(2) If (M, g) is a complete simply-connected Riemannian manifold with 0 < 1
4K <

Secg ≤ K, then

injg(M) ≥ π√
K
.

(3) If (M, g) is a compact, even-dimensional, orientable Riemannian manifold with

0 < Secg ≤ K, then

injg(M) ≥ π√
K
.

2.11 Second fundamental forms of geodesic spheres

Introduction

h Geodesic coordinate expansion of the

metric and volume form

h Geodesic spherical coordinates and

the Jacobian

h The second fundamental form of dis-

tance spheres and the Ricatti equation

h Space form and rotationally symmet-

ric metrics

h Mean curvature of geodesic spheres

and the Bonnet-Myers theorem

In this section we consider geodesic spherical coordinates and the second fundamental

forms and mean curvatures of geodesic spheres. We also give the proofs of the Laplacian and

Hessian comparison theorems for the distance function and the corresponding volume and Rauch

comparison theorems.
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2.11.1 Geodesic coordinate expansion of the metric and volume form

Let (M, g) be a Riemannian manifold. The exponential map expp : TpM → M is defined

by expp(V ) := γV (1), where γV : [0,∞) → M is the constant speed geodesic emanating from

p with γ̇V (0) = V .

Given an orthonormal frame {ei}1≤i≤m at p, let {Xi}1≤i≤m denote the standard Euclidean

coordinates on TpM defined by V =
∑

1≤i≤m V
iei. Geodesic coordinates are defined by

xi := Xi ◦ exp−1
p : M\ Cutg(p) −→ R. (2.11.1)

In geodesic coordinates, we have

gij = δij −
1

3
Ripqjx

pxq − 1

6
∇rRipqjx

pxqxr

+

(
− 1

20
∇r∇sRipqj +

2

45
guvRipquRjrsv

)
xpxqxrxs +O(r5g) (2.11.2)

so that gij = δij +O(r2g), and

det(g) = 1− 1

3
Rijx

ixj − 1

6
∇kRijx

ixjxk (2.11.3)

−
(

1

20
∇ℓ∇kRij +

1

90
RpijqR

p
kℓ
q − 1

18
RijRkℓ

)
xixjxkxℓ +O(r5g).

Lemma 2.26. (Expansion for volumes of balls)

♥

One has

Vol(Bg(p, r)) = ωmr
m

[
1− Rg(p)

6(m+ 2)
r2 +O(r3)

]
. (2.11.4)

Proof. It follows from √
det(g)(x) = 1− 1

6
Rij(p)x

ixj +O(r3g(x))

by (2.11.3).

Lemma 2.27

♥

In geodesic coordinates centered at a point p ∈ M we have

gij(p) = δij ,
∂

∂xi
gjk(p) = 0. (2.11.5)

2.11.2 Geodesic spherical coordinates and the Jacobian

We say that the geometry is bounded or controlled if there is a curvature bound and an

injectivity radius lower bound.

Given a point p ∈ M, let (Xi)mi=1 be local spherical coordinates on TpM\ {p}. That is,

Xm(V ) := r(V ) = |V |g(p), Xi(V ) := θi
(

V

|V |g

)
for 1 ≤ i ≤ m− 1, (2.11.6)

where {θi}1≤i≤m−1 are local coordinates on Sm−1
p := {V ∈ TpM : |V |g(p) = 1}. Let
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expp : TpM → M be the exponential map. We call the coordinate system

x := {xi := Xi ◦ exp−1
p } : Bg(p, injg(p)) \ {p} −→ Rm (2.11.7)

a geodesic spherical coordinate system. Abusing notation, we let

rg := xm, θig := xi (2.11.8)

for i = 1, · · · ,m− 1, so that
∂

∂rg
= (x−1)∗

∂

∂Xm
,

∂

∂θig
= (x−1)∗

∂

∂Xi
, (2.11.9)

which form a basis of vector fields onBg(p, injg(p)) \ {p}. Recall from (2.10.12) that the Gauss

lemma says that gradgrg = ∂
∂rg

at all points outside the cut locus of p, so that∣∣gradgrg∣∣2g =
∣∣∣∣ ∂∂rg

∣∣∣∣2
g

=

〈
gradgrg,

∂

∂rg

〉
g

=
∂

∂rg
rg = 1 (2.11.10)

and

gim := g

(
∂

∂rg
,
∂

∂θig

)
=

〈
∂

∂Xm
,
∂

∂Xi

〉
g

= 0

for i = 1, · · · ,m− 1. We may then write the metric as

g = drg ⊗ drg + gijdθ
i
g ⊗ dθjg, (2.11.11)

where gij := g(∂/∂θig, ∂/∂θ
j
g).

Along each geodesic ray emanating from p, ∂/∂θig is a Jacobi field, before the first conjugate

point for each i ≤ m− 1. We call

Jg :=
√
det(gij)1≤i,j≤m−1 (2.11.12)

the Jacobian of the exponential map. The volume of g is

dVg =
√
det(g)dθ1g ∧ · · · ∧ dθm−1

g ∧ drg = JgdΘg ∧ drg (2.11.13)

in a positively oriented spherical coordinate system, where

dΘg := dθ1g ∧ · · · ∧ dθm−1
g . (2.11.14)

Hence the Jacobian of the exponential map is the volume density in spherical coordinates. If

γ(r̄) is a conjugate point to p along γ, then Jg(γ(r)) → 0 as r → r̄.

Note 2.51

♣

Along a geodesic ray γ emanating from p we have that

lim
x→p

(
(∇g) ∂

∂rg

∂

∂θig

)
(γ(x)) := Ei ∈ TpM (2.11.15)

exists. Suppose (Ei)1≤i≤m−1 is orthonormal (one can always choose such geodesic

spherical coordinates and we shall often make this assumption in the sequel). Then

lim
rg→0

Jg(γ(rg))

rm−1
g

= 1. (2.11.16)

Intuitively, one way to see that (2.11.16) holds is to note that (M, cg, p) converges as

c → ∞ in the pointed limit (Rm, 0), so that the limit in (2.11.16) should equal the

Euclidean value.
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2.11.3 The second fundamental form of distance spheres and the Ricatti equation

Consider the distance spheres

Sg(p, r) := {x ∈ M : dg(p, x) = r}. (2.11.17)

Let h denote the second fundamental form of Sg(p, r) as defined in (2.8.22). We have

hij := h

(
∂

∂θig
,
∂

∂θjg

)
=

〈
(∇g) ∂

∂θig

∂

∂rg
,
∂

∂θjg

〉
g

= −

〈
∂

∂rg
, (∇g) ∂

∂θig

∂

∂θjg

〉
g

= −Γmij =
1

2

∂

∂rg
gij (2.11.18)

since ∂/∂rg is the unit normal to Sg(p, r) and gim = gjm = 0. The mean curvature H of

Sg(p, r) is

H = −gijΓmij =
1

2
gij

∂

∂rg
gij =

∂

∂rg
ln Jg. (2.11.19)

Note 2.52

♣

(1) For rg small enough,

hij =
1

rg
gij +O(rg), (2.11.20)

H =
m− 1

rg
+O(rg). (2.11.21)

(2) In spherical coordinates, the Laplacian is

∆g = gab
(

∂2

∂xa∂xb
− Γcab

∂

∂xc

)
=

∂2

∂r2g
+H

∂

∂rg
+∆Sg(p,r) (2.11.22)

=
∂2

∂r2g
+

(
∂

∂rg
ln
√
det(g)

)
∂

∂rg
+∆Sg(p,r)

since Γamm = 0 for a = 1, · · · ,m and where ∆Sg(p,r) is the Laplacian with respect to the

induced metric on Sg(p, r).

Lemma 2.28

♥

We have the Ricatti equation
∂

∂r
hij = −Rmijm + hikg

kℓhℓj (2.11.23)

where Rmijm := 〈Rmg(
∂
∂rg

, ∂
∂θig

) ∂

∂θjg
, ∂
∂rg

〉g. In particular,

∂

∂rg
H = −Rcg

(
∂

∂rg
,
∂

∂rg

)
− |h|2g. (2.11.24)

Proof. Since |∂/∂rg|g = 1, it follows that (∇g)∂/∂rg(∂/∂rg) = 0. From (2.11.18), we have

∂

∂rg
hij = − ∂

∂rg

〈
∂

∂rg
, (∇g) ∂

∂θig

∂

∂θjg

〉
g

= −

〈
∂

∂rg
, (∇g) ∂

∂rg

(∇g) ∂

∂θig

∂

∂θjg

〉
g

= −

〈
∂

∂rg
, (∇g) ∂

∂θig

(∇g) ∂
∂rg

∂

∂θjg

〉
g

−Rmijm
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= − ∂

∂θig

〈
∂

∂rg
, (∇g) ∂

∂rg

∂

∂θjg

〉
g

+

〈
(∇g) ∂

∂θig

∂

∂rg
, (∇g) ∂

∂rg

∂

∂θjg

〉
g

−Rmijm

= − ∂

∂θig

(
∂

∂rg

〈
∂

∂rg
,
∂

∂θig

〉
g

−
〈
(∇g) ∂

∂rg

∂

∂rg
,
∂

∂θig

〉
g

)

+

〈
(∇g) ∂

∂θig

∂

∂rg
, (∇g) ∂

∂θ
j
G

∂

∂rg

〉
g

−Rmijm = 0 + hikhjℓg
kℓ −Rmijm.

Since
∂

∂rg
H = gij

∂

∂rg
hij −

∂

∂rg
gij · hij ,

∂

∂rg
gij = hij ,

we obtain (2.11.24).

Note 2.53

♣

If Rcg ≥ (m− 1)K, then

∂

∂rg

(
H

m− 1

)
≤ −K −

(
H

m− 1

)2

. (2.11.25)

From (2.11.21), one has

lim
rg→0

rgH

m− 1
= 1.

In terms of the radial covariant derivative

∇mhij :=

(
(∇g) ∂

∂rg

h

)
ij

=
∂

∂rg
hij − Γkmihkj − Γkmjhik

and Γkmi = hi
k, we deduce from (2.11.23) that

∇mhij = −Rmijm − hikhjℓg
kℓ. (2.11.26)

Invariantly, we write this as(
(∇g) ∂

∂rg

)
(X,Y ) = −

〈
Rmg

(
∂

∂rg
, X

)
Y,

∂

∂rg

〉
g

− h2(X,Y ) (2.11.27)

for X,Y ∈ TSg(p, r).

2.11.4 Space form and rotationally symmetric metrics

We consider the geodesic spheres in simply-connected space form (MK , gK). In this case

the metric is given by

gK := dr2g + s2K(rg)gSm−1 , (2.11.28)

where

sK(rg) :=


1√
K
sin(

√
Krg), K > 0,

rg, K = 0,

1√
K
sinh(

√
|K|rg), K < 0.

(2.11.29)
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Lemma 2.29. (Curvatures of a rotationally symmetric metric)

♥

If

g = dr2g + φ2(rg)gSm−1 (2.11.30)

for some function φ, which is called a rotationally symmetric metric, then the sectional

curvatures are

Krad = −φ
′′

φ
, Ksph =

1− (φ′)2

φ2
, (2.11.31)

whereKrad (rad for radial) orKsph (sph for spherical) is the sectional curvature of planes

containing or perpendicular to, respectively, the radial vector. As a consequence, we have

Rcg = −(m− 1)
φ′′

φ
dr2g +

[
(m− 2)

(
1− (φ′)2

)
− φ′′φ

]
gSm−1 (2.11.32)

and

Rg = −2(m− 1)
φ′′

φ
+ (m− 1)(m− 2)

1− (φ′)2

φ2
. (2.11.33)

Furthermore, the Laplacian of g is

∆g =
∂2

∂r2g
+ (m− 1)

φ′

φ

∂

∂rg
+∆Sg(p,r). (2.11.34)

Proof. One way is to use the Cartan structure equations: ωm = drg and ωi = φ(rg)η
i, where

{ηi}1≤i≤m−1 is a local orthonormal coframe field for (Sm−1, gSm−1). Another way of deriving

(2.11.31) is to consider the distance spheres. From (2.11.18), we have

hij =
1

2

∂

∂rg
gij = φφ′gSm−1 =

φ′

φ
gij , i, j = 1, ·,m− 1. (2.11.35)

That is, the distance spheres are totally umbillic with principal curvatures κ equal to φ′/φ. The

intrinsic curvature of the hypersurface Sg(p, r) is

Kin =
1

φ2
. (2.11.36)

From the Gauss equations, we have Ksph = Kin − κ2.

Using (2.11.19) yields

H = gijhij = (m− 1)
φ′

φ
. (2.11.37)

Example 2.19
When φ(rg) = sK(rg) given by (2.11.29), the mean curvature HK(rg) of the distance

sphere SK(p, r) is

HK(rg) :=


(m− 1)

√
Kcot(

√
Krg), K > 0,

m−1
rg

, K = 0,

(m− 1)
√
|K|coth(

√
|K|rg), K < 0.

(2.11.38)

Note that HK(rg) is a solution to the equality case of (2.11.25). That is,

∂

∂rg

(
HK(rg)

m− 1

)
= −K −

(
HK(rg)

m− 1

)2

(2.11.39)
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♠

and

lim
rg→0+

rgHK(rg)

m− 1
= 1.

2.11.5 Mean curvature of geodesic spheres and the Bonnet-Myers theorem

By the ODE comparison theorem, we have

Lemma 2.30. (Mean curvature of distance spheres comparison)

♥

If the Ricci curvature of (M, g) satisfies the lower bound Rcg ≥ (m − 1)K for some

K ∈ R, then the mean curvatures of the distance spheres Sg(p, r) satisfy

H ≤ HK (2.11.40)

at points where the distance function is smooth.

Proof. From (2.11.25) and (2.11.39), we have
∂

∂rg
(H −HK) ≤ −H +HK

m− 1
(H −HK).

Note that (H −HK)(rg) = O(rg). Integrating (2.11.40), we get that for any rg ≥ ε > 0,

(H −HK)(rg) ≤ (H −HK)(ε) · exp
[
−
∫ rg

ϵ

H +HK

m− 1
(s)ds

]
. (2.11.41)

Letting ε→ 0 yields (H −HK)(rg) ≤ 0.

Theorem 2.31. (Bonnet-Myers)

♥

t2.31 If (M, g) is a complete Riemannian manifold with Rcg ≥ (m−1)K, whereK > 0,

then diam(M, g) ≤ π/
√
K. In particular, M is compact and π1(M) <∞.

Proof. Consider any point p ∈ M and suppose γ : [0, L] → M is a unit speed minimal geodesic

emanating from p. Then dg(p, ·) is smooth on γ((0, L)) and for every r ∈ (0, L), the distance

sphere Sg(p, r) is smooth in a neighborhood of γ(r). By Lemma 2.30, we have

H(rg) ≤ (m− 1)
√
K cot(

√
Krg)

along γ|(0,L). Since

lim
rg→(π/

√
K)+

cot(
√
Krg) = −∞,

it forces that L ≤ π/
√
K. Thus diam(M, g) ≤ π/

√
K. Now a complete Riemannian manifold

with finite diameter is compact.

Furthermore, we may apply the diameter bound to the universal covering Riemannian

manifold (M̃, g̃), where g̃ is the lifted metric. Indeed, g̃ satisfies the same Ricci curvature lower

bound as g. This implies M̃ is compact and we conclude π1(M) <∞.
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2.12 Comparison theorems

Introduction

h Laplacian comparison theorem

h Volume comparison theorem

h Hessian comparison theorem

h Mean value inequalities

h Rauch comparision theorem

Two fundamental results in Riemannian geometry are the Laplacian and Hessian compar-
ison theorems for the distance function. They are directly related to the volume comparison

theorem and a special case of the Rauch comparison theorem. The Hessian comparison theorem

may also be used to prove the Toponogov triangle comparison theorem.

2.12.1 Laplacian comparison theorem

The idea of comparison theorem is to compare a geometric quantity on a Riemannian

manifold with the corresponding quantity on a model space. In Riemannian geometry, model

spaces have constant sectional curvature, while, model spaces for the Ricci flow are gradient

Ricci solitons.

Theorem 2.32. (Laplacian comparison)

♥

If (M, g) is a complete Riemannian manifold with Rcg ≥ (m− 1)K, whereK ∈ R, and

if p ∈ M, then for any x ∈ M where dg(x) := dg(p, x) is smooth, we have

∆gdg(x) ≤


(m− 1)

√
K cot

(√
Kdg(x)

)
, K > 0,

m−1
dg(x)

, K = 0,

(m− 1)
√
|K| coth

(√
|K|dg(x)

)
, K < 0.

(2.12.1)

On the whole manifold, the Laplacian comparison theorem (2.12.1) holds in the sense of

distributions.

In general, we say that ∆gf ≤ F in the sense of distributions if for any nonnegative

C∞-function ϕ on M with compact support, we have∫
M
f∆gϕdVg ≤

∫
M
FϕdVg.

Proof. If rg(x) := dg(x) is the distance function to p, then since rg is constant on each sphere

∆Sg(p,r) = 0, then from (2.11.22) we have that the Laplacian of the distance function is the radial

derivative of the logarithm of the Jacobian (and is the mean curvature of the distance spheres)

∆grg = H =
∂

∂r
ln Jg. (2.12.2)

Hence, if Rcg ≥ (m− 1)K, then, by Lemma 2.30,

∆grg ≤ HK(rg). (2.12.3)

This proves the Laplacian comparison theorem assuming we are within the cut locus.
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To prove (2.12.1) holds in the sense of distributions on all of M, we argue as follows. For

any nonnegative ϕ ∈ C∞(M) with compact support,∫
M
ϕ(x)HK(dg(x))dVg(x) =

∫ ∞

0

∫
Cg(r)

ϕ
(
expp(θ, r)

)
HK(r)Jg(θ, r)dΘ(θ)dr.

Given a unit vector θ ∈ TpM, let rθ be the largest value of r such that s 7→ γθ(s) = expp(θ, s)

minimizes up to s = r. By the Fubini theorem, we have∫
M
ϕ(x)HK(dg(x))dVg(x) =

∫
Sm−1

∫ rθ

0
ϕ
(
expp(θ, r)

)
HK(r)Jg(θ, r)drdΘ(θ).

Now for 0 < r < rθ, by Lemma 2.30 and (2.12.2),

HK(r)Jg(θ, r) ≥ H(θ, r)Jg(θ, r) =
∂

∂r
Jg(θ, r).

Hence ∫
M
ϕ(x)HK(dg(x))dVg(x) ≥

∫
Sm−1
g

∫ rθ

0
ϕ
(
expp(θ, r)

) ∂
∂r

Jg(θ, r)drdΘ(θ)

= −
∫
Sm−1
g

∫ rθ

0

∂

∂r

(
ϕ ◦ expp

)
(θ, r)Jg(θ, r)drdΘ(θ)+

∫
Sm−1
g

ϕ
(
expp(θ, rθ)

)
Jg(θ, rθ)dΘ(θ)

≥ −
∫
Sm−1
g

∫ rθ

0

∂

∂r

(
ϕ ◦ expp

)
(θ, r)Jg(θ, r)drdΘ(θ).

By the Gauss lemma we arrive at∫
M
ϕ(x)HK(dg(x))dVg(x) ≥ −

∫
M
〈∇gϕ,∇grg〉gdVg =

∫
M
rg∆gϕdVg,

where the last equality follows from the fact that rg is Lipschitz onM and the divergence theorem

holds for Lipschitz functions.

Using x cothx ≤ 1 + x yields

Corollary 2.11

♥

If (M, g) is a complete Riemannian manifold with Rcg ≥ (m− 1)K, where K ≤ 0, then

∆gdg ≤
m− 1

dg
+ (m− 1)

√
|K| (2.12.4)

in the sense of distributions. In particular, if (M, g) is a complete Riemannian manifold

with Rcg ≥ 0, then for any p ∈ M

∆gdg ≤
m− 1

dg
(2.12.5)

in the sense of distributions.

Estimate (2.12.1) is sharp as can be seen from considering space forms of constant curvature

−K. If K = 0, then (2.12.5) is sharp since on Euclidean space ∆|x| = m−1
|x| .

2.12.2 Volume comparison theorem

A consequence of the Laplacian comparison theorem is
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Theorem 2.33. (Bishop-Gromov volume comparison)

♥

If (M, g) is a complete Riemannian manifold with Rcg ≥ (m−1)K, whereK ∈ R, then

for any p ∈ M, the volume radio
Volg(Bg(p, r))

VolK(BK(pK , r))

is a nonincreasing function of r, where pK is a point in the m-dimensional simply-

connected space form of constant curvature K. In particular,

Volg(Bg(p, r)) ≤ VolK(BK(pK , r)) (2.12.6)

for all r > 0. Given p ∈ M and r > 0, equality holds in (2.12.6) if and only if Bg(p, r)

is isomorphic to BK(pK , r).

Proof. Given a point pK ∈ MK , let ψpK : TpKMK \ {0} → Sm−1
pK

be the standard projection

ψpk(V ) := V/|V |pK . The volume element of the space form satisfies

dVK :=
√

det(gK)dθ1K ∧ · · · ∧ dθm−1
K ∧ drK = sm−1

K (rg)dσK ∧ drK ,

where dσK is the pull-back by ψpK ◦ exp−1
pK

of the standard volume form on the unit sphere

Sm−1
pK

. If (θi)1≤i≤m−1 are coordinates on Sm−1
pK

, then

θiK = θi ◦ ψ ◦ exp−1
pK
, i = 1, · · · ,m− 1.

From

dσK = (ψ ◦ exp−1
pK

)∗
(
dθ1 ∧ · · · ∧ dθm−1

)
= dθ1K ∧ · · · ∧ dθm−1

K ,

we get

JK :=
√
det(gK) = sm−1

K (rg).

When K ≤ 0 the above formula holds for all rg > 0 and when K > 0 we need to assume

rg ∈ (0, π/
√
K).

Now we consider a Riemannian manifold (M, g) with Rcg ≥ (m− 1)K. From (2.11.19)

and (2.11.40) we obtain
∂

∂rg
ln

√
det(g)

sm−1
K (rg)

≤ 0. (2.12.7)

Assume that the coordinates (θi)m−1
i=1 on Sm−1

p are such that limr→0+
1
r
∂
∂θi

:= ei ∈ TpM
are orthonormal. Then we have

lim
rg→0+

√
det(g)

sm−1
K (rg)

= 1

from which we conclude

Jg ≤ sm−1
K (rg). (2.12.8)

Without making any normalizing assumption on the coordinates (θi)m−1
i=1 , this says

Jg(θg, rg)dΘg(θg) ≤ sm−1
K (rg)dσSg(p,r)(θg).
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Equivalently,

J(θ, r)dΘ(θ) ≤ sm−1
K (r)dσSm−1

p
(θ).

This is the infinitesimal are comparison formula which gives us

dVg ≤ dVK . (2.12.9)

Integrating this proves (2.12.6), at least within the cut locus. To see that this result holds on the

whole manifold, we argue as follows. Let

Cg(r) := {V ∈ TpM : |V |g(p) = 1 and γV (s) = expp(sV ), s ∈ [0, r], is minimizing}.

Note that Cg(r2) ⊂ Cg(r1) for r1 ≤ r2. since the cut locus of p has measure zero and

exp∗p(dVg) = JdΘ ∧ dr inside the cut locus of p, for any integrable function ϕ on a geodesic

ball Bg(p, r̄) we have∫
Bg(p,r̄)

ϕ(x)dVg(x) =

∫ r̄

0

(∫
Cg(r)

ϕ
(
expp(θ, r)

)
J(θ, r)dΘ(θ)

)
dr.

In particular,

Volg(Bg(p, r̄)) =

∫
Bg(p,r̄)

dVg =

∫ r̄

0

∫
Cg(r)

exp∗p(dVg) =

∫ r̄

0

(∫
Cg(r)

J(θ, r)dΘ(θ)

)
dr

≤
∫ r̄

0

(∫
Cg(r)

sm−1
K (r)dσSm−1

p
(θ)

)
dr ≤

∫ r̄

0

(∫
Sm−1
p

sm−1
K (r)dσSm−1

p
(θ)

)
dr

=

∫ r̄

0

(∫
Sm−1
pK

sm−1
K (r)dσSm−1

pK
(θ)

)
dr = VolK(BK(pK , r̄)).

This completes the proof of (2.12.6).

Corollary 2.12

♥

If (M, g) is a complete Riemannian manifold with Rcg ≥ 0, then for any p ∈ M, the

volume ratio
Volg(Bg(p, r))

rm

is a nonincreasing function of r. Since

lim
r→0

Volg(Bg(p, r))

rm
= ωm,

we have
Volg(Bg(p, r))

rm
≤ ωm (2.12.10)

for all r > 0, where ωm is the volume of the Euclidean unit m-ball.

Corollary 2.13. (Volume characterization of Rm)
If (M, g) is a complete noncompact Riemannian manifold with Rcg ≥ 0 and if for some

p ∈ M
lim
r→∞

Volg(Bg(p, r))

rm
= ωm,



2.12 Comparison theorems – 180 –

♥then (M, g) is isomorphic to Euclidean space.

Let (M, g) be a complete Riemannian manifold and p ∈ M. Given a measurable subset Γ

of the unit sphere Sm−1
p ⊂ TpM and 0 < r ≤ R <∞, define the annular-type region:

AΓ
g,r,R(p) :=



x ∈ M : r ≤ dg(p, x) ≤ R

and there exists a unit speed

minimal geodesic γ from

γ(0) = p to x

satisfying γ′(0) ∈ Γ


⊂ Bg(p,R) \Bg(p, r). (2.12.11)

Note that id Γ = Sm−1
p , then

A
Sm−1
p

g,r,R (p) = Bg(p,R) \Bg(p, r).

Given K ∈ R and a point pK in the m-dimensional simply-connected space form (MK , gK) of

constant curvature K, let AΓ
gK ,r,R

(pK) denote the corresponding set in the space form.

Theorem 2.34. (Bishop-Gromov relative volume comparison theorem)

♥

Suppose that (M, g) is a complete Riemannian manifold with Rcg ≥ (m − 1)K. If

0 ≤ r ≤ R ≤ S, r ≤ s ≤ S and if Γ ⊂ Sm−1
p is a measurable subset, then

Volg

(
AΓ
g,s,S(p)

)
VolK

(
AΓ
gK ,s,S

(pK)
) ≤

Volg

(
AΓ
g,r,R(p)

)
VolK

(
AΓ
gK ,r,R

(pK)
) . (2.12.12)

Taking r = s = 0 and Γ = Sm−1
p yields Theorem 2.34.

Corollary 2.14. (Yau)

♥

Let (M, g) be a complete noncompact Riemannian manifold with nonnegative Ricci

curvature. For any point p ∈ M, there exists a constant C = C(g, p,m) > 0 such that

for any r ≥ 1

Volg(Bg(p, r)) ≥ Cr. (2.12.13)

Proof. Let x ∈ M be a point with dg(p, x) = r ≥ 2. By Theorem 2.34 we have

Volg

(
AS

m−1
x
g,r−1,r+1(x)

)
Volg

(
AS

m−1
x
g,0,r−1(x)

) ≤
VolK

(
AS

m−1
x
gK ,r−1,r+1(pK)

)
VolK

(
AS

m−1
x
gK ,0,r−1(pK)

)
giving us

Volg(Bg(x, r + 1))−Volg(Bg(x, r − 1))

Volg(Bg(x, r − 1))
≤ (r + 1)m − (r − 1)m

(r − 1)m
≤ C(m)

r

for some constant C(m) depending only on m. Since Bg(p, 1) ⊂ Bg(x, r + 1) \ Bg(x, r − 1)

and Bg(x, r − 1) ⊂ Bg(p, 2r − 1), it follows that

Volg(Bg(p, 2r − 1)) ≥ Volg(Bg(x, r − 1)) ≥ Volg(Bg(p, 1))

C(m)
r.

We have proved the corollary for r ≥ 3. Clearly it is then true for any r ≥ 1.
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Example 2.20

♠

A simple example of a complete Riemannian manifold with nonnegative sectional curvature

and linear volume growth isSm−1×R (we may replaceSm−1 by any closed manifold with

nonnegative sectional curvature). If we want M to also have positive sectional curvature

at least at one point, then we may take a cylinder Sm−1 × [0,∞), attach a hemispherical

cap, and then smooth out the metric.

If Rcg ≥ 0, then by (2.11.22) and (2.12.5) we have

H = ∆gdg ≤
m− 1

dg
. (2.12.14)

Hence the area Ag(r) of the distance sphere Sg(p, r) satisfies
d

dr
Ag(r) =

∫
Sg(p,r)

Hdσ ≤
∫
Sg(p,r)

m− 1

rg
dσ =

m− 1

r
Ag(r).

Integrating this yields

Ag(s) ≤ Ag(r)
sm−1

rm−1
, s ≥ r.

Therefore

Volg(Bg(p, r)) =

∫ r

0
Ag(ρ)dρ ≥

∫ r

0
Ag(r)

ρm−1

rm−1
dρ =

r

m
Ag(r), (2.12.15)

we obtain

Ag(s) ≤ m
Volg(Bg(p, r))

rm
sm−1, s ≥ r, (2.12.16)

or
Ag(s)

mωmsm−1
≤ Volg(Bg(p, r))

ωmrm
, s ≥ r. (2.12.17)

Let

AVRg(p) := lim
r→∞

Volg(Bg(p, r))

ωmrm
(2.12.18)

be the asymptotic volume ratio. The asymptotic volume ratio is an important invariant of the

geometry at infinity of a complete noncompact manifold with nonnegative Ricci curvature.

Corollary 2.15

♥

On a complete noncompact Riemannian manifold with nonnegative Ricci curvature we

have
Ag(s)

mωmsm−1
≥ AVRg(p) (2.12.19)

for any s ≥ 0.

Proof. Since Ag(s)/sm−1 is nonincreasing, it follows that
Volg(Bg(p, s))−Volg(Bg(p, r))

ωm(sm − rm)
=

1

ωm(sm − rm)

∫ s

r
Ag(ρ)dρ

≤ 1

ωm(rm − sm)

∫ s

r
Ag(r)

ρm−1

rm−1
dρ =

Ag(r)

ωmrm−1

∫ s
r ρ

m−1dρ

rm − sm
=

Ag(r)

mωmrm−1

for any s ≥ r. Letting s→ ∞ yields (2.12.19).
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2.12.3 Hessian comparison theorem

Proposition 2.20. (Hessian comparison theorem–general version)

♥

Let i = 1, 2. Let (Mi, gi) be complete Riemannian manifolds, let γi : [0, L] → Mi be

geodesics parametrized by arc length such that γi does not intersect the cur locus of γi(0),

and let dgi(·) := dgi(γi(0)). If for all t ∈ [0, L] we have

Secg1(V1 ∧ γ̇1(t)) ≥ Secg2(V2 ∧ γ̇2(t))

for all unit vectors Vi ∈ Tγi(t)Mi perpendicular to γ̇i(t), then

∇2
g1dg1(X1, X1) ≤ ∇2

g2dg2(X2, X2) (2.12.20)

for all Xi ∈ Tγi(t)Mi perpendicular to γ̇i(t) and t ∈ (0, L].

Theorem 2.35. (Hessian comparison theorem–special case)

♥

Let (M, g) be a complete Riemannian manifold with Secg ≥ K. For any point p ∈ M
the distance function rg(x) := dg(p, x) satisfies

∇i∇jrg = hij ≤
1

m− 1
HK(rg)gij (2.12.21)

at all points where rg is smooth (i.e., away from p and the cut locus). On all of M the

above inequality holds in the sense of support functions.

Proof. From (2.11.27), we have

∇ ∂
∂rg

h ≤ −Kg − h2

along a geodesic ray γ : [0, L) → M emanating from p. We claim that

h(rg, θg) ≤
1

m− 1
HK(rg)g(rg, θg). (2.12.22)

Indeed, given any unit vector V at p, we parallel translate it along γ. Let V (rg) := V (γ(rg));

then |V (rg)|g(γ(rg)) = 1 and ∇∂/∂rgV (rg) = 0. Hence
d

drg
[h(V (rg), V (rg))] = ∇ ∂

∂rg

h(V (rg), V (rg)) + 2h

(
∇ ∂

∂rg

V (rg), V (rg)

)
≤ −K|V (rg)|g(γ(rg)) − [h(V (rg), V (rg))]

2 = −K − [h(V (rg), V (rg))]
2.

From (2.11.20) and (2.11.21) we have

h(V (rg), V (rg))−
HK(rg)

m− 1
=

1

rg
+O(rg)−

1

rg
−O(rg) = O(rg).

Consequently

h(V (rg), V (rg))−
HK(rg)

m− 1

≤
[
h(V (ε), V (ε))− HK(ε)

m− 1

]
exp

[
−
∫ r

ϵ

(
HK(s)

m− 1
+ h(V (s), V (s))

)
ds

]
which gives

h(V (rg), V (rg))−
1

m− 1
HK(rg) ≤ 0
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for all rg > 0. Hence

∇i∇jrg = hij ≤
1

m− 1
HK(rg)gij

inside the cut locus when Secg ≥ K.

Note that the Hessian of the distance function is the second fundamental form of the distance

sphere, which in turn is the radial derivative of the metric. yielding information about the inner

products of the Jacobi fields ∂
∂θig

:

∇i∇jrg = hij =
1

2

∂

∂rg
gij =

1

2

∂

∂rg

〈
∂

∂θig
,
∂

∂θjg

〉
g

. (2.12.23)

If J1 and J2 are Jacobi fields along a geodesic γ : [0, L] → M without conjugate points and if

Ji(0) = 0 and 〈(∇g)γ̇Ji(0), γ̇(0)〉g(γ(0)) = 0 for i = 1, 2, then we have
1

2

∂

∂rg
〈J1, J2〉g = (∇g)J1(∇g)J2rg = h(J1, J2). (2.12.24)

Corollary 2.16

♥

Let (M, g) be Riemannian manifold with Secg ≥ K and let γ : [0, L] → M be a unit

speed geodesic. If J is a Jacobi field along γ J(0) = 0 and 〈(∇g)γ̇J(0), γ̇(0)〉g(γ(0)) = 0,

then

|J(rg)|g(γ(rg)) ≤
∣∣(∇g)γ̇(0)J(0)

∣∣
g(γ(0))

sK(rg). (2.12.25)

Proof. By our hypotheses, 〈J(rg), γ̇(rg)〉g(γ(rg)) = 0 for all rg ≥ 0. From (2.12.22) and

(2.12.24),
∂

∂rg

( |J(rg)|g(γ(rg))
sK(rg)

)
=

∂

∂rg

〈J(rg), J(rg)〉1/2g(γ(rg))

sK(rg)


=

1
2|J(rg)|g(γ(rg))

∂
∂rg

〈J(rg), J(rg)〉g(γ(rg))sK(rg)− |J(rg)|g(γ(rg))s′K(rg)

s2K(rg)

=
1

|J(rg)|g(γ(rg))sK(rg)
h(J(rg), J(rg))−

s′K(rg)

sK(rg)

|J(rg)|g(γ(rg))
sK(rg)

=

[
h

(
J(rg)

|J(rg)|g(γ(rg))
,

J(rg)

|J(rg)|g(γ(rg))

)
− HK(rg)

m− 1

]
|J(rg)|g(γ(rg))

sK(rg)
≤ 0.

The result now follows from limrg→0 |J(rg)|g(γ(rg))/sK(rg) = |(∇g)γ̇(0)J(0)|g(γ(0)).

Note 2.54
Suppose that (M, g) is a Riemannian manifold with constant sectional curvatureK. If J is

a Jacobi field along a unit speed geodesic γ withJ(0) = 0 and 〈(∇g)γ̇J(0), γ̇(0)〉g(γ(0)) =
0, then

|J(rg)|g(γ(rg)) =
∣∣(∇g)γ̇(0)J(0)

∣∣
g(γ(0))

sK(rg).
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♣

In general we have the expansion

|J(rg)|2g(γ(rg)) = r2g −
1

3

〈
Rmg

(
∇γ̇(0)J(0), γ̇(0)

)
γ̇(0),∇γ̇(0)J(0)

〉
g(γ(0))

r4g

+ O(r5g). (2.12.26)

Finally we consider the Hessian in spherical coordinates. We have

∇m∇m =
∂2

∂r2g
− Γamm

∂

∂xa
=

∂2

∂r2g
,

∇m∇i =
∂2

∂rg∂θig
− Γami

∂

∂xa
=

∂2

∂rg∂θig
− hji

∂

∂θjg
,

∇i∇j =
∂2

∂θig∂θ
j
g

− Γaij
∂

∂xa
= ∇S

i ∇S
j + hij

∂

∂rg
,

where ∇S is the intrinsic covariant derivative of the hypersurface Sg(p, r). In particular, if

f = f(rg) is a radial function, then

∇m∇mf =
∂2f

∂r2g
, ∇m∇if = 0, ∇i∇jf = hij

∂f

∂r
.

2.12.4 Mean value inequalities

The following mean value inequality that is a consequence of the Laplacian comparison

theorem, has an application in the proof of the splitting theorem.

Proposition 2.21. (Mean value inequality for Rcg ≥ 0)

♥

If (M, g) is a complete Riemannian manifold with Rcg ≥ 0 and if f ≤ 0 is a Lipschitz

function with ∆gf ≥ 0 in the sense of distribution, then for any x ∈ M and 0 < r <

injg(x),

f(x) ≤ 1

ωmrm

∫
Bg(x,r)

f dVg. (2.12.27)

Proof. By the divergence theorem for Lipschitz functions, we have

0 ≤ 1

rm−1

∫
Bg(x,r)

∆gf dVg =

∫
∂Bg(x,r)

∂f

∂r

1

rm−1

√
det(g)dΘg,

where dΘg = dθ1g ∧ · · · ∧ dθm−1
g . Since

∂

∂rg

√
det(g)

rm−1
g

=
∂

∂rg

(
Jg

rm−1
g

)
=

∂
∂rg

Jg · rm−1
g − Jg(m− 1)rm−2

g

r2m−2
g

=

∂
∂rg

Jg · rg − Jg(m− 1)

rmg
≤

m−1
rg

Jgrg − Jg(m− 1)

rmg
= 0
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from ∆grg = H = ∂
∂rg

ln Jg ≤ m−1
rg

and f ≤ 0, we have

0 ≤
∫
∂Bg(x,r)

(
∂f

∂r

√
det(g)

rm−1
+ f

∂

∂r

√
det(g)

rm−1

)
dΘg

=

∫
∂Bg(x,r)

∂

∂r

(
f

√
det(g)

rm−1

)
dΘg =

d

dr

(
1

rm−1

∫
∂Bg(x,r)

f dσg

)
,

where dσg =
√

det(gij)dΘg. Since

lim
r→0

1

rm−1

∫
∂Bg(x,r)

f dσg = mωmf(x),

wheremωm is the volume of the unit (m− 1)-sphere, integrating the above inequality over [0, s]

yields

mωmf(x) ≤
1

sm−1

∫
∂Bg(x,s)

f dσg.

Integrating this again over [0, r] implies

f(x)
rm

m
≤ 1

mωm

∫
Bg(x,r)

f dVg

which is the desired inequality (2.12.27).

Proposition 2.22. (Mean value inequality for Secg ≤ H)

♥

Suppose that (M, g) is a complete Riemannian manifold with Secg ≤ H in a ballBg(x, r)

where r < injg(M). If f ∈ C∞(M) is subharmonic, i.e., if ∆gf ≥ 0, and if f ≥ 0 on

M, then

f(x) ≤ 1

VH(r)

∫
Bg(x,r)

f dVg, (2.12.28)

where VH(r) is the volume of a ball of radius r in the complete simply-connected manifold

of constant sectional curvature H .

2.12.5 Rauch comparison theorem

More generally, applying standard ODE comparison theory to the Jacobi equation, one has

the following

Theorem 2.36. (Rauch comparison theorem)
Let (M, g) and (M̄m, ḡ) be Riemannian manifolds and let γ : [0, L] → M and γ̄ :

[0, L] → M̄m be unit speed geodesics. Suppose that γ̄ has no conjugate points and for

any r ∈ [0, L] and any X ∈ Tγ(r)M, X̄ ∈ Tγ̄(r)M̄m, we have

Secg (X ∧ γ̇(r)) ≤ Secḡ
(
X̄ ∧ ˙̄γ(r)

)
.
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♥

If J and J̄ are Jacobi fields along γ and γ̄ with J(0) and J̄(0) tangent to γ and γ̄, and if

|J(0)|g(γ(0)) = |J̄(0)|g0(γ̄(0)),〈
(∇g)γ̇(0)J(0), γ̇(0)

〉
g(γ(0))

=
〈
(∇ḡ) ˙̄γ(0)J̄(0), ˙̄γ(0)

〉
ḡ(γ̄(0))

,∣∣(∇g)γ̇(0)J(0)
∣∣
g(γ(0))

=
∣∣∣(∇ḡ) ˙̄γ(0)J̄(0)

∣∣∣
ḡ(γ̄(0))

,

then

|J(r)|g(γ(r)) ≥ |J̄(r)|ḡ(γ̄(r)). (2.12.29)

Corollary 2.17. (Cartan-Hadamard theorem)

♥

If (M, g) is a complete Riemannian manifold with nonpositive sectional curvature, then

for any p ∈ M, the exponential map expp : TpM → M is a covering map. In particular,

the universal cover of M is diffeomorphic to Euclidean space Rm.

2.13 Manifolds with nonnegative curvature

Introduction

h The topological sphere theorem

h Cheeger-Gromoll splitting theorem

and soul theorem

h Topological comparision theorem

2.13.1 The topological sphere theorem

Given a Riemannian manifold (M, g), let Secg(Π) denote the sectional curvature of a 2-

plane Π ⊂ TpM where p ∈ M. The Rauch-Klingenberg-Berger topological sphere theorem
says the following.

Theorem 2.37. (Topological sphere theorem)

♥

If (M, g) is a complete, simply-connected Riemannian manifold with 1
4 < Secg(Π) ≤ 1

for all 2-planes Π, then M is homeomorphic to the m-sphere. In particular, if m = 3,

then M3 is diffeomorphic to the 3-sphere.

Recently, Brendle and Schoen showed that

Theorem 2.38. (Diffeomorphic sphere theorem)

♥

If (M, g) is a complete, simply-connected Riemannian manifold with 1
4 < Secg(Π) ≤ 1

for all 2-planes Π, then M is diffeomorphic to the m-sphere.

There is not much known about general closed Riemannian manifolds with positive sectional

curvature.
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Problem 2.2. (Hopf conjecture I)

♠p2.2 Does there exist a Riemannian metric on S2 × S2 with positive sectional curvature?

Problem 2.3. (Hopf conjecture II)

♠

Prove that if (M2m, g) is a closed, even-dimensional Riemannian manifold with positive

sectional curvature, then χ(M2m) > 0.

Note that any closed, odd-dimensional manifold has χ(M2m+1) = 0. The case of complete

noncompact manifolds with positive sectional curvature is simpler.

2.13.2 Cheeger-Gromoll splitting theorem and soul theorem

In the study of manifolds with nonnegative curvature, often (especially when the curvature

is not strictly positive) the manifolds split as the product of a lower-dimensional manifold with a

line.

A geodesic line is a unit speed geodesic γ : (−∞,∞) → M such that the distance

between any points on γ is the length of the arc of γ between those two points; that is, for any

s1, s2 ∈ (−∞,∞), dg(γ(s1), γ(s2)) = |s2 − s1|. A unit speed geodesic β : [0,∞) → M is a

geodesic ray if it satisfies the same condition as above. Given a geodesic ray β : [0,∞) → M,

the Busemann function
bβ : M −→ R (2.13.1)

associated to β is defined by

bβ(x) := lim
s→∞

(s− dg(β(s), x)) . (2.13.2)

Note 2.55

♣

(1) In Euclidean space the Busemann function is linear. For any unit vector V ∈ Rm,

the Busemann function bγV associated to the geodesic ray γV : [0,∞) → Rm defined by

γV (s) := sV is the linear function given by

bγV (x) = 〈x, V 〉

for all x ∈ Rm.

(2) The Busemann function is well-defined, finite, and Lipschitz.

(3) |∇gbβ|g = 1 at points where it is C1.

(4) If β is a geodesic ray in a Riemannian manifold with Rcg ≥ 0, then ∆gbβ ≥ 0 in the

sense of distributions. Indeed, using (2.12.5) yields

∆gbβ(x) ≥ − m− 1

lims→∞ dg(β(s), x)
= 0.
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Theorem 2.39. (Cheeger-Gromoll)

♥

Suppose (M, g) is a complete noncompact Riemannian manifold with Rcg ≥ 0 and

suppose that there is a geodesic line in M. Then (M, g) is isomorphic to R× (Nm−1, h)

with the product metric, where (Nm−1, h) is a Riemannian manifold with Rch ≥ 0.

Proof. Given a geodesic line γ, consider the two Busemann functions bγ± associated to the

geodesic rays γ± : [0,∞) → M defined by γ±(s) = γ(±s) for s ≥ 0. Since Rcg ≥ 0,

we have ∆gbγ± ≥ 0 in the sense of distributions and hence ∆g(bγ+ + bγ−) ≥ 0. From

dg(γ(s), γ(−s)) = 2s, we note that for any x ∈ M

bγ+(x) + bγ−(x) = lim
s→∞

[2s− dg(γ(s), x)− dg(γ(−s), x)]

≤ lim
s→∞

[2s− dg(γ(s), γ(−s))] = 0.

Using Proposition 2.22, we obtain

0 = bγ+(x) + bγ−(x) ≤
1

ωmrm

∫
Bg(x,r)

[bγ+ + bγ− ]dVg ≤ 0

for any x ∈ γ and 0 < r < injg(x). Hence bγ+ + bγ− ≡ 0 in a neighborhood of γ.

By applying the mean value inequality again, we see that the set of points in M where

bγ+ + bγ− = 0 is open. Since this set is also closed and nonempty, we have bγ+ + bγ− ≡ 0

on M and hence also ∆g(bγ+ + bγ−) ≡ 0. Since ∆gbγ± ≥ 0, this implies ∆gbγ± = 0 in the

sense of distributions. Standard regularity theory of PDE now implies bγ± is smooth. Therefore,

|∇gbγ± |g ≡ 1. Since ∇gbγ± is a nonzero parallel gradient vector field on M, (M, g) splits as a

Riemannian product R× (N , h) where N = {x ∈ M : bγ+(x) = 0}.

Note 2.56

♣

(1) The above result generalizes the Toponogov splitting theorem, which derives the same

conclusion, under the stronger hypothesis of nonnegative sectional curvature.

(2) In the study of the Ricci flow on 3-manifolds one of the primary singularity models

is the round cylinder S2 ×R. This singularity model corresponds to neck pinching. We

shall see that the splitting theorem has applications to the Ricci flow.

A submanifold S ⊂ M is totally convex if for every x, y ∈ S and any geodesic γ (not

necessarily minimal) joining x to y we have γ ⊂ S. We say that S is totally geodesic if its

second fundamental form is zero. In particular, a path in a totally geodesic submanifold S is a

geodesic in S if and only if it is a geodesic in M.

Given a noncompact manifold (M, g), we say that a submanifold is a soul if it is a closed,

totally convex, totally geodesic submanifold such that M is diffeomorphic to its normal bundle.

Theorem 2.40. (Cheeger-Gromoll, 1972)
Let (M, g) be a complete noncompact Riemannian manifold with nonnegative sectional

curvature. Then there exists a soul. If the sectional curvature is positive, then the soul is
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♥a point (e.g., M is diffeomorphic to Rm).

Furthermore Sharafurdinov proved that any two souls are isometric. An important tool in

the study of manifolds with nonnegative curvature is the Sharafutdinov retraction.

Theorem 2.41. (Soul conjecture; Perelman, 1994)

♥

If (M, g) is a complete noncompact Riemannian manifold with nonnegative sectional

curvature everywhere and positive sectional curvature at some point, then the soul is a

point.

Another fundamental result about noncompact manifolds with positive sectional curvature

is the following.

Theorem 2.42. (Toponogov, 1959)

♥

If (M, g) is a complete noncompact Riemannian manifold with positive sectional curvature

bounded above by K, then

inj(M, g) ≥ π√
K
. (2.13.3)

Moreover, M is diffeomorphic to Euclidean space.

2.13.3 Topological comparison theorem

As a consequence of Section 2.9 we have the following

Lemma 2.31

♥

Let (M, g) be a complete Riemannian manifold with nonnegative sectional curvature and

p ∈ M. If β : (a, b) → M is a unit speed geodesic, then the function φ : (a, b) → R

defined by

φ(r) := r2 − d2g(p, β(r))

is convex.

Proof. Given r0 ∈ (a, b), let γr : [0, L] → M be a 1-parameter family of paths from p to β(r)

with γr0 : [0, L] → M a unit speed minimal geodesic from p to β(r0) and
∂

∂r

∣∣∣
r=r0

γr(s) =
s

L
V (γr0(s)),

where V is the parallel translation of β̇(r0) ∈ Tγr0 (L)M along γ. Since |V |2g = 1, it follows

from that (since Secg ≥ 0)
d2

dr2

∣∣∣
r=r0

(
r2 − L2

g(γr)
)
≥ 2− 2 = 0.

Since

r2 − d2g(p, β(r)) ≥ r2 − L2
g(γr), r20 − d2g(p, β(r0)) = r20 − L2

g(γr0),
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we conclude that φ is convex.

Note 2.57

♣

In general, if φ : (a, b) → R is a Lipschitz function such that for all r0 ∈ (a, b)

there exists a C2-function ψr0(r) defined in a neighborhood of r0 with ψr0(r) ≤ φ(r),

ψr0(r0) = φ(r0) and d2

dr2
|r=r0ψr0(r) ≥ 0, then φ is convex.

Theorem 2.43. (Toponogov comparison theorem–Secg ≥ 0; Toponogov, 1959)

♥

Let (M, g) be a complete Riemannian manifold with nonnegative sectional curvature and

let α : [0, A] → M be a unit speed minimal geodesic joining p to q. If β : [0, B] → M
is a unit speed geodesic with β(0) = q and if θ ∈ [0, π] is the angle between β̇(0) and

−α̇(A), then

d2g(p, β(r)) ≤ r2 +A2 − 2rA · cos(θ)

for all r ∈ [0, B]. In particular,

d2g(p, β(B)) ≤ A2 +B2 − 2AB · cos(θ). (2.13.4)

By the law of cosines, equality is attained for Euclidean space. That is, the right-hand

side of (2.13.4) is the length squared of the side in the corresponding Euclidean triangle

with the same A,B and θ.

Proof. For ε > 0, let

fϵ(r) := r2 − d2g(p, β(r)) +A2 − 2Ar · cos(θ) + εr.

Then fϵ is convex. We also have

fϵ(0) = −d2g(p, q) +A2 = −L2
g(α) +A2 = −A2 +A2 = 0

because α is a unit speed minimal geodesic. By a first variation argument (we may assume

dg(p, ·) is smooth at q. Otherwise, we can apply Calabi’s trick)
∂

∂r

∣∣∣
r=0

fϵ(r) =

(
2r − 2dg(p, β(r))

〈
∇gdg(p, β(r)), β̇(r)

〉
g
− 2A · cos(θ) + ε

)
r=0

= ε− 2A〈α̇(A), β̇(0)〉g − 2A · cos(θ) = ε > 0,

fϵ(r) > 0 for r > 0 small enough, depending on ε. Since fϵ is convex, we conclude that

fϵ(r) > 0 for all r ∈ (0, B]. In particular, limϵ→0 fϵ(r) ≥ 0 for all r ∈ (0, B], which proves the

theorem.

More generally, we have the following statements of the Toponogov comparison theorems

for manifolds with a sectional curvature lower bound.

A geodesic triangle is a triangle (i.e., three vertices joined by three paths) whose sides

are geodesics. The triangle version says that a triangle in a manifold has larger angles than the
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corresponding triangle with the same side lengths in the simply-connected constant curvature

space. Given a triangle (p, q, r), ∡pqr denote the angle at q.

Theorem 2.44. (Toponogov comparison theorem–triangle version)

♥

Let (M, g) be a complete Riemannian manifold with Secg ≥ K. Let 4 be a geodesic

triangle with vertices (p, q, r), sides qr, rp, pq, corresponding lengths a = Lg(qr), b =

Lg(rp), c = Lg(pq) such that a ≤ b + c, b ≤ a + c, c ≤ a+ b (for example, when all of

the geodesic sides are minimal), and interior angles α = ∡rpq, β = ∡pqr, γ = ∡qrp,
where α, β, γ ∈ [0, π]. If the geodesics qr and rp are minimal, and c ≤ π/

√
K in the case

where K > 0 (no assumption on c when K ≤ 0), then there exists a geodesic triangle

4 = (p̄, q̄, r̄) in the complete, simply-connected 2-manifold of constant Gauss curvature

K with the same side lengths (a, b, c) and such that we have the following comparison of

the interior angles:

α ≥ ᾱ := ∡r̄p̄q̄, β ≥ β̄ := ∡p̄q̄r̄.

A geodesic hinge consists of a pair of geodesic segments emanating from a point, called

the vertex, making an angle at the vertex. The hinge version says that a hinge in a manifold has

a smaller distance between its endpoints than the corresponding hinge in the constant curvature

space with the same “side-angle-side”.

Theorem 2.45. (Toponogov comparison theorem–hinge version)

♥

Suppose (M, g) is a complete Riemannian manifold with Secg ≥ K. Let ∠ be a geodesic

hinge with vertices (p, q, r), sides qr, rp, and interior angle ∡qrp ∈ [0, π] in M. Suppose

that qr is minimal and that Lg(rp) ≤ π/
√
K if K > 0. Let ∠′ be a geodesic hinge with

vertices (p′, q′, r′) in the simply-connected space of constant curvature K with the same

side lengths Lg(q′r′) = Lg(qr), Lg(r′p′) = Lg(rp) and same angle ∡q′r′p′ = ∡qrp.
Then we have the following comparison of the distance between the endpoints of the

hinges:

dg(p, q) ≤ dK(p′, q′)

where dK denotes the distance in the simply-connected space of constant sectional cur-

vature K.
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2.14 Lie groups and left-invariant metrics

Introduction

h Lie groups and left-invariant metrics

h Left-invariant metrics

h Left-invariant vector fields

h Curvatures formulas for Lie groups

with left-invariant metrics

we have discussed the curvatures of bi-invariant metrics on Lie groups. In this section, we

focus on the curvatures of left-invariant metrics on Lie groups.

2.14.1 Lie groups

A Lie group is a smooth manifold G with the structure of a group, such that the map

µ : G×G→ G, defined by µ(σ, τ) = σ · τ−1, is smooth.

Given σ ∈ G, we define left multiplication by σ:

Lσ : G −→ G, τ 7−→ σ · τ. (2.14.1)

2.14.2 Left-invariant metrics

A Riemannian metric g onG is left-invariant if for any σ ∈ G, Lσ is an isometry of (G, g):

(Lσ)
∗ g = g.

Theorem 2.46

♥Every Lie group admits a left-invariant metric.

Proof. Since TeG is a vector space, we can find an inner product ge on TeG. For any σ ∈ G, we

set

gσ := (Lσ−1)∗ ge.

SinceG is smooth and the multiplication is also smooth, we obtain a smooth metric g onG. For

τ ∈ G,

(Lτ )
∗ gσ = (Lτ )

∗ ((Lσ−1)∗ ge) = (Lσ−1·τ )
∗ ge =

(
L(τ−1·σ)−1

)∗
ge = gτ−1·σ.

Therefore g is left-invariant.

2.14.3 Left-invariant vector fields

A vector field X is called left-invariant if

(Lσ)∗ ◦X = X ◦ Lσ (2.14.2)

for any σ ∈ G. Let g be the space of all left-invariant vector fields on G. Then TeG, where e is

the identity element of G, can be naturally identified with g. Note also that g is a Lie algebra.
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For any left-invariant vector fields Y, Z ∈ g, we claim that

〈Y, Z〉g = const. (2.14.3)

Since Y and Z are left-invariant, it follows that for any σ ∈ G

Yσ = (Lσ)∗,eYe, Zσ = (Lσ)∗,eZe.

Hence

〈Y, Z〉g(σ) = 〈Yσ, Zσ〉gσ = 〈(Lσ)∗,eYe, (Lσ)∗,eZe〉gσ = 〈Ye, Ze〉ge = 〈Y, Z〉g(e).

2.14.4 Curvatures formulas for Lie groups with left-invariant metrics

The connection and curvature of a left-invariant metric may be computed algebraically and

metrically using the following

Proposition 2.23

♥

Let g be a left-invariant metric on G. If X,Y, Z,W ∈ g, then

〈(∇g)XY, Z〉g =
1

2
(〈[X,Y ], Z〉g − 〈[X,Z], Y 〉g − 〈[Y, Z], X〉g) ,

Rmg(X,Y, Z,W ) = 〈(∇g)XZ, (∇g)YW 〉g − 〈(∇g)Y Z, (∇g)XW 〉g
−
〈
(∇g)[X,Y ]Z,W

〉
g
,

Rmg(X,Y, Y,X) = 〈(∇g)XY, (∇g)YX〉g − 〈(∇g)Y Y, (∇g)XX〉g
−
〈
∇[X,Y ]Y,X

〉
g
.

Lemma 2.32

♥

If (M, g) is a Riemannian manifold and X,Y , and Z are Killing vector fields, then

〈(∇g)XY, Z〉g =
1

2
(〈[X,Y ], Z〉g + 〈[X,Z], Y 〉g + 〈[Y, Z], X〉g) . (2.14.4)

Proof. Since Y is a Killing vector field, we have

0 = 〈(∇g)XY, Z〉+ 〈(∇g)ZY,X〉g.

Hence

〈(∇g)XY, Z〉g = −〈(∇g)ZY,X〉g = 〈[Y, Z], X〉g − 〈(∇g)Y Z,X〉g

= 〈[Y, Z], X〉g + 〈(∇g)XZ, Y 〉g

= 〈[Y, Z], X〉g + 〈[X,Z], Y 〉g + 〈(∇g)ZX,Y 〉g

= 〈[Y, Z], X〉g + 〈[X,Z], Y 〉g − 〈(∇g)YX,Z〉g

= 〈[Y, Z], X〉g + 〈[X,Z], Y 〉g + 〈[X,Y ], Z〉g − 〈(∇g)XY, Z〉g

implying (2.14.4).

A left-invariant metric is bi-invariant if it is also invariant under right multiplication.
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Note 2.58

♣

If (G, g) is bi-invariant and if X is a left-invariant vector field, then X is a Killing vector

field.

Lemma 2.33

♥

Let g be a bi-invariant metric on a Lie group G. If X,Y, Z,W are left-invariant vector

fields, then

(i) the Levi-Civita connection is given by

(∇g)XY =
1

2
[X,Y ], (2.14.5)

(2) the Riemann curvature tensor field is given by

Rmg(X,Y, Z,W ) =
1

4
(〈[X,W ], [Y, Z]〉g − 〈[X,Z], [Y,W ]〉g) . (2.14.6)

Proof. It follows from Proposition 2.23 and Lemma 2.32.

Corollary 2.18

♥A bi-invariant metric on a Lie group G has nonnegative sectional curvature.

Proof. Letting Z = X and W = Y we have

Rmg(X,Y, Y,X) = −1

4
〈[X,Y ], [Y,X]〉g =

1

4
|[X,Y ]|2g ≥ 0.

Hence Secg ≥ 0.
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3.1 Ricci flow and Hamilton’s theorem

Introduction

h Ricci flow and geometrization

3.1.1 Ricci flow and geometrization

Theorem 3.1. (Hamilton, 1982; 3-manifolds with positive Ricci curvature)

♥

If (M3, g) is a closeda 3-manifold with positive Ricci curvature, then it is diffeomorphic

to a spherical space form. That is, M3 admits a metric with constant positive sectional

curvature.

aHere, closed means compact without boundary.

Problem 3.1. (Thurston geometrization conjecture)

♠Every closed 3-manifold admits a geometric decomposition.

A corollary of the geometrization conjecture is the Poincaré conjecture, which says that

every simply-connected closed topological 3-manifold is homeomorphic to the 3-sphere.

3.2 Ricci flow and the evolution of scalar curvature

Introduction

h Ricci flow equation

h Simple examples

h Variation of scalar curvature
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3.2.1 Ricci flow equation

Given a 1-parameter family of metrics g(t) on a Riemannianm-manifold (Mm, g0), defined

on a time interval t ⊂ R, Hamilton’s Ricci flow equation is

∂tg(t) = −2Ricg(t), ∂tgij = −2Rij . (3.2.1)

For any C∞ metric g0 on a closed manifold Mm, there exists a unique solution g(t), t ∈ [0, ε),

to the Ricci flow equation for some ε > 0, with g(0) = g0.

This was proved in Hamilton (1982) and shortly therefore a much simpler proof was given

by De Turck (1983).

3.2.2 Simple examples

Let Mm = Sm and let gSm denote the standard metric on the unit m-sphere in Euclidean

space. If g0 := r20gSm for some r0 > 0 (r0 is the radius), then

g(t) :=
[
r20 − 2(m− 1)t

]
gSm (3.2.2)

is a solution to the Ricci flow (3.2.1) with g(0) = g0 defined on the maximal time interval

(−∞, T ), where T :=
r20

2(m−1) . That is, under the Ricci flow, the sphere stays round and shrinks

at a steady rate.

Example 3.1. (Homothetic Einstein solutions)

♠

Suppose that g0 is an Einstein metric, i.e., Ricg0 ≡ cg0 for some c ∈ R. Derive the

explicit formula for the solution g(t) of the Ricci flow with g(0) = g0. g(t) is homothetic

to the initial metric g0 and that it shrinks, is stationary, or expands depending on whether

c is positive, zero, or negative, respectively. In fact, g(t) = a(t)g0 where a(0) = 1. We

then have

a′(t)g0 = ∂tg(t) = −2Ricg(t) = −2Ricg0 = −2cg0.

Hence a(t) = 1− 2ct so that g(t) = (1− 2ct)g0.

Example 3.2. (Product solutions)

♠

Let (Mm1
1 , g1(t)) and (Mm2

2 , g2(t)) be solutions of the Ricci flow on a common time

interval t. Show that

(Mm1
1 ×Mm2

2 , g1(t) + g2(t))

is a solution of the Ricci flow. In particular, if (Mm, g(t)) is a solution of the Ricci flow,

then so is (Mm ×R, g(t) + dr2).

Some other solutions are the cigar and Rosenau solutions on R2 and S2, respectively. In

addition, some homogeneous solutions are explicit.
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3.2.3 Variation of scalar curvature

Introduce

□g(t) = ∂t −∆g(t).

The evolution equation for the scalar curvature is

□g(t)Rg(t) = 2
∣∣Rcg(t)∣∣2g(t) . (3.2.3)

When m = 2, since then Ricg =
Rg

2 g, we have

□g(t)Rg(t) = R2
g(t). (3.2.4)

Lemma 3.1. (Variation of scalar curvature)

♥

If ∂sgij = vij , then

∂sRg = −∆gV + divg(divgv)− 〈v,Ricg〉g , (3.2.5)

where V = gijvij = trgv is the trace of v.

If v = −2Ricg, then

divg (divgv) = ∇p∇qvpq = −∇p∇pRg = −∆gRg.

Hence we obtain (3.2.3).

Note 3.1

♣

Let (M2, h) be a Riemann surface. If g = uh for some function u on M2, then

Rg = u−1 (Rh −∆h lnu) . (3.2.6)

Consequently, g(t) = u(t)h is a solution of the Ricci flow if and only if u = u(t) satisfies

∂tu = ∆h lnu−Rh. (3.2.7)

3.3 The maximum principle for heat-type equations

Introduction

h The maximum principle

h Ricci flow on non-compact manifolds

h Heat equation and the Ricci flow

3.3.1 The maximum principle

For elliptic equations on a Riemannian manifold (Mm, g), the facts we use are that if a

function f : Mm → R attains its minimum at a point x0 ∈ Mm, then

∇gf(x0) = 0, ∆gf(x0) ≥ 0. (3.3.1)

For equations of parabolic type, such as the heat equation, a simple version gives the following
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Proposition 3.1. (Maximum principle for super-solutions of the heat equation)

♥

Let g(t) be a family of metrics on a closed m-dimensional manifold Mm and let u :

Mm × [0, T ) → R satisfy

□g(t)u ≥ 0. (3.3.2)

Then if u ≥ c at t = 0 for some c ∈ R, then u ≥ c for all t ≥ 0.

Proof. Given any ε > 0, define uϵ : Mm × [0, T ) → R as

uϵ := u+ ε(1 + t).

Since u ≥ c at t = 0, we have uϵ > c at t = 0. Suppose for some ε > 0 we have uϵ ≤ c

somewhere in Mm × [0, T ). Since Mm is closed, there exists (x1, t1) ∈ Mm × (0, T ) such

that uϵ(x1, t1) = c and uϵ(x, t) > c for all x ∈ Mm and t ∈ [0, t1). We then have at (x1, t1)

0 ≥ □g(t)uϵ ≥ ε > 0,

which is a contradiction. Hence uϵ > c on Mm × [0, T ) for all ε > 0 and by taking the limit as

ε→ 0, we get u ≥ c on Mm × [0, T ).

Corollary 3.1. (Lower bound of scalar curvature is preserved under the Ricci flow)

♥

If g(t), t ∈ [0, T ), is a solution to the Ricci flow on a closed manifold with Rg(0) ≥ c at

t = 0 for some c ∈ R, then

Rg(t) ≥ c

for all t ∈ [0, T ). In particular, nonnegative (positive) scalar curvature is preserved under

the Ricci flow.

Lemma 3.2. (Maximum principle)

♥

Suppose g(t) is a family of metrics on a closed manifold Mm and u : M × [0, T ) → R

satisfies

□g(t)u ≤
〈
X(t),∇g(t)u

〉
g(t)

+ F (u),

where X(t) is a time-dependent vector field and F is a Lipschitz function. If u ≤ c at

t = 0 for some c ∈ R, then u(x, t) ≤ U(t) for all x ∈ Mm and t ≥ 0, where U(t) is the

solution to the ODE
dU

dt
= F (U)

with U(0) = c.

Let (Mm, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed manifold (or any

solution where we can apply the maximum principle to the evolution equation for the scalar

curvature). Since

|Ricg|2g ≥
1

m
R2
g
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it follows that

□g(t)Rg(t) ≥
2

m
R2
g(t). (3.3.3)

By the maximum principle one has

Rg(t) ≥
m

m
infMm Rg(0)

− 2t
(3.3.4)

over Mm for all t ≥ 0. We let

Rmin(t) := inf
Mm

Rg(t). (3.3.5)

We have

Corollary 3.2. (Finite singularity time for positive scalar curvature)

♥

If (Mm, g) is a closed Riemannian manifold with positive scalar curvature, then for any

solution g(t), t ∈ [0, T ), to the Ricci flow with g(0) = g we have

T ≤ m

2Rmin(0)
<∞. (3.3.6)

3.3.2 Ricci flow on non-compact manifolds

Besides studying the Ricci flow on closed manifolds, we shall consider the Ricci flow on

non-compact manifolds. This will be especially important in singularity analysis.

Definition 3.1

♣

A solution g(t), t ∈ t, of the Ricci flow is said to be complete if for each t ∈ t, the

Riemannian metric g(t) is complete. We say a solution of the Ricci flow is ancient if it

exists on the time interval (−∞, 0].

Lemma 3.3. (Ancient solutions have nonnegative scalar curvature)

♥

If (Mm, g(t)), t ∈ (−∞, 0], is a complete ancient solution to the Ricci flow with bounded

curvature on compact time intervals, then either Rg(t) > 0 for all t ∈ (−∞, 0] or

Ricg(t) ≡ 0 for all t ∈ (−∞, 0].

Proof. If M is closed, then we can apply the maximum principle. If M is non-compact, then

since the solution has bounded curvature on compact time intervals, we may still apply the

maximum principle to the evolution equation for Rg(t). For any solution of the Ricci flow

for which we can apply the maximum principle on a time interval [0, T ], by (3.3.4), we have

Rg(t) ≥ −m
2t for t ∈ (0, T ]. Let α be any negative number. Since the solution is ancient, it

exists on the time interval [α, 0]. Then we have Rg(t) ≥ − m
2(t−α) for all x ∈ Mm and t ∈ (α, 0].

Taking the limit as α → −∞, we conclude that Rg(t) ≥ 0 for all t ∈ (−∞, 0]. By Strong

maximum principle, it implies that either Rg(t) > 0 always or Rg(t) ≡ 0 always. In the latter

case, by the evolution equation for Rg(t), we deduce Rcg(t) ≡ 0.
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3.3.3 Heat equation and the Ricci flow

Let u be a solution to the heat equation

∂tu = ∆gu

on a Riemannian manifold (Mm, g).

Lemma 3.4

♥

One has

∂t |∇gu|2g = ∆g |∇gu|2g − 2
∣∣∇2

gu
∣∣2
g
− 2Ricg (∇gu,∇gu) . (3.3.7)

If Ricg ≥ 0, then

|∇gu|g ≤
umax(0)√

2t
(3.3.8)

where umax(0) := maxx∈Mm u(x, 0). If Ricg ≥ −(m− 1)K for some positive constant

K, then

|∇gu|g ≤
umax(0)√

2t
e(m−1)Kt. (3.3.9)

Hence to get decay of |∇gu|g as t → ∞, we should assume K = 0, i.e., Ricg is

nonnegative.

Proof. Calculate

∂t |∇gu|2g = ∂t
(
gij∇iu∇ju

)
= 2gij∇ju · ∂t∇iu = 2gij∇ju · ∇i∆gu,

∆g |∇gu|2g = gkℓ∇k∇ℓ

(
gij∇iu∇ju

)
= gkℓgij∇k∇ℓ (∇iu∇ju)

= 2gkℓgij∇k (∇ℓ∇iu · ∇ju) = 2gkℓgij (∇k∇ℓ∇iu · ∇j +∇ℓ∇iu · ∇k∇ju)

= 2gkℓgij∇k∇i∇ℓu · ∇ju+ 2
∣∣∇2

gu
∣∣2
g

= 2gkℓgij
(
∇i∇k∇ℓu−Rpkiℓ∇pu

)
∇ju+ 2

∣∣∇2
gu
∣∣2
g

= 2gij∇i∆gu · ∇ju+ 2 |∇gu|2g + 2Rij∇iu∇ju.

Hence

∂t |∇gu|2g = ∆g |∇gu|2g − 2
∣∣∇2

gu
∣∣2
g
− 2Rij∇iu∇ju.

Consequently,

∂t

(
t |∇gu|2g +

1

2
u2
)

= ∆g

(
t |∇gu|2g +

1

2
u2
)
− 2t

∣∣∇2
gu
∣∣2
g
− 2tRij∇iu∇ju.

If Rcg ≥ −(m− 1)K, then

(∂t −∆g)

(
t |∇gu|2g +

1

2
u2
)

≤ 2t(m− 1)K |∇gu|2g

≤ 2(m− 1)K

(
t |∇gu|2g +

1

2
u2
)
.

Applying the maximum principle, we deduce the required result.
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Note 3.2

♣

Let u be a solution to the heat equation with respect to a metric g(t) evolving by the Ricci

flow

∂tu = ∆g(t)u.

Then

□g(t)

∣∣∇g(t)u
∣∣2
g(t)

= −2
∣∣∣∇2

g(t)u
∣∣∣2
g(t)

.

Similarly, we have (
∂t −∆g(t)

)(
t
∣∣∇g(t)u

∣∣2
g(t)

+
1

2
u2
)

≤ 0.

If Mm is closed, then ∣∣∇g(t)u
∣∣
g(t)

≤ umax(0)√
2t

.

3.4 The Einstein-Hilbert functional

Introduction

h The Einstein-Hilbert functional h The Perelman functional

3.4.1 The Einstein-Hilbert functional

If ∂sgij = vij , then

∂sdVg(s) =
1

2
V dVg(s) (3.4.1)

where V := gijvij . On the other hand, we have

∂sg
ij = −gikgjℓ∂sgkℓ. (3.4.2)

Consider the Einstein-Hilbert functional

E(g) :=
∫
Mm

RgdVg. (3.4.3)

If ∂sgij = vij , then
d

ds
E(g(s)) =

∫
M

(
−∆g(s)V +∇p∇qvpq −

〈
v,Rcg(s)

〉
g(s)

+
1

2
Rg(s)V

)
dVg(s)

=

∫
M

〈
v,

1

2
Rg(s)g(s)− Rcg(s)

〉
g(s)

dVg(s). (3.4.4)

The twice of the gradient flow of E is

∂tgij = −2Rij +Rg(t)gij . (3.4.5)

The equation (3.4.5) is not parabolic, and the short time existence is not expected as that for

the Ricci flow. Dropping the Rg(t)gij term yields the Ricci flow. The undesirable term Rg(t)gij

in (3.4.5) is due to the variation of the volume form dVg in E(g). How can we get rid of this
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term? First, we should consider metrics up to geometric equivalence, that is, up to pull-back by

diffeomorphisms. We consider the mere general class of flows

∂tgij = −2Rij − 2∇i∇jf, (3.4.6)

where f is a time-dependent function. The flow (3.4.6) is equivalent to the Ricci flow since

2∇i∇jf =
(
Lgradgfg

)
ij

.

Note 3.3

♣

Define a 1-parameter family of diffeomorphisms Ψ(t) : Mm → Mm by

∂tΨ(t) = ∇g(t)f(t), Ψ(0) = id.

Show that ḡ(t) := [Ψ(t)]∗g(t) and f̄(t) := f ◦Ψ(t) satisfy

∂tḡ(t) = −2Ricḡ(t), (3.4.7)

∂tf̄(t) =
∣∣∇ḡ(t)f̄(t)

∣∣2
g(t)

. (3.4.8)

Since

∂tḡ(t) = ∂t (Ψ
∗(t)g(t)) = Ψ∗(t)

[
∂tg(t) + Lgradg(t)f(t)

g(t)
]
,

it follows that

∂tḡ(t) = Ψ∗(t)
(
−2Ricg(t)

)
= −2Ricḡ(t).

(3.4.8) is obvious.

3.4.2 The Perelman functional

Now we impose the condition

∂s

(
e−f(s)dVg(s)

)
= 0 (3.4.9)

and consider the functional

E(g, f) :=
∫
M
Rge

−fdVg. (3.4.10)

If ∂sgij = vij , then
d

ds
E(g(s), f(s)) =

∫
M
∂sRg(s)e

−f(s)dVg(s) = −
∫
Mm

〈
v,Ricg(s)

〉
g(s)

e−f(s)dVg(s)

+

∫
Mm

(
−∆g(s)V +∇i∇jvij

)
e−f(s)dVg(s) = −

∫
Mm

〈
v,Ricg(s)

〉
g(s)

e−f(s)dVg(s)

+

∫
Mm

vij

[
−∆g(s)

(
e−f(s)

)
gij +∇i∇j

(
e−f(s)

)]
dVg(s).

To cancel the undesirable term, the last integral, we introduce the Dirichlet energy-type term∫
Mm

∣∣∇g(s)f(s)
∣∣2
g(s)

e−f(s)dVg(s) = 4

∫
Mm

∣∣∣∇g(s)

(
e−f(s)/2

)∣∣∣2
g(s)

dVg(s).

According to the assumption (3.4.9), we have
d

ds

∫
Mm

∣∣∇g(s)f(s)
∣∣2
g(s)

e−f(s)dVg(s) =

∫
Mm

(
∂s
∣∣∇g(s)f(s)

∣∣2
g(s)

)
e−f(s)dVg(s)
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=

∫
Mm

[
−vij∇if(s)∇jf(s) + 2∇if(s)∇i (∂sf(s))

]
e−f(s)dVg(s).

Using ∂sf(s) = 1
2V (by (3.4.9)), we find that the above is equal to∫
Mm

[
−vij∇if(s)∇jf(s)e−f(s) + V∆g(s)

(
e−f(s)

)]
dVg(s).

Adding the above equations together, we obtain
d

ds

∫
Mm

(
Rg(s) +

∣∣∇g(s)f(s)
∣∣2
g(s)

)
e−f(s)dVg(s)

= −
∫
M

〈
v,Ricg(s) +∇2

g(s)f(s)
〉
g(s)

e−f(s)dVg(s). (3.4.11)

So if we define the Perelman functional

F(g, f) :=

∫
Mm

(
Rg + |∇gf |2g

)
e−fdVg, (3.4.12)

then the gradient flow for F , under the constraint that e−fdVg is fixed, is

∂tgij = −2Rij − 2∇i∇jf, (3.4.13)

∂tf = −Rg(t) −∆g(t)f. (3.4.14)

Under the flow (3.4.13)–(3.4.14), we have the monotonicity formula
d

dt
F(g(t), f(t)) = 2

∫
M

∣∣∣Ricg(t) +∇2
g(t)f(t)

∣∣∣2
g(t)

e−f(t)dVg(t) ≥ 0. (3.4.15)

Since ∫
M

|∇gf |2g e
−fdVg =

∫
M

∆gf · e−fdVg

we can rewrite F as

F(g, f) =

∫
M

(
Rg + 2∆gf − |∇gf |2g

)
e−fdVg. (3.4.16)

3.5 Evolution of geometric quantities

Introduction

h Variation of the Christoffel symbols

h Variation of Ricci formula

h Commutator formulas

3.5.1 Variation of the Christoffel symbols

Lemma 3.5. (Variation of Christoffel symbols)

♥

If g(s) is a 1-parameter family of metrics with ∂sgij = vij , then

∂sΓ
k
ij =

1

2
gkℓ (∇ivjℓ +∇jviℓ −∇ℓvij) . (3.5.1)

When we consider the Ricci flow, we have
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Corollary 3.3. (Evolution of Christoffel symbols under the Ricci flow)

♥

Under the Ricci flow ∂tgij = −2Rij , we have

∂tΓ
k
ij = −gkℓ (∇iRjℓ +∇jRiℓ −∇ℓRij) . (3.5.2)

Lemma 3.6. (Evolution of Laplacian under the Ricci flow)

♥

If (Mm, g(t)) is a solution to the Ricci flow ∂tgij = −2Rij , then

∂t∆g(t) = 2Rij∇i∇j ,

where ∆g(t) is the Laplacian acting on functions. In particular, when m = 2, ∂t∆g(t) =

Rg(t)∆g(t).

Proof. Calculate ∂t∆g(t) = ∂t
(
gij∇i∇j

)
= −∂tgij · ∇i∇j − gij∂tΓ

k
ij · ∇k. But, gij∂tΓkij =

−gkℓ
(
2gij∇iRjℓ −∇ℓRg(t)

)
= 0, where we use the contracted second Bianchi identity.

Note 3.4

♣

If ∂sgij = vij , then

∂s∆g(s) = −vij∇i∇j − gkℓ
((

divg(s)v
)
ℓ
− 1

2
∇ℓV

)
∇k. (3.5.3)

3.5.2 Variation of Ricci formula

Recall that the components of the Riemann curvature (3, 1)-tensor field are defined by

Rℓijk = ∂iΓ
ℓ
jk − ∂jΓ

ℓ
ik + ΓpjkΓ

ℓ
ip − ΓpikΓ

ℓ
jp (3.5.4)

and the Ricci tensor field is Rij = Rppij = Rpijp. Then the variation of the Ricci tensor field
in terms of the variation of the connection

∂sRij = ∇p

(
∂sΓ

p
ij

)
−∇i

(
∂sΓ

p
pj

)
. (3.5.5)

If ∂sgij = vij , then

∂sRij =
1

2
∇ℓ (∇ivjℓ +∇jviℓ −∇ℓvij)−

1

2
∇i∇jV. (3.5.6)

Taking the trace, we obtain the variation of the scalar curvature

∂sRg(s) = ∇i∇jvij −∆g(s)V −
〈
v,Ricg(s)

〉
g(s)

. (3.5.7)

If we introduce the Lichnerowicz Laplacian

∆L,gvij := ∆gvij + 2Rkijℓv
kℓ −Rikvj

k −Rjkvi
k (3.5.8)

acting on symmetric 2-tensor fields, then (3.5.6) becomes

∂sRij = −1

2

(
∆L,g(s)vij +∇i∇jV −∇i

(
divg(s)v

)
j
−∇j

(
divg(s)v

)
i

)
. (3.5.9)

If we set X = 1
2∇g(s)V − divg(s)v, then

∂s (−2Rij) = ∆L,g(s)vij +∇iXj +∇jXi. (3.5.10)
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This is related to De Turck’s trick in proving short time existence.

3.5.3 Commutator formulas

Lemma 3.7. (Commutator formula for the Hessian and the Lichnerowicz operator)

♥

Under the Ricci flow, the Hessian and the Lichnerowicz Laplacian heat operator□L,g(t) :=

∂t −∆L,g(t) commute. That is, for any function f of space and time we have

∇i∇j□L,g(t)f = □L,g(t)∇i∇jf. (3.5.11)

Proof. Calculate

∇i∇j∆gf = gkℓ∇i∇j∇k∇ℓf = gkℓ∇i

(
∇k∇j∇ℓf −Rpjkℓ∇pf

)
= gkℓ∇i∇k∇ℓ∇jf − gkℓ∇iR

p
jkℓ · ∇pf − gkℓRpjkℓ∇i∇pf

= gkℓ
(
∇k∇i∇ℓ∇jf −Rpikl∇p∇jf −Rpikj∇ℓ∇pf

)
−∇iRjp∇pf −Rjp∇i∇pf (3.5.12)

= gkℓ∇k

(
∇l∇i∇jf −Rpiℓj∇pf

)
−Rip∇p∇jf −Rikjp∇k∇pf −∇iRjp∇pf −Rjp∇i∇pf

= ∆g∇i∇jf −gkℓ∇kRiℓjp ·∇pf −Rip∇p∇jf −2Rikjp∇k∇pf −∇iRjp ·∇pf −Rjp∇i∇pf

=
(
∆g∇i∇jf + 2Rkijp∇k∇pf −Rip∇j∇pf −Rjp∇i∇pf

)
− ∇ℓRiℓjp · ∇pf −∇iRjp · ∇pf = ∆L,g∇i∇jf − (∇iRjℓ +∇jRiℓ −∇ℓRij)∇ℓf

where we use ∇ℓRikjℓ = ∇jRiℓ −∇ℓRij . Using (3.5.2), we compute

∂t∇i∇jf = ∇i∇j∂tf + (∇iRjℓ +∇jRiℓ −∇ℓRij)∇ℓf. (3.5.13)

Formula (3.5.11) follows from combining the above two calculations.

Corollary 3.4

♥

If g(t) satisfies the Ricci flow and f(t) satisfies the heat equation ∂tf(t) = ∆g(t)f(t),

then the Hessian satisfies the Lichnerowicz Laplacian heat equation

∂t∇2
g(t)f(t) = ∆L,g(t)∇2

g(t)f(t). (3.5.14)

Lemma 3.8. (Commutator of ∂t +∆L,g(t) and ∇2
g(t))

♥

Under the Ricci flow, the Hessian and the Lichnerowicz Laplacian backward heat operator

commute in the following sense

∇i∇j

(
∂tf(t) + ∆L,g(t)f(t)

)
=

(
∂t +∆L,g(t)

)
∇i∇jf(t) (3.5.15)

− 2 (∇iRjℓ +∇jRiℓ −∇ℓRij)∇ℓf(t).

Proof. It follows from (3.5.12) and (3.5.13).
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Note 3.5

♣

Show that under the Ricci flow, for any 1-form α

□L,g(t)Lα♯g(t) = L
[□H,g(t)α]

♯g(t), □H,g(t) := ∂t −∆H,g(t), (3.5.16)

that is,

□L,g(t) (∇iαj +∇jαi) = ∇iβj +∇jβi, (3.5.17)

where β := □H,g(t)α. From

∂t∇iαj = ∇i∂tαj + (∇iRjk +∇jRik −∇kRij)α
k

and

∇i

(
∆g(t)αj −Rjkα

k
)

= ∆g(t)∇iαj + 2Rkijℓ∇kαℓ −Rik∇kαj −Rjk∇iα
k

− (∇iRjk +∇jRik −∇kRij)α
k

we conclude

∇i

(
∂tαj −

(
∆g(t)αj −Rjkα

k
))

+∇j

(
∂tαi −

(
∆g(t)αi −Rikα

k
))

= □L,g(t) (∇iαj +∇jαi) .

Note that ∆g(t) −Rjkα
k = ∆H,g(t)αj = βj .

Lemma 3.9

♥

If (Mm, g(t)) is a solution to the Ricci flow and if X is a vector field evolving by

□g(t)X
i = RikXk

then hij := ∇iXj +∇jXi = (LXg)ij evolves by

□L,g(t)hij = 0. (3.5.18)

In particular,

□g(t)H = 2
〈
Rcg(t), h

〉
g

(3.5.19)

where H := gijhij = trg(t)h.

Proof. If we let α := X♭ the dual 1-form, then the lemma immediately follows from Note

3.5.

Note 3.6
If X = Xi∂i is a Killing vector field, then

∇k∇jXi +RℓkjiX
ℓ = 0. (3.5.20)

If X is a Killing vector field, then ∇iXj +∇jXi = 0. Calculate

0 = ∇k (∇jXi +∇iXj) +∇j (∇iXk +∇kXi) +∇i (∇jXk +∇kXj)

= (∇k∇jXi +∇i∇kXj) + (∇j∇iXk +∇k∇iXj) + (∇j∇kXi +∇i∇jXk)
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♣

= (∇i∇kXj −∇k∇iXj)− (∇j∇kXi +∇k∇jXi) + (∇i∇jXk −∇j∇iXk)

= RkijℓX
ℓ − 2∇k∇jXi +RjkiℓX

ℓ +RijkℓX
ℓ = −2∇k∇jXi + 2RjikℓX

ℓ

where we use the first Bianchi identity.

Lemma 3.10

♥

If (Mm, g) is oriented and closed, and the Ricci curvature is negative, then there are no

nontrivial Killing vector fields.

Proof. Tracing (3.5.10), we have

∆gXi +RℓiX
ℓ = 0. (3.5.21)

Then ∫
Mm

|∇gX|2g dVg =
∫
Mm

Ricg(X,X)dVg.

If Ricg ≤ 0, then ∇gX = 0. Since Mm is closed, we must have X = 0.

Since, by the contracted second Bianchi identity

∇i∇jRg −∇i (divgRicg)j −∇j (divgRicg)j = 0,

equation (3.5.9) implies

Lemma 3.11. (Evolution of the Ricci tensor under the Ricci flow)

♥

Under the Ricci flow,

□g(t)Rij = 2RkijℓR
kℓ − 2RikRj

k. (3.5.22)

Note 3.7

♣

For any α ∈ R, show that

□g(t)

(
Rij − αRg(t)gij

)
= 2RkijℓR

kℓ − 2RikRj
k − 2α

∣∣Ricg(t)∣∣2g(t) gij + 2αRg(t)gij .

3.6 De Turck’s trick and short time existence

We use De Turck’s trick to prove the short time existence for Ricci flow.

3.6.1 Symbol and Bianchi operator

Let (Mm, g) be anm-dimensional Riemannian manifold, and �2T ∗Mm denote the vector

bundle of symmmetric covariant 2-tensor fields. From (3.5.9), the linearization of −2Ricg is

given by

(D (−2Ricg) [v])ij = ∆L,gvij +∇i∇jV −∇i (divgv)i −∇j (divgv)i , (3.6.1)
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where V := gijvij . The symbol of the linearization of the Ricci tensor is obtained by replacing

∇g by ζ ∈ C∞(Mm, T ∗Mm) in the highest-order terms. Thus,

σζ := σ (Dζ (−2Rcg)) : C
∞(Mm,�2T ∗Mm) −→ C∞(Mm,�2T ∗Mm) (3.6.2)

where ζ ∈ C∞(Mm, T ∗Mm) and

σζ(v)ij = |ζ|2vij + ζiζjV − ζiζkv
k
j − ζjζkv

k
i. (3.6.3)

Assuming that ζ1 = 0 and ζi 6= 0 for i 6= 1, then for any symmetric 2-tensor field v

σζ(v)ij = vij , i, j 6= 1,

σζ(v)ij = 0, j 6= 1,

σζ(v)11 =
∑

2≤k≤m
vkk.

When m = 3, σζ is given by

σζ



v11

v12

v13

v22

v33

v23


=



0 0 0 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





v11

v12

v13

v22

v33

v23


. (3.6.4)

In general, σζ is given by a nonnegative N × N matrix, where N = m(m+1)
2 . Its kernel is the

m-dimensional subspace given by

Ker (σζ) =

v ∈ C∞(Mm,�2T ∗Mm) : vij = 0 for i, j 6= 1 and
∑

2≤k≤m
vkk = 0

 .

(3.6.5)

This kernel is due to the diffeomorphism invariance of the operator g 7→ −2Ricg.

Define the linear Bianchi operator

Bg : C
∞(Mm,�2T ∗Mm) −→ C∞(Mm, T ∗Mm) (3.6.6)

by

Bg(h)k := gij
(
∇ihjk −

1

2
∇khij

)
(3.6.7)

so that Bg (−2Rcg) = 0. We find that

K := Ker (σBg(ζ)) = Im (σζ) ⊂ C∞(Mm,�2T ∗Mm)

is equal to

K =

v ∈ C∞(Mm,�2T ∗Mm) : v1j = 0 for j 6= 1 and v11 =
∑

2≤k≤m
vkk

 . (3.6.8)

Hence

σζ

∣∣∣
K
(v) = |ζ|2v, σζ

∣∣∣
K

= |ζ|2 (3.6.9)

for any ζ ∈ C∞(Mm, T ∗Mm).
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3.6.2 De Turck’s trick

The fundamental short time existence theorem for the Ricci flow on closed manifolds is the

following

Theorem 3.2. (Hamilton, De Turck)

♥

If Mm is a closed Riemannian manifold and if g is a smooth Riemannian metric, then

there exists a unique smooth solution g(t) to the Ricci flow defined on some time interval

[0, δ), δ > 0, with g(0) = g.

From the previous subsection the principal symbol of the nonlinear partial differential

operator −2Ricg of the metric g is nonnegative define and has a nontrivial kernel. For this

reason the Ricci flow equation is only weakly parabolic. We search for an equivalent flow which

is strictly parabolic (i.e., where the principal symbol of the second-order operator on the RHS is

positive definite).

Given a fixed background connection ∇̃, which for convenience we assume to be the Levi-

Civita connection of a background metric g̃, we define the Ricci-De Turck flow by

∂tgij = −2Rij +∇iWj +∇jWi, g(0) = g0, (3.6.10)

where the time-dependent 1-form W (t) is defined by

Wj := gjkg
pq
(
Γkpq − Γ̃kpq

)
. (3.6.11)

Note 3.8
If g(s) is a 1-parameter family of metrics with g(0) = g and

∂s

∣∣∣
s=0

gij = vij ,

then

∂s

∣∣∣
s=0

Wj = −Xj +O0(v)j (3.6.12)

where X = 1
2
g∇V − divgv and O0(v)j is the zero-order term in v given by

O0(v)j = vjkW
k − gjkv

pq
(
Γkpq − Γ̃kpq

)
. (3.6.13)

Consequently,

∂s

∣∣∣
s=0

(−2Rij +∇iWj +∇jWi) = ∆L,gvij +O1(v)ij (3.6.14)

where O1(v)ij is the first-order term in v given by

O1(v)ij = ∇kvij ·W k + vik · ∇jW
k + vjk · ∇iW

k

− ∇i

(
gjkv

pq
(
Γkpq − Γ̃kpq

))
−∇j

(
gikv

pq
(
Γkpq − Γ̃kpq

))
. (3.6.15)
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♣

Calculate

∂s

∣∣∣
s=0

Wj = vjkg
pq
(
Γkpq − Γ̃kpq

)
− gjkv

pq
(
Γkpq − Γ̃kpq

)
+ gjkg

pq 1

2
gkℓ (∇pvqℓ +∇qvpℓ −∇ℓvpq)

= vjkW
k − gjkv

pq
(
Γkpq − Γ̃kpq

)
−
(
1

2
∇jV − (divgv)j

)
.

Hence,

∂s

∣∣∣
s=0

∇iWj = ∂s

∣∣∣
s=0

(
∂iWj − ΓkijWk

)
= ∇i

(
∂s

∣∣∣
s=0

Wj

)
−
(
∂s

∣∣∣
s=0

Γkij

)
Wk

= ∇i

(
−1

2
∇jV + (divgv)j +O0(v)j

)
− 1

2
gkℓ (∇ivjℓ +∇jviℓ −∇ℓvij)Wk

and

∂s

∣∣∣
s=0

(∇iWj +∇jWi) = −∇i∇jV +∇i (divgv)j +∇j (divgv)i

+∇i (O0(v)j) +∇j (O0(v)i)− gkℓ (∇ivjℓ +∇jviℓ −∇ℓvij)Wk.

Therefore the left hand side of (3.6.14) equals

∆L,gvij +∇j (O0(v)i) +∇i (O0(v)j)− gkℓ (∇ivjℓ +∇jviℓ −∇ℓvij)Wk.

Plugging (3.6.13) into above yields the right hand side of (3.6.14).

Note 3.8 shows that the Ricci-De Turck flow is strictly parabolic and that given any smooth

initial metric g on a closed manifold, there exists a unique solution g(t) to the Ricci-De Turck

flow. Another way of showing that the Ricci-De Turck flow is a strictly parabolic system is to

compute an expression for the modified Ricci tensor of a metric g as an elliptic operator of g

using the background metric g̃.

Note 3.9
(Another proof of the strict parabolicity of the Ricci-De Turck flow) Define a tensor

Akij := Γkij − Γ̃kij =
1

2
gkℓ
(
∇̃igjℓ + ∇̃jgiℓ − ∇̃ℓgij

)
. (3.6.16)

At a point (x, t) in a local coordinate system where Γ̃kij(p) = 0, we have

Rℓijk − R̃ℓijk = ∇̃iA
ℓ
jk − ∇̃jA

ℓ
ik +ApjkA

ℓ
ip −ApikA

ℓ
jp. (3.6.17)

From this we obtain

−2Rjk = 2R̃jk − gℓm∇̃ℓ

(
∇̃jgkp + ∇̃kgjp − ∇̃pgjk

)
+ gℓp∇̃j

(
∇̃lgkp + ∇̃kglℓp − ∇̃mgℓk

)
+ g−1 ∗ g−1 ∗ ∇̃g̃g ∗ ∇̃g̃g.

On the other hand, by definition of Wj , we get

∇iWj =
1

2
gℓp∇̃i

(
∇̃ℓgpj + ∇̃pgℓj − ∇̃jgℓp

)
+ g ∗ g−1 ∗ g−1 ∗ g−1 ∗ ∇̃g̃g ∗ ∇̃g̃g.
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♣

Hence

∂tgij = −2Rij +∇iWj +∇jWi = gℓp∇̃ℓ∇̃pgij + g−1 ∗ g ∗ g̃−1 ∗ R̃mg̃

+ g ∗ g−1 ∗ g−1 ∗ g−1 ∗ ∇̃g̃g ∗ ∇̃g̃g.

Hence the Ricci-De Turck flow is strictly parabolic.

Given a solution of the Ricci-De Turck flow, we can solve the following ODE at each point

on Mm:

∂tϕt = −W ♭(t) ◦ ϕ(t), ϕ0 = id. (3.6.18)

The existence and uniqueness of (3.6.18) reduces to the harmonic map heat flow.

3.6.3 Harmonic map heat flow

Given a map f : (Mm, g) → (N n, h), the map Laplacian of f is defined by

(∆g,hf)
γ = ∆g(f

γ) + gij
(
hΓγαβ ◦ f

) ∂fα
∂xi

∂fβ

∂xj
(3.6.19)

= gij
(

∂2f

∂xi∂xj
− gΓkij

∂fγ

∂xk
+
(
hΓγαβ ◦ f

) ∂fα
∂xi

∂fβ

∂xj

)
,

where fγ := yγ ◦ f , and (xi)1≤i≤m and (yα)1≤α≤n are local coordinates on Mm and N n,

respectively. Consider the map
f∗(TN n) TN ny y

Mm f−−−−→ N n

We observe that ∆g,hf ∈ C∞(f∗(TN n)). In Mm = N n and f is the identity map, then

(∆g,hidMm)k = gij
(
−gΓkij +

hΓkij

)
. (3.6.20)

Note 3.10

♣

For each p ∈ Mm, we have (df)p : TpMm → Tf(p)N n and hence (df)p ∈
T ∗
pMm ⊗ Tf(p)N n. Consequently, df ∈ C∞(Mm, T ∗Mm ⊗ f∗TN n). The Levi-

Civita connections g∇ and h∇ induce a canonical connection g,h∇ on the vector bundle

T ∗Mm ⊗ f∗TN n:

g,h∇ : C∞(Mm, T ∗Mm ⊗ f∗TN n) −→ C∞(Mm, T ∗Mm ⊗ T ∗Mm ⊗ f∗TN n).

Since df ∈ C∞(Mm, T ∗Mm ⊗ f∗TN n), it follows that(
g,h∇df

)γ
ij

=
∂

∂xi

(
∂fγ

∂xj

)
− gΓkij

∂fγ

∂xk
+
(
hΓγαβ ◦ f

) ∂fα
∂xi

∂fβ

∂xj
.

Taking the trace with respect to g gives the map Laplacian of f

∆g,hf = trg

(
g,h∇f

)
. (3.6.21)

A map f : (Mm, g) → (N n, h) is called a harmonic map if ∆g,hf = 0. Harmonic maps



3.6 De Turck’s trick and short time existence – 212 –

are critical points of the harmonic map energy

Eg,h(u) :=
∫
Mm

|du|2g,h dVg (3.6.22)

where

|du|2g,h := gijhαβ
∂uα

∂xi
∂uβ

∂xj
. (3.6.23)

In the case that N n = R, a harmonic map is the same as a harmonic function and the harmonic

energy is the same as the Dirichlet energy. If M is 1-dimensional, then a harmonic map is the

same as a constant speed geodesic.

Note 3.11

♣A harmonic map is the critical points of the harmonic map energy.

Note 3.12

♣

Suppose that Mm is an m-dimensional manifold, (Pm, k) is an m-dimensional Rieman-

nian manifold, and (N n, h) is an n-dimensional Riemannian manifold. If F : (Pm, k) →
(N n, h) is a map and ϕ : Mm → Pm is a diffeomorphism, then

(∆k,hF ) (ϕ(y)) = (∆φ∗k,h(F ◦ ϕ)) (y), (3.6.24)

which corresponds to

(Mm, ϕ∗k)
φ−−−−→ (Pm, k)

F−−−−→ (N n, h).

In particular, given a diffeomorphism f : (Mm, g) → (Nm, h) between m-dimensional

Riemannian manifolds, we consider

(Mm, g)
f−−−−→ (Nm, (f−1)∗g)

idNm−−−−→ (Nm, h)

then

(∆g,hf) (x) =
(
∆(f−1)∗g,hidN

)
(f(x)) ∈ C∞(M,f∗TN). (3.6.25)

If we set g(t) := ϕ∗
t g(t), then (3.6.18) is equivalent to

∂tϕt = gpq
(
−Γkpq + Γ̃kpq

) ∂

∂xk
· ϕt =

(
∆g,g̃idMm

)
(ϕt) = ∆g(t),g̃ϕt.

This flow is called the harmonic map heat flow. IfMm is compact, then the short-time existence

and uniqueness of this flow follow from the standard parabolic theory. Furthermore,

∂tg(t) = ϕ∗
t (∂tg(t)) +

∂

∂s

∣∣∣
s=0

(
ϕ∗
t+sg(t)

)
= −2Ricφ∗

t g(t)
+ ϕ∗

t

(
LW (t)g(t)

)
− L(φ−1

t )∗W (t) (ϕ
∗
t g(t))

= −2Ricg(t).

3.6.4 Complete noncompact case

For any C∞ complex metric g with bounded sectional curvature on a noncompact manifold

Mm, a short-time existence result for solutions to the Ricci flow was proved by W.-X. Shi in

1989.
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Definition 3.2

♣

We say that a solution g(t), t ∈ t, of the Ricci flow has bounded curvature (or bounded
curvature on compact time intervals) if on every compact subinterval [a, b] ⊂ t the

Riemann curvature tensor is bounded. In particular, we do not assume the curvature

bound is uniform in time on noncompact time intervals.

Theorem 3.3. (W.-X. Shi, 1989)

♥

t3.6.8 Given a complete metric g with bounded sectional curvature on a noncompact

manifold Mm, there exists a complete solution g(t), t ∈ [0, T ), of the Ricci flow on Mm

with g(0) = g and bounded curvature such that either supMm×[0,T ) |Rmg(t)|g(t) = ∞ or

T = ∞.

Problem 3.2

♠

Under what conditions does uniqueness hold for complete solutions to the Ricci flow on

noncompact manifolds?

Chen and Zhu proved the uniqueness of the Ricci flow on noncompact manifolds in the case

of bounded curvature.

3.7 Reaction-diffusion equation for the curvature tensor field

In this section we discuss the evolution equation satisfied by the Riemann curvature tensor

field.

3.7.1 Evolution equation for Rijkℓ

Following Hamilton, we introduce the notation

Bijkℓ := −gprgqsRipjqRkrℓs = −gprgqsRpijqRrkℓs. (3.7.1)

Note that

Bjiℓk = Bijkℓ, Bijkℓ = Bkℓij . (3.7.2)

Note 3.13

♣

If ∂sgij = vij , then

∂sR
ℓ
ijk =

1

2
gℓp [∇i∇jvkp +∇i∇kvjp −∇i∇pvjk (3.7.3)

− ∇j∇ivkp −∇j∇kvip +∇j∇pvik]

=
1

2
gℓp (∇i∇kvjp −∇i∇pvjk −∇j∇kvip +∇j∇pvik)

− 1

2
gℓp
(
Rqijkvqp +Rqijpvkq

)
. (3.7.4)
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Lemma 3.12

♥

The evolution equation of the Riemann curvature tensor field is given by

□tRijkℓ = 2 (Bijkℓ −Bijℓk +Bikjℓ −Biℓjk) (3.7.5)

− (Ri
pRpjkℓ +Rj

pRipkℓ +Rk
pRijpℓ +Rℓ

pRijkp) .

In particular,

□tRijkℓ = Rmg ∗ Rmg +Ricg ∗ Rmg. (3.7.6)

Proof. Use Note 3.13 and the second Bianchi identity.

3.7.2 Riemann curvature operator

The Riemann curvature tensor field may be considered as an operator

Rmg : A2(Mm) −→ A2(Mm) (3.7.7)

defined by

(Rmg(α))ij := Rijkℓα
ℓk. (3.7.8)

Definition 3.3

♣

We call Rmg the Riemann curvature operator or curvature operator. We say that

(Mm, g) has positive (nonnegative) curvature operator if the eigenvalues of Rmg are

positive (nonnegative), and we denote this by Rmg > 0 (Rmg ≥ 0).

We can define the square of Rmg by

Rm2
g := Rmg ◦Rmg : A2(Mm) −→ A2(Mm). (3.7.9)

For U, V ∈ A2(Mm), we define [U, V ]ij := gkℓ(UikVℓj − VikUℓj). Then A2(Mm) ∼= so(m).

Choose a basis (ϕi)
m(m−1)

2
i=1 of A2(Mm) and let Cijk denote the structure constants defined by

[ϕi, ϕj ] := Cijk ϕ
k. (3.7.10)

We define the Lie algebra square

Rm#
g : A2(Mm) −→ A2(Mm) (3.7.11)

by (
Rm#

g (α)
)
ij
:= Ckℓi C

pq
j (Rmg(α))kp (Rmg(α))ℓq . (3.7.12)

If we choose (ϕi)
m(m−1)

2
i=1 so that Rmg is diagonal, then for any vector field X = Xi∂i, we have(

Rm#
g (α)

)
ij
XiXj =

(
Ckℓi X

i
)2

(Rmg(α))kk (Rmg(α))ℓℓ . (3.7.13)

Lemma 3.13

♥
If Rmg ≥ 0, then Rm#

g ≥ 0.

We have the following nice form for the evolution equation for Rmg(t).
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Lemma 3.14

♥

The evolution equation of the curvature operator is

□tRmg(t) = Rm2
g(t) +Rm#

g(t). (3.7.14)

3.7.3 Uhlenbeck’s trick

To prove (3.7.14), we use what is known as Uhlenbeck’s trick. The idea is to choose

a vector bundle E → Mm isomorphic to the tangent bundle TMm → Mm and a bundle

isomorphism ι : E → TMm. Pulling back the initial metric, we get a bundle metric h := ι∗g

on E . By using the metric g(t) to identify TMm and T ∗Mm, we may consider the Ricci tensor

field Ricg(t) as a bundle map

Ricg(t) : TMm −→ TMm, X 7−→ Ricg(t)(X) =
(
Ricg(t)(X)

)i
∂i (3.7.15)

where (
Ricg(t)(X)

)i
:= gijXkRjk. (3.7.16)

We define a 1-parameter family of bundle isomorphisms ι(t) : E → TMm by the ODE
d

dt
ι(t) = Ricg(t) ◦ ι(t), ι(0) = ι. (3.7.17)

Let (ea)1≤a≤m be a local basis of sections of E and let hab := h(ea, eb). Calculate

∂t [ι(t)
∗g(t)]ab = ∂t

[
ι(t)iaι(t)

j
bgij(t)

]
= [∂tι(t)]

i
a ι(t)

j
bgij(t) + ι(t)ia [∂tι(t)]

j
b gij(t) + ι(t)iaι(t)

j
b∂tgij(t)

=
[
Ricg(t)

]i
k
ι(t)kaι(t)

j
bgij(t) +

[
Ricg(t)

]j
k
ι(t)iaι(t)

k
bgij(t)− 2ι(t)iaι(t)

j
b

[
Ricg(t)

]
ij
.

Hence ι(t)∗g(t) = h is independent of t. Using the bundle isomorphisms ι(t), we can pull

back tensor fields on Mm. In particular, we consider ι(t)∗Rmg(t), which is a section of

�2E∨ = ∧2E∨ ⊗S ∧2E∨. Let Rabcd be the components of ι(t)∗Rmg(t), and

Babcd := hephfqReabfRpcdq. (3.7.18)

Lemma 3.15

♥

One has (
∂t −∆h(t)

)
Rabcd = 2 (Babcd −Babdc +Bacbd −Badbc) . (3.7.19)

Proof. By the definition, we have

∂tRabcd = ∂t

(
ιiaι

j
bι
k
c ι
ℓ
dRijkℓ

)
= ιiaι

j
bι
k
c ι
ℓ
d∂tRijkℓ +Ra

pRpbcd +Rb
pRapcd +Rc

pRabpd +Rd
pRabcp.

Therefore, (3.7.19) follows from (3.7.5).

Later, we will show that (3.7.19) is equivalent to (3.7.14).
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Definition 3.4

♣

A Riemannian manifold has 2-positive curvature operator if

λ1 (Rmg) + λ2 (Rmg) > 0. (3.7.20)

That is, the sum of the lowest two eigenvalues of Rmg is positive at every point.

Haiwen Chen showed that if (Mm, g) is a closed Riemannian manifold with 2-positive

curvature operator, then under the Ricci flow g(t), with the initial metric g(0) = g, has 2-

positive curvature operator for all t > 0.

3.7.4 The curvature operator in dimension 3

In dimension 3, so(3) ∼= R3. The Lie algebra structure is [U, V ] = U × V , namely, the

cross product. This implies Rm#
g is the adjoint of Rmg. If we diagonalize, i.e.,

Rmg =


λ 0 0

0 µ 0

0 0 ν

 , (3.7.21)

then

Rm2
g +Rm#

g =


λ2 + µν 0 0

0 µ2 + λν 0

0 0 ν2 + λµ

 (3.7.22)

Chose an orthonormal frame {e1, e2, e3} and its dual orthonormal coframe {ω1, ω2, ω3}
such that the 2-forms ϕ1 := ω2 ∧ ω3, ϕ2 := ω3 ∧ ω1, ϕ3 := ω1 ∧ ω2 are eigenvectors of Rmg.

In this case

λ = 2Rmg(e2, e3, e3, e2) = 2Secg(e2, e3),

µ = 2Rmg(e1, e3, e3, e1) = 2Secg(e1, e3),

ν = 2Rmg(e1, e2, e2, e1) = 2Secg(e1, e2).

Note 3.14

♣

If m ≥ 3 and g has constant sectional curvature, then

Rijkℓ =
Rg

m(m− 1)
(giℓgjk − gikgjℓ).

Hence, for any α ∈ A2(Mm), we have

(Rmg(α))ij =
Rg

m(m− 1)
(αij − αji) =

2Rg
m(m− 1)

αij .

Thus Rmg =
2Rg

m(m−1) idA2(Mm).
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4.1 Hamilton’s theorem

Introduction

h The normalized Ricci flow h Hamilton’s theorem

4.1.1 The normalized Ricci flow

The evolution equation of the volume form for the Ricci flow

∂tg(t) = −2Ricg(t) (4.1.1)

is

∂tdVg(t) = −Rg(t)dVg(t). (4.1.2)

Then the volume evolves by
d

dt
Vg(t) = −

∫
Mm

Rg(t)dVg(t). (4.1.3)

Given a solution g(t), t ∈ [0, T ), of the Ricci flow (4.1.1), we consider the metrics

ḡ(t̄) := c(t)g(t), (4.1.4)

where

c(t) := exp

(
2

m

∫ t

0
Rg(τ)dτ

)
, t̄(t) :=

∫ t

0
c(τ)dτ (4.1.5)

and

Rg(t) :=

∫
Mm

Rg(t)dVg(t)

/
Vg(t). (4.1.6)

Then ḡ(t̄) satisfies the normalized Ricci flow

∂t̄ḡ(t) = −2Ricḡ(t̄) +
2

m
Rḡ(t̄)ḡ(t̄). (4.1.7)

Hence solutions of the normalized Ricci flow differ from solutions of the Ricci flow only by

rescalings in spaces and time.
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Note 4.1

♣

Since
dt̄

dt
= c(t),

dc(t)

dt
=

2

m
Rg(t)c(t)

it follows that

∂t̄ḡ(t̄) = ∂tḡ(t̄)
dt

dt̄
=
[
∂tc(t) · g(t)− 2c(t)Ricg(t)

]
· c(t)−1

=
2

m
Rg(t)g(t)− 2Ricg(t) = −2Ricḡ(t̄) +

2

m
Rḡ(t̄)ḡ(t̄).

Thus we prove (4.1.7).

4.1.2 Hamilton’s theorem

The remainder of this chapter will be devoted to proving the following

Theorem 4.1. (Hamilton, 1982)

♥

Let (M3, g) be a closed Riemannian 3-manifold with positive Ricci curvature. Then there

exists a unique solution g(t) of the normalized Ricci flow with g(0) = g for all t ≥ 0.

Furthermore, as t→ ∞, the metric g(t) converge exponentially fast in every Ck-norm to

a C∞ metric g∞ with constant positive sectional curvature.

4.2 The maximum principle for tensor fields

Introduction

h Hamilton’s maximum principle for

tensor fields

h Nonnegative Ricci curvature is pre-

served

h Ricci pinching is preserved

4.2.1 Hamilton’s maximum principle for tensor fields

Theorem 4.2. (Hamilton’s maximum principle for tensor fields)
Let g(t) be a smooth 1-parameter family of Riemannian metrics on a closed manifold

Mm. Let α(t) be a symmetric 2-tensor field satisfying

□tα ≥ ∇X(t)α+ β

where X(t) is a time-dependent vector field and

β(x, t) = β(α(x, t), g(x, t))

is a symmetric (2, 0)-tensor field which is locally Lipschitz in all its arguments. Suppose

that β satisfies the null-eigenvector assumption that if Aij is a nonnegative symmetric
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♥

2-tensor at a point (x, t) and if V is such that AijV j = 0, then

βij(A, g)V
iV j ≥ 0.

If α(0) ≥ 0, then α(t) ≥ 0 for all t ≥ 0 as long as the soluton exists.

Proof. Suppose that (x1, t1) is a point where there exists a vectorV such that (αijV j)(x1, t1) = 0

for the first time so (αijW
iW j)(x, t) ≥ 0 for all W ∈ TxMm and t ≤ t1. Choose V to be

constant in time. We then have at (x1, t1)

∂t
(
αijV

iV j
)
= (∂tαij)V

iV j ≥
(
∆g(t)αij

)
V iV j +Xk (∇kαij)V

iV j .

WE extend V in a neighborhood of x1 by parallel translating it along geodesics, with respect to

the metric g(t1), emanating from x1. It is clear than ∇g(t1)V |x1 = 0 and ∆g(t1)V |x1 = 0. Thus

we have

□t

(
αijV

iV j
)
≥ Xk∇k

(
αijV

iV j
)
≥ 0.

This shows that when α attains a zero eigenvalue for the first time, it wants to increase in the

direction of any corresponding zero eigenvector. We can make the above argument rigorous

by adding in an ε > 0 just as for the scalar maximum principle. We can then show that there

exists δ > 0 such that α ≥ 0 on [0, δ] by applying the above argument to the symmetric 2-tensor

Aϵ(t) := α(t) + ε(δ + t)g(t) for ε > 0 sufficiently small and then letting ε→ 0: We compute

□tAϵ(t) ≥ Xk∇kAϵ(t) + β(α(t), g(t)) + ε(δ + t)∂tg(t) + εg(t).

On any compact time interval, there existsC <∞ such that∂tg(t) ≥ −Cg(t) andβ(α(t), g(t))−
β(Aϵ(t), g(t)) ≥ −Cε(δ + t)g(t). Thus

□tAϵ(t) ≥ Xk∇kAϵ(t) + β(Aϵ(t), g(t)), t ∈ [0, δ],

by choosing δ < 1/4C. Hence we can conclude that Aϵ(t) > 0 on [0, δ]. Taking ε→ 0 implies

α(t) ≥ 0 on [0, δ]. Continuing this way, we conclude that α(t) ≥ 0 on all of I .

4.2.2 Nonnegative Ricci curvature is preserved

Recall that the evolution equation of the Ricci tensor field is given by

∂tRij = ∆L,g(t)Rij = ∆g(t)Rij + 2RkijℓR
kℓ − 2RikRj

k. (4.2.1)

When m = 3, the Weyl tensor field vanishes so that

Rijkℓ = Riℓgjk +Rjkgiℓ −Rikgjℓ −Rjℓgik −
Rg
2

(giℓgjk − gikgjℓ) . (4.2.2)

Lemma 4.1

♥

If m = 3, then under the Ricci flow we have

□tRij = 3Rg(t)Rij − 6RipRj
p +

(
2
∣∣Ricg(t)∣∣2g(t) −R2

g(t)

)
gij . (4.2.3)
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Proof. Using (4.2.1) and (4.2.2) yields

2RkijℓR
kℓ = 2

∣∣Ricg(t)∣∣2g(t) gij + 2Rg(t)Rij − 4Ri
kRkj −Rg(t)

(
Rg(t)gij −Ri

kgkj

)
= 2

∣∣Rcg(t)∣∣2g(t) gij + 3Rg(t)Rij − 4Ri
kRkj −R2

g(t)gij

which implies (4.2.3).

Corollary 4.1. (Nonnegative Ricci is preserved)

♥

If (M3, g(t)), t ∈ [0, T ) is a solution to the Ricci floe on a closed 3-manifold with

Ricg(0) ≥ 0, then Ricg(t) ≥ 0 for all t ∈ [0, T ).

Proof. Let

βij = 3Rg(t)Rij − 6RipRj
p +

(
2
∣∣Ricg(t)∣∣2g(t) −R2

g(t)

)
gij .

If at a point and time Ricg(t) has a null-eigenvector V = V i∂i, then one of eigenvalues of Ricg(t)
is zero so that 2

∣∣Ricg(t)∣∣2g(t) −R2
g(t) ≥ 0 and

βijV
iV j =

(
2
∣∣Ricg(t)∣∣2g(t) −R2

g(t)

)
|V |2g(t) ≥ 0.

Therefore β satisfies the null-eigenvector assumption with respect to Rij . Applying Theorem
4.2 to this case, Ricg(t) ≥ 0 as long as Ricg(0) ≥ 0.

4.2.3 Ricci pinching is preserved

Recall the Einstein tensor field

Eing = Ricg −
1

2
Rgg. (4.2.4)

In general, we consider the ε-Einstein tensor field

Eing,ε := Ricg − εRgg. (4.2.5)

In particular, Eing, 1
2
= Eing. Using (2.3.1) and (4.2.3) we have

□t

(
Rij − εRg(t)gij

)
= 3Rg(t)Rij − 6Ri

pRjp +
(
2
∣∣Rcg(t)∣∣2g(t) −R2

g(t)

)
gij

− 2ε
∣∣Rcg(t)∣∣2g(t) gij + 2εRg(t)Rij .

Suppose

βij = 3Rg(t)Rij − 6Ri
pRjp +

(
2
∣∣Ricg(t)∣∣2g(t) −R2

g(t)

)
gij

− 2ε
∣∣Ricg(t)∣∣2g(t) gij + 2εRg(t)Rij

and
(
Rij − εRg(t)gij

)
V j = 0. Then

βijV
iV j = 3Rg(t)RijV

iV j − 6Ri
pRjpV

iV j +
(
2
∣∣Ricg(t)∣∣2g(t) −R2

g(t)

)
|V |2g(t)

− 2ε
∣∣Ricg(t)∣∣2g(t) |V |2g(t) + 2εRg(t)RijV

iV j

=
[
(3ε− 1− 4ε2)R2

g(t) + (2− 2ε)
∣∣Ricg(t)∣∣2g(t)] |V |2g(t).
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Since one on eigenvalues of Ricg(t) is εRg(t), it follows that other eigenvalues λ2 + λ3 satisfy

λ2 + λ3 = (1− ε)Rg(t). By the elementary inequalities

(λ2 + λ3)
2

2
≤ λ22 + λ23 ≤ (λ2 + λ3)

2

we conclude that
(1− ε)2

2
R2
g(t) ≤ λ22 + λ23 ≤ (1− ε)2R2

g(t)

and hence (
ε2 +

(1− ε)2

2

)
R2
g(t) ≤

∣∣Ricg(t)∣∣2g(t) ≤ (ε2 + (1− ε)2
)
R2
g(t).

If ε < 1, then

βijV
iV j ≥

[(
3ε− 1− 4ε2

)
+ (2− 2ε)

(
ε2 +

(1− ε)2

2

)]
R2
g(t)|V |2g(t)

= ε(1− 3ε)R2
g(t)|V |2g(t).

Hence when 0 ≤ ε ≤ 1
3 , we have βijV iV j ≥ 0. On the other hand,

−βijV iV j =
(
(2ε− 2)

∣∣Ricg(t)∣∣2g(t) + (4ε2 − 3ε+ 1)R2
g(t)

)
|V |2g(t).

If ε ≥ 1, then

−βijV iV j ≥
[
(2ε− 2)

(
ε2 +

(1− ε)2

2

)
+ 4ε2 − 3ε+ 1

]
R2
g(t)|V |2g(t)

= ε(3ε− 1)R2
g(t)|V |2g(t) ≥ 0.

If 0 ≤ ε ≤ 1, then

−βijV iV j ≥
[
(4ε2 − 3ε+ 1) + (2ε− 2)(ε2 + (1− ε)2)

]
R2
g(t)|V |2g(t)

=

(
ε− 1

2

)
(4ε2 − 2ε+ 2)R2

g(t)|V |2g(t).

In this case, −βijV iV j ≥ 0 provided ε ≥ 1
2 .

Corollary 4.2

♥

Given an η ∈ [1/2,+∞). If (M3, g(t)), t ∈ [0, T ), is a solution to the Ricci flow on a

closed 3-manifold with Eing(0),η ≤ 0, then Eing(t),η ≤ 0 for all t ∈ [0, T ).

Corollary 4.3

♥

Given an ε ∈ [0, 1/3]. If (M3, g(t)), t ∈ [0, T ), is a solution to the Ricci flow on a closed

3-manifold with Eing(0),η ≥ 0, then Eing(t),η ≥ 0 for all t ∈ [0, T ).

Corollary 4.4

♥

If (M3, g(t)), t ∈ [0, T ), is a solution to the Ricci flow on a closed 3-manifold with
1
3Rg(0)g(0) ≤ Ricg(0) ≤ 1

2Rg(0)g(0), then 1
3Rg(t)g(t) ≤ Ricg(t) ≤ 1

2Rg(t)g(t) for all

t ∈ [0, T ).
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4.3 Curvature pinching estimates

Introduction

h Maximum principle for systems

h Nonnegativity of scalar, sectional

curvature, and Ricci are preserved

h Ricci pinching is preserved

h Ricci pinching improves

4.3.1 Maximum principle for systems

Recall that Rmg is a section of the bundle π : E → Mm, where E := ∧2T ∗Mm ⊗S

∧2T ∗Mm. The Ricci tensor field Rmg can be also considered as an operator

Rmg : C
∞(∧2T ∗Mm) → C∞(∧2T ∗Mm).

The bundle E has a natural bundle metric and Levi-Civita connection induced by the Riemanian

metric and Levi-Civita connection on TMm. Let Ep := π−1(p) be the fiber over p. For each

p ∈ Mm, consider the system of ODE on Ep corresponding to the PDE (3.7.14) obtained by

dropping the Laplacian term:
d

dt
M(t) = M2(t) +M#(t), (4.3.1)

where (M(t))p ∈ Ep is a symmetric N × N matrix, where N = m(m−1)
2 = dim(so(m)).

Actually,

M(t)(X ∧ Y,W ∧ Z) =
〈
Rmg(t)(X ∧ Y ), Z ∧W

〉
g(t)

. (4.3.2)

A setK in a vector space is said to be convex if for anyX,Y ∈ K, we have sX+(1−s)Y ∈
K for all s ∈ [0, 1]. A subset K of the vector bundle E is said to be invariant under parallel
translation if for every path γ : [a, b] → Mm and vector X ∈ K ∩ Eγ(a), the unique parallel

section X(s) ∈ Eγ(s), s ∈ [a, b], along γ(s) with X(a) = X is contained in K.

Theorem 4.3. (Maximum principle applied to the curvature operator)

♥

Let g(t), t ∈ [0, T ), be a solution to the Ricci flow on a closed m-manifold Mm. Let

K ⊂ E be a subset which is invariant under parallel translation and whose intersection

Kp := K ∩ Ep with each fiber is closed and convex. Suppose the ODE (4.3.1) has the

property that for any M(0) ∈ K, we have M(t) ∈ K for all t ∈ [0, T ). If Rmg(0) ∈ K,

then Rmg(t) ∈ K for all t ∈ [0, T ).

Corollary 4.5

♥

If (Mm, g(t)), t ∈ [0, T ), is a solution to the Ricci flow on a closed m-manifold with

Rmg(0) ≥ 0, then Rmg(t) ≥ 0 for all t ∈ [0, T ).
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4.3.2 Nonnegativity of scalar, sectional curvature, and Ricci are preserved

In dimension 3, if M(0) is diagonal, then M(t) remains diagonal for all t ∈ [0, T ). Let

λ1(M(t)) ≤ λ2(M(t)) ≤ λ3(M(t)) be the eigenvalues of M(t). Under the ODE the ordering

of the eigenvalues is preserved and we have
d

dt
λ1(M(t)) = λ1(M(t))2 + λ2(M(t))λ3(M(t)), (4.3.3)

d

dt
λ2(M(t)) = λ2(M(t))2 + λ1(M(t))λ3(M(t), (4.3.4)

d

dt
λ3(M(t)) = λ3(M(t))2 + λ1(M(t))λ2(M(t)). (4.3.5)

With this setup, we can come up with a number of closed, fiberwise convex sets K, invariant

under parallel translation, which are preserved by the ODE. Each such set corresponds to an a

priori estimate for the curvature Rmg.

The following sets K ⊂ E are invariant under parallel translation and for each p ∈ Mm, Kp

is closed, convex and preserved by the ODE.

(1) Lower bound of scalar is preserved: Given C0 ∈ R, let

K = {M : λ1(M) + λ2(M) + λ3(M) ≥ C0}.

The trace (λ1(M))p+(λ2(M))p+(λ3(M))p : Ep → R is a linear function, which implies

that Kp is closed and convex for each p ∈ Mm. That K is preserved by the ODE follows

from
d

dt
(λ1(M(t)) + λ2(M(t)) + λ3(M(t)))

=
1

2

[
(λ1(M(t)) + λ2(M(t)))2 + (λ1(M(t)) + λ3(M(t)))2

+(λ2(M(t)) + λ3(M(t)))2
]

≥ 2

3
(λ1(M(t)) + λ2(M(t)) + λ3(M(t)))2 ≥ 0.

Therefore, if Rg(0) ≥ C0 for some C0 ∈ R, then

Rg(t) ≥ C0 (4.3.6)

for all t ≥ 0.

(2) Nonnegative sectional curvature is preserved: Let K = {M : λ1(M) ≥ 0}. Each Kp

is closed and convex since (λ1(M))p : Ep → R is a concave function. We see that K is

preserved by the ODE since
d

dt
λ1(M(t)) = λ1(M(t))2 + λ2(M(t))λ3(M(t)) ≥ 0

whenever λ1(M(t)) ≥ 0 (Since λ1(M(0)) ≥ 0, it follows that d
dt |t=0λ1(M(t)) ≥ 0.

Thus λ1(M(t)) ≥ 0 for t sufficiently close to 0. By continuity, λ1(M(t)) ≥ 0 for all

t ≥ 0). This implies

Rmg(t) ≥ 0 (4.3.7)

for all t ≥ 0 provided Rmg(0) ≥ 0.
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(3) Nonnegative Ricci is preserved: Let K = {M : λ1(M) + λ2(M) ≥ 0}. Since λ1 + λ2

is concave, K is closed and convex. From
d

dt
(λ1(M(t)) + λ2(M(t))) = λ1(M(t))2 + λ2(M(t))2

+ (λ1(M(t)) + λ2(M(t)))λ3(M(t)) ≥ 0

whenever λ1(M(t)) + λ2(M(t)) ≥ 0, we see that K is preserved by the ODE. From this

we see that

Rcg(t) ≥ 0 (4.3.8)

for all t ≥ 0 if Rcg(0) ≥ 0, since the smallest eigenvalue of Rcg(t) is
1

2

[
λ1(Rmg(t)) + λ2(Rmg(t))

]
(see below).

4.3.3 Ricci pinching is preserved

Recall that

λ1(M) = min
|U∧V |g=1

M(U ∧ V,U ∧ V ), λ3(M) = max
|U∧V |g=1

M(U ∧ V,U ∧ V ). (4.3.9)

Hence, λ1 is concave, λ3 is convex, and λ1+λ2 is concave. To compute the eigenvalues for Rcg,

we chose an orthonormal frame {e1, e2, e3} and its dual orthonormal coframe {ω1, ω2, ω3} such

that the 2-forms

ω2 ∧ ω3, ω3 ∧ ω1, ω1 ∧ ω2

are eigenvectors of Rmg. In this case

λ1(Rmg) = 2Rmg(e2, e3, e3, e2),

λ2(Rmg) = 2Rmg(e1, e3, e3, e1),

λ3(Rmg) = 2Rmg(e1, e2, e2, e1).

The Ricci tensor Ricg gives rise to an operator

Rcg : A1(M3) −→ A1(M3) (4.3.10)

given by

(Rcg(α))i := gjkRijαk. (4.3.11)

Hence its eigenvalues are

λj (Ricg) =
∑

1≤i≤3

〈Rmg(ej , ei)ei, ej〉g =
∑

1≤i≤3

Rmg(ej , ei, ei, ej).

Explicitly,

λ1 (Rcg) =
1

2
[λ2 (Rmg) + λ3 (Rmg)] ,

λ2 (Rcg) =
1

2
[λ1 (Rmg) + λ3 (Rmg)] ,

λ3 (Rcg) =
1

2
[λ1 (Rmg) + λ2 (Rmg)] .
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Since λ1 (Rmg) ≤ λ2 (Rmg) ≤ λ3 (Rmg), it follows that λ3 (Rcg) is the smallest eigenvalue

of Rcg. Meanwhile, λ1 (Rcg) is the largest eigenvalue of Rcg.

Given C ≥ 1
2 , let

K = {M : λ3(M) ≤ C [λ1(M) + λ2(M)]}.

Then Kp is convex for all p ∈ Mm. That each Kp is preserved by the ODE follows from
d

dt
[λ3(M)(t)− C (λ1(M)(t) + λ2(M)(t))]

= λ3(M(t)) [λ3(M)(t)− C (λ1(M(t)) + λ2(M(t)))]

− C

[
λ1(M(t))2 − 1

C
λ1(M(t))λ2(M(t)) + λ2(M(t))2

]
.

Since C ≥ 1
2 , it follows that

d

dt
[λ3(M)(t)− C (λ1(M)(t) + λ2(M)(t))]

≤ λ3(M(t)) [λ3(M)(t)− C (λ1(M(t)) + λ2(M(t)))] .

Set

f(t) := λ3(M)(t)− C (λ1(M)(t) + λ2(M)(t)) .

By assumption, f(0) = 0. If f(t1) > 0 for some time t1, then there exists a time t0 so that

f(t0) = 0 and f(t) < 0 on t ∈ (t0 − δ, t0) for some small number δ > 0. However, at the time

t0, we have
d

dt

∣∣∣
t=t0

f(t) ≤ 0;

consequently, f(t) ≥ 0 on some small neighborhood of t0. This is a contradiction. Hence

f(t) ≤ 0 for all t ≥ 0.

Suppose Rcg(0) > 0. Then Rcg(t) > 0 for all times t ≥ 0. SinceM is compact, there exists

C ≥ 1
2 such that

λ3(Rmg(0)) ≤ C
[
λ1(Rmg(0)) + λ2(Rmg(0))

]
.

That is Rmg(0) ⊂ K. By the maximum principle for tensor fields, Rmg(t) ∈ K and hence

λ3
(
Rmg(t)

)
≤ C

[
λ1
(
Rmg(t)

)
+ λ2

(
Rmg(t)

)]
holds for all t ≥ 0. Therefore

Rcg(t) ≥ λ3
(
Rcg(t)

)
g(t) =

(
λ1
(
Rmg(t)

)
+ λ2

(
Rmg(t)

)
2

)
g(t)

≥
λ3
(
Rmg(t)

)
2C

g(t) ≥
Rg(t)

6C
g(t)

since λ1
(
Rmg(t)

)
+ λ2

(
Rmg(t)

)
+ λ3

(
Rmg(t)

)
= Rg(t). From the assumption that C ≥ 1

2 ,

we have 1
6C ≤ 1

3 and hence

Rcg(t) ≥ εRg(t)g(t), n = 3 (4.3.12)

for any ε ∈ (0, 1/3], is preserved under the Ricci flow.
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Note 4.2
Consider the same K. Suppose that Rmg(0) ⊂ K and[

λ1
(
Rmg(t)

)
(x) + λ2

(
Rmg(t)

)
(x)
] ∣∣∣

(x,t)=(x0,t0)
< 0

for some (x0, t0) ∈ M3 × [0, T ).

(1) We claim that λ1
(
Rmg(t)

)
= λ2

(
Rmg(t)

)
= λ3

(
Rmg(t)

)
at (x0, t0). Indeed, at

the point (x0, t0), we have

λ3
(
Rmg(t)

)
− λ1

(
Rmg(t)

)
≤ Cλ1

(
Rmg(t)

)
+ Cλ2

(
Rmg(t)

)
− λ1

(
Rmg(t)

)
≤ Cλ3

(
Rmg(t)

)
+ (C − 1)λ1

(
Rmg(t)

)
= C

(
λ3
(
Rmg(t)

)
− λ1

(
Rmg(t)

))
+ (2C − 1)λ1

(
Rmg(t)

)
.

On the other hand, we note that

λ3
(
Rmg(t)

)
≤ C

(
λ1
(
Rmg(t)

)
+ λ2

(
Rmg(t)

))
< 0

at the point (x0, t0). Therefore when C ≥ 1, we obtain

λ3
(
Rmg(t)

)
− λ1

(
Rmg(t)

)
≤ 0;

consequently, λ1
(
Rmg(t)

)
= λ2

(
Rmg(t)

)
= λ3

(
Rmg(t)

)
:= λ < 0 at (x0, t0).

When 1
2 ≤ C < 1, we have

λ3
(
Rmg(x,t)

)
− λ1

(
Rmg(t)

)
≤ C

(
λ3
(
Rmg(t)

)
− λ1

(
Rmg(t)

))
;

consequently,

λ3
(
Rmg(t)

)
− λ1

(
Rmg(t)

)
≤ 0

and λ1
(
Rmg(t)

)
= λ2

(
Rmg(t)

)
= λ3

(
Rmg(t)

)
:= λ < 0 at (x0, t0).

(2) But, in both cases, λ ≤ 2Cλ so that (2C − 1)λ ≥ 0. From this, we deduce that

λ ≥ 0 when C > 1
2 , a contradiction. Therefore, Rmg(0) ⊂ K implies

λ1
(
Rmg(t)

)
+ λ2

(
Rmg(t)

)
≥ 0 (4.3.13)

for all t ∈ [0, T ) provided C > 1
2 .

(3) C = 1
2 . In this case, we have

λ =
1

3
Rg(t0)(x0).

Since

λ1
(
Rmg(t)

)
+ λ2

(
Rmg(t)

)
< 0

holds in a neighborhood of x0 at time t0, we must have

λ1
(
Rmg(t)

)
= λ2

(
Rmg(t)

)
= λ3

(
Rmg(t)

)
=

1

3
Rg(t)

in U . By the contacted Bianchi identity, we then have that Rg(t) is constant on U .
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♣

Since M is connected, it follows that

λ1
(
Rmg(t)

)
= λ2

(
Rmg(t)

)
= λ3

(
Rmg(t)

)
=

1

3
Rg(t) =

1

3
R

on all of M × [0, T ), where the scalar curvature Rg(t) is a negative constant R.

Thus, if Rmg(t0) ⊂ K (where C = 1
2 ) for some t0 and if g(t0) does not have

constant negative sectional curvature, then Ricg(t) ≥ 0 for t ∈ [0, T ).

There is an interesting question related to (4.3.12).

Problem 4.1. (Hamilton)

♠

If (M3, g) is a complete Riemannian 3-manifold with Rcg ≥ εRgg, where Rg > 0 and

ε > 0, then M3 is compact.

Chen and Zhu proved that if (M3, g) is a complete Riemannian 3-manifold with bounded

nonnegative sectional curvature and Rcg ≥ εRgg with ε > 0, then M is either compact or flat.

A related question is

Problem 4.2

♠

If (M3, g(t)) is a complete solution to the Ricci flow on a 3-manifold with nonnegative

Ricci curvature which is bounded on compact time intervals, can one prove a trace

differential Harnack inequality?

Note that a result related to Problem 4.1, due to Hamilton, is

Theorem 4.4. (Hamilton, 1994)

♥

If Mm ⊂ Rm+1 is a C∞ complete, strictly convex hypersurface with hij ≥ εHgij for

some ε > 0, then Mm is compact.

Problem 4.3

♠

Does there exist a Harnack inequality for solutions to the mean curvature flow with

nonnegative mean curvature and second fundamental form which is bounded on compact

time intervals?

4.3.4 Ricci pinching improves

Given C0 > 0, C1 ≥ 1
2 , C2 > 0 and 0 < δ < 1, let

K =

M :

λ3(M)− λ1(M)− C2 [λ1(M) + λ2(M) + λ3(M)]1−δ ≤ 0,

λ3(M) ≤ C1 [λ1(M) + λ2(M)] ,

λ1(M) + λ2(M) + λ3(M) ≥ C0

 . (4.3.14)

K is a convex set since λ3 − λ1 − C2(λ1 + λ2 + λ3)
1−δ is a convex function for C2 > 0.

If M ∈ K, then

C0 ≤ λ1(M) + λ2(M) + C1 [λ1(M) + λ2(M)]
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so that

λ1(M) + λ2(M) ≥ C0

1 + C1
> 0.

We have proved (omit M) that the inequalities λ1 + λ2 + λ3 ≥ C0 and λ3 ≤ C1(λ1 + λ2) are

preserved under the ODE. We need only to check the first inequality is also preserved under the

ODE. Since C0 > 0,
d

dt

(
ln

λ3 − λ1
(λ1 + λ2 + λ3)1−δ

)
=

(λ1 + λ2 + λ3)
1−δ

λ3 − λ1
· d
dt

(
λ3 − λ1

(λ1 + λ2 + λ3)1−δ

)
=

λ23 + λ1λ2 − λ21 − λ2λ3
λ3 − λ1

− 1− δ

λ1 + λ2 + λ3

(
λ21 + λ22 + λ23 + λ1λ3 + λ2λ3 + λ1λ2

)
.

Note that

λ21 + λ22 + λ23 + λ1λ3 + λ2λ3 + λ1λ2

= (λ1 + λ2)λ2 + (λ2 − λ1)λ3 + λ22 + (λ1 − λ3)
2 − λ22.

Therefore
d

dt
ln

(
λ3 − λ1

(λ1 + λ2 + λ3)1−δ

)
= δ(λ1 + λ3 − λ2)− (1− δ)

(λ1 + λ2)λ2 + (λ2 − λ1)λ3 + λ22
λ1 + λ2 + λ3

.

Because λ1 + λ2 > 0, we have λ3 ≥ λ2 > 0 and hence
d

dt
ln

(
λ3 − λ1

(λ1 + λ2 + λ3)1−δ

)
≤ δ(λ1 + λ3 − λ2)− (1− δ)

λ22
λ1 + λ2 + λ3

.

Note that
λ22

λ1 + λ2 + λ3
≥

λ1+λ2
2

3λ3
λ2 ≥

(λ1 + λ2)λ2
6λ3

≥ 1

6C1
λ2,

and

λ1 + λ3 − λ2 ≤ λ3 ≤ C1(λ1 + λ2) ≤ 2C1λ2.

Combining those inequalities yields
d

dt

(
ln

λ3 − λ1
(λ1 + λ2 + λ3)1−δ

)
≤
(
2δC1 −

1− δ

6C1

)
λ2.

If we chose δ ∈ (0, 1) small enough so that δ
1−δ ≤ 1

12C2
1

(δ ≤ 1
4 ), then

d

dt

(
ln

λ3 − λ1
(λ1 + λ2 + λ3)1−δ

)
≤ 0.

Thus, K is preserved by the ODE provided C0 > 0, C1 ≥ 1
2 , C2 > 0, 0 < δ < 1, and

δ
1−δ ≤ 1

12C2
1
.

Since the largest eigenvalue of Rcg(t) is 1
2 [λ2 (M(t)) + λ3 (M(t))] ≤ λ3 (M(t)); mean-
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while, the eigenvalue of 1
3Rg(t)g(t) is

1

3
[λ1 (M(t)) + λ2 (M(t)) + λ3 (M(t))] ≥ λ1 (M(t)) .

Thus, ∣∣∣∣Rcg(t) − 1

3
Rg(t)g(t)

∣∣∣∣
g(t)

≤ λ3 (M(t))− λ1 (M(t)) .

Corollary 4.6

♥

Suppose M3 is a closed 3-manifold and g0 has positive Ricci curvature. There exist

constants C > 0 and δ ∈
(
0, 14
]

such that∣∣∣∣Rcg(t) − 1

3
Rg(t)g(t)

∣∣∣∣
g(t)

≤ CR1−δ
g(t) (4.3.15)

holds for all time where the Ricci flow exists.

Note 4.3
(1) The 2-tensor Rc◦g := Rcg − 1

3Rgg is the trace-free part of the Ricci tensor Rcg and∣∣∣∣Rcg − 1

3
Rgg

∣∣∣∣2
g

= |Rcg|2g −
1

3
R2
g, (4.3.16)

which vanishes everywhere exactly when g is Einstein. Indeed,

trgRc
◦
g = gij

(
Rij −

1

3
Rggij

)
= Rg −

1

3
Rg · 3 = Rg −Rg = 0.

The formula (4.3.16) can be seen as follows:∣∣Rc◦g∣∣2g = gikgjℓR◦
ijR

◦
kℓ = gikgjℓ

(
Rij −

1

3
Rggij

)(
Rkℓ −

1

3
Rggkℓ

)
= gikgjℓ

(
RijRkℓ −

1

3
RgRkℓgij −

1

3
RgRijgkℓ +

1

9
R2
ggijgkℓ

)
= |Rcg|2g −

1

3
R2
g −

1

3
R2
g +

1

9
R2
g · 3 = |Rcg|2g −

1

3
R2
g.

(2) We also have ∣∣∣∣Rmg −
1

3
RgidA2(M3)

∣∣∣∣2
g

= 4

∣∣∣∣Rcg − 1

3
Rgg

∣∣∣∣2
g

. (4.3.17)

Since

Rmg =


λ1 0 0

0 λ2 0

0 0 λ3

 , Rg = λ1 + λ2 + λ3,

we have∣∣∣∣Rmg −
1

3
RgidA2(M3)

∣∣∣∣2
g

=
6

9

(
λ21 + λ22 + λ23 − λ1λ2 − λ1λ3 − λ2λ3

)
.

Meanwhile,

Rcg =


λ2+λ3

2 0 0

0 λ1+λ3
2 0

0 0 λ1+λ2
2
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♣

and∣∣∣∣Rcg − 1

3
Rgg

∣∣∣∣2
g

=

(
λ2 + λ3

2
− λ1 + λ2 + λ3

3

)2

+

(
λ1 + λ3

2
− λ1 + λ2 + λ3

3

)2

+

(
λ1 + λ2

2
− λ1 + λ2 + λ3

3

)2

=
1

6

(
λ21 + λ22 + λ23 − λ1λ2 − λ1λ3 − λ2λ3

)
.

So we verified (4.3.17).

Let [0, T ) denote the maximum time interval of existence of our solution. Recall that

Rmin(t) ≥
1

Rmin(0)−1 − 2
3 t
.

If we assume that the initial metric g0 has positive Ricci curvature, then Rmin(0) > 0 and we

conclude that T ≤ 3
2Rmin(0)

−1 <∞. In later, we shall prove that

sup
M×[0,T )

∣∣Rmg(t)

∣∣
g(t)

= ∞. (4.3.18)

Intuitively speaking, we are in good shape now. Since the Ricci curvature is positive under the

Ricci flow, the metric is shrinking: ∂tg(t) = −2Ricg(t) < 0. If we can show an appropriate

gradient estimate for the scalar curvature, then we could conclude that limt→T Rmin(t) = ∞.

Assuming this, we then would have∣∣∣∣ 1

Rg(t)
Ricg(t) −

1

3
g(t)

∣∣∣∣
g(t)

≤ CR−δ
g(t),

which tends to 0 as t → T uniformly in x. To finish the proof of Theorem 4.1, we need to

further show that the solution g(t) to the normalized Ricci flow exists for all time and the scalar

invariant quantity | 1
Rg(t)

Ricg(t) − 1
3g(t)|g(t) decays exponentially to zero as t → ∞. After that,

we shall show that under the normalized Ricci flow the curvature tends to a constant. Finally we

prove the long time existence and exponential convergence of the solution to a constant sectional

curvature metric.

4.4 Gradient bounds for the scalar curvature

Introduction

h Gradient estimate I

h Gradient estimate II

h Global scalar curvature pinching

h Global sectional curvature pinching

Proposition 4.1. (Scalar curvature gradient estimate)

♥

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. For any ε > 0, there

exists C(ε) depending only on ε and g such that∣∣∇g(t)Rg(t)
∣∣2
g(t)

≤ εR3
g(t) + C(ε)Rg(t)

as long as the solution to the Ricci flow with initial metric g exists.
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4.4.1 Gradient estimate I

Let (Mm, g) be an m-dimensional Riemannian manifold. We decompose ∇iRjk into

∇iRjk := Eijk + Fijk (4.4.1)

where

Eijk :=
m− 2

2(m− 1)(m+ 2)
(∇jRg · gik +∇kRg · gij)

+
m

(m− 1)(m+ 2)
∇iRg · gjk. (4.4.2)

Lemma 4.2

♥

For any m ≥ 3, one has

〈Eijk, Fijk〉g = 0,

|Eijk|2g =
3m− 2

2(m− 1)(m+ 2)
|∇gRg|2g ,

|∇gRicg|2g ≥ 3m− 2

2(m− 1)(m+ 2)
|∇gRg|2g ,

|∇gRicg|2g −
1

m
|∇gRg|2g ≥ (m− 2)2

2m(m− 1)(m+ 2)
|∇gRg|2g .

Proof. Calculate

〈Eijk,∇iRjk〉g = gipgjqgksEijk∇pRqs

=
m− 2

2(m− 1)(m+ 2)

(
1

2
|∇gRg|2g +

1

2
|∇gRg|2g

)
+

m

(m− 1)(m+ 2)
|∇gRg|2g

=
3m− 2

2(m− 1)(m+ 2)
|∇gRg|2g ,

and

|Eijk|2g =

(
m− 2

2(m− 1)(m+ 2)

)2 (
2m |∇gRg|2g + 2 |∇gRg|2g

)
+

m2

(m− 1)2(m+ 2)2
m |∇gRg|2g +

m(m− 2)

(m− 1)2(m+ 2)2
2 |∇gRg|2g

=
(m− 2)2(m+ 1) + 2m3 + 4m(m− 2)

2(m− 1)2(n+ 2)2
|∇gRg|2g

=
(3m− 2)(m− 1)(m+ 2)

2(m− 1)2(m+ 2)2
|∇gRg|2g =

3m− 2

2(m− 1)(m+ 2)
|∇gRg|2g .

The rest inequalities follows immediately.

When m = 3, Lemma 4.2 gives

|∇gRicg|2g ≥
7

20
|∇gRg|2g .

If we use the inequality

|∇gRicg|2g −
1

3
|∇gRg|2g =

∣∣∣∣∇iRjk −
1

3
∇iRggjk

∣∣∣∣2
g

≥ 1

3

∣∣∣∣divg (Rcg − 1

3
Rgg

)∣∣∣∣2
g
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and the contracted second Bianchi identity, we have a worse constant

|∇gRicg|2g ≥
37

108
|∇gRg|2g .

Lemma 4.3

♥

Let □g(t) := ∂t −∆g(t). If f and h are functions of space and time and if p, q ∈ R, then

□g(t)

(
fp

hq

)
= p

fp−1

hq
□g(t)f − q

fp

hq+1
□g(t)h− p(p− 1)

fp−2

hq
∣∣∇g(t)f

∣∣2
g(t)

− q(q + 1)
fp

hq+2

∣∣∇g(t)h
∣∣2
g(t)

+ 2pq
fp−1

hq+1

〈
∇g(t)f,∇g(t)h

〉
g(t)

.(4.4.3)

In particular, taking p = q = 1, we obtain

□g(t)

(
f

h

)
=

1

h
□g(t)f − f

h2
□g(t)h+

2

h

〈
∇g(t)h,∇g(t)

(
f

h

)〉
g(t)

. (4.4.4)

Proof. Calculate

∂t

(
fp

hq

)
=

pfp−1 · ∂tf · hq − fp · qhq−1 · ∂th
h2q

= p
fp−1

hq
∂tf − q

fp

hq+1
∂th,

∆g(t)

(
fp

hq

)
= ∇i

(
p
fp−1

hq
∇if − q

fp

hq+1
∇ih

)
=

p(p− 1)fp−2hq∇if − pqfp−1hq−1∇ih

h2q
∇if + p

fp−1

hq
∆g(t)f

−
(
pqfp−1hq+1∇if − q(q + 1)fphq∇ih

h2q+2
∇ih+ q

fp

hq+1
∆g(t)h

)
= p(p− 1)

fp−2

hq
∣∣∇g(t)f

∣∣2
g(t)

− 2pq
fp−1

hq+1

〈
∇g(t)f,∇g(t)h

〉
g(t)

+ p
fp−1

hq
∆g(t)f + q(q + 1)

fp

hq+2

∣∣∇g(t)h
∣∣2
g(t)

− q
fp

hq+1
∆g(t)h.

Combining those equations gives (4.4.3).

As a consequence, we have

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)

)
=

1

Rg(t)
□g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

−
|∇g(t)Rg(t)|2g(t)

R2
g(t)

□g(t)Rg(t) − 2
|∇g(t)Rg(t)|2g(t)

R3
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

.

Since □g(t)Rg(t) = 2|Ricg(t)|2g(t), we compute the first term □g(t)|∇g(t)Rg(t)|2g(t):

∂t
∣∣∇g(t)Rg(t)

∣∣2
g(t)

= −∂tgij · ∇iRg(t)∇jRg(t) + 2gij∇jRg(t)∇i∂tRg(t)

= 2Rij∇iRg(t)∇jRg(t) + 2∇iRg(t) · ∇i

(
∆g(t)Rg(t) + 2

∣∣Ricg(t)∣∣2g(t))
= 2Rij∇iRg(t)∇jRg(t) + 2∇iRg(t)∇i∆g(t)Rg(t) + 4∇iRg(t) · ∇i

∣∣Ricg(t)∣∣2g(t) ,
and

∆g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

= ∆g(t)

(
gij∇iRg(t)∇jRg(t)

)
= 2gijgkℓ∇k

(
∇ℓ∇iRg(t) · ∇jRg(t)

)
= 2gijgkℓ

(
∇k∇i∇ℓRg(t) · ∇jRg(t)

)
+ 2

∣∣∣∇2
g(t)Rg(t)

∣∣∣2
g(t)
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= 2gijgkℓ
(
∇i∇k∇ℓRg(t) −Rkiℓp∇pRg(t)

)
+ 2

∣∣∣∇2
g(t)Rg(t)

∣∣∣2
g(t)

= 2∇i∆g(t)Rg(t) · ∇iRg(t) + 2Rip∇pRg(t) · ∇iRg(t) + 2
∣∣∣∇2

g(t)Rg(t)

∣∣∣2
g(t)

.

Hence

□g(t)

∣∣∇g(t)Rg(t)
∣∣2 = 4

〈
∇g(t)Rg(t),∇g(t)

∣∣Ricg(t)∣∣2g(t)〉g(t) − 2
∣∣∣∇2

g(t)Rg(t)

∣∣∣2
g(t)

. (4.4.5)

Using (4.4.5) we obtain

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)

)
(4.4.6)

= − 2

R3
g(t)

∣∣∣Rg(t)∇2
g(t)Rg(t) −∇g(t)Rg(t) ⊗∇g(t)Rg(t)

∣∣∣2
g(t)

+
4

Rg(t)

〈
∇g(t)Rg(t),∇g(t)|Ricg(t)|2g(t)

〉
g(t)

− 2
|Ricg(t)|2g(t)
R2
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

.

Proof of Proposition 4.1. The assumption that Ricg(0) > 0 yields that Ricg(t) > 0 for

t ∈ [0, T ) where T is the maximal time. Hence |Ricg(t)|g(t) ≤ Rg(t). On the other hand, from∣∣∇g(t)Ricg(t)
∣∣2
g(t)

≥ 1

3

∣∣∇g(t)Rg(t)
∣∣2
g(t)

,

we obtain ∣∣∇g(t)Rg(t)
∣∣
g(t)

≤
√
3
∣∣∇g(t)Ricg(t)

∣∣
g(t)

≤ 2
∣∣∇g(t)Ricg(t)

∣∣
g(t)

.

Therefore, (4.4.6) becomes

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)

)

≤ 4

Rg(t)

∣∣∇g(t)Rg(t)
∣∣
g(t)

∣∣∣∇g(t)

∣∣Ricg(t)∣∣2g(t)∣∣∣g(t) − 2
|Ricg(t)|2g(t)
R2
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

≤ 4

Rg(t)
· 2
∣∣∇g(t)Ricg(t)

∣∣
g(t)

·
∣∣2Ricg(t)∣∣ · ∣∣∇g(t)Ricg(t)

∣∣
g(t)

− 2
|Ricg(t)|2g(t)
R2
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

≤ 16
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

− 2
|Ricg(t)|2g(t)
R2
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

.

It is clear that

□g(t)R
2
g(t) = −2

∣∣∇g(t)Rg(t)
∣∣2
g(t)

+ 4Rg(t)
∣∣Ricg(t)∣∣2g(t) . (4.4.7)

Using (4.4.7) yields for any ε > 0

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)
− εR2

g(t)

)
≤ 16

∣∣∇g(t)Ricg(t)
∣∣2
g(t)

− 2
|Ricg(t)|2g(t)
R2
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

− ε
(
−2
∣∣∇g(t)Rg(t)

∣∣2
g(t)

+ 4Rg(t)
∣∣Ricg(t)∣∣2g(t))

≤ 16
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

− 2

3

∣∣∇g(t)Rg(t)
∣∣2
g(t)

+ 2ε
∣∣∇g(t)Rg(t)

∣∣2
g(t)

− 4

3
εR3

g(t)
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= 16
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

+ 2

(
ε− 1

3

) ∣∣∇g(t)Rg(t)
∣∣2
g(t)

− 4

3
εR3

g(t).

If 0 < ε ≤ 1
3 , then the above inequality reduces to

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)
− εR2

g(t)

)
≤ 16

∣∣∇g(t)Ricg(t)
∣∣2
g(t)

− 4

3
εR3

g(t);

if ε > 1
3 , then

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)
− εR2

g(t)

)
≤

(
16 + 6

(
ε− 1

3

)) ∣∣∇g(t)Ricg(t)
∣∣2
g(t)

− 4

3
εR3

g(t)

= (6ε+ 14)
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

− 4

3
εR3

g(t).

In both cases, we derive

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)
− εR2

g(t)

)
≤
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

− 4

3
εR3

g(t). (4.4.8)

To deal with the “bad” term |∇g(t)Ricg(t)|2g(t) we consider the evolution equation for |Rcg(t)|2g(t)−
1
3R

2
g(t). Calculate using Lemma 4.1,

∂t
∣∣Ricg(t)∣∣2g(t) = ∂t

(
gikgjℓRijRkℓ

)
= −2∂tgikR

ijRkj + 2Rij∂tRij

= 4RikR
i
ℓR

kℓ + 2Rij
(
∆g(t)Rij + 3Rg(t)Rij − 6RipRj

p
)
+ 2R

(
2
∣∣Ricg(t)∣∣2g(t) −R2

g(t)

)
= 2Rij∆g(t)Rij − 2R3

g(t) + 10Rg(t)
∣∣Ricg(t)∣∣2g(t) − 8trg(t)Ric

3
g(t)

where trg(t)Ric3g(t) := gipgkrgℓsRikRpℓRrs. Meanwhile,

∆g(t)

∣∣Ricg(t)∣∣2g(t) = gikgjℓgpq∇p∇q (RijRkℓ) = 2∆g(t)Rij ·Rij + 2
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

.

Hence

□g(t)

∣∣Ricg(t)∣∣2g(t) = −2
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

− 2R3
g(t)

+ 10Rg(t)
∣∣Ricg(t)∣∣2g(t) − 8trg(t)Ric

3
g(t), (4.4.9)

and

□g(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
= −2

(∣∣∇g(t)Ricg(t)
∣∣2
g(t)

− 1

3

∣∣∇g(t)Rg(t)
∣∣2
g(t)

)
− 2R3

g(t) +
26

3
Rg(t)

∣∣Ricg(t)∣∣2g(t) − 8trg(t)Ric
3
g(t).(4.4.10)

From (4.4.2) for m = 3 and the assumption that Ricg(0) > 0, we have

□g(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
≤ − 2

21

∣∣∇g(t)Ricg(t)
∣∣2
g(t)

+ 4Rg(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
. (4.4.11)

For any positive constant a we obtain

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)
− εR2

g(t) + a

(
|Ric|2g(t) −

1

3
R2
g(t)

))

≤
(
6ε+ 14− 2

21
a

) ∣∣∇g(t)Ricg(t)
∣∣2
g(t)

+R3−2δ

(
4aC − 4

3
εR2δ

g(t)

)
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where we use the estimate (4.4.8). If we pick a = 21(3ε+ 7), then

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)
− εR2

g(t) + a |Ric|2g(t) −
aR2

g(t)

3

)
≤ R3−2δ

g(t)

[
84(3ε+ 7)C −

4εR2δ
g(t)

3

]
When 84(3ε+7)C− 4

3εR
2δ
g(t) < 0, the right side is negative; when 84(3ε+7)C− 4

3εR
2δ
g(t) ≥ 0,

we have R2δ
g(t) ≤ 63(3ε+ 7)C/ε so that the right side is bounded by a constant depending on C

and ε. In both case, it follows that

□g(t)

(
|∇g(t)Rg(t)|2g(t)

Rg(t)
− εR2

g(t) + a

(
|Ric|2g(t) −

1

3
R2
g(t)

))
≤ C(ε).

By the maximum principle, we deduce that
|∇g(t)Rg(t)|2g(t)

Rg(t)
≤ C(ε) + εR2

g(t)

as long as the solution exists.

4.4.2 Gradient estimate II

The paths toward obtaining various estimates are often/usually not unique.

Proposition 4.2

♥

Let (M3, g) be a closed 3-manifold with positive Ricci curvature and g(t) is the solution

to the Ricci flow with initial metric g. We have the following variant of the gradient of

scalar curvature estimate. There exists a constant δ ∈ (0, 1/4] depending only on g(0)

such that for any β > 0

|∇g(t)Rg(t)|2g(t)
R3
g(t)

≤ βR−δ
g(t) + C(β)R−2

g(t), (4.4.12)

where C(β) < +∞ depends only on β and g(0).

Proof. Let

V :=
|∇g(t)Rg(t)|2g(t)

Rg(t)
+ a

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
, (4.4.13)

where a is a positive constant. By previous calculus we get

□g(t)V = − 2

R3
g(t)

∣∣∣Rg(t)∇2
g(t)Rg(t) −∇g(t)Rg(t) ⊗∇g(t)Rg(t)

∣∣∣2
g(t)

+
4

Rg(t)

〈
∇g(t)Rg(t),∇g(t)

∣∣Rcg(t)∣∣2〉
g(t)

− 2
|Ricg(t)|2g(t)
R2
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

− 2a

(
|∇g(t)Ricg(t)|2g(t) −

1

3

∣∣∇g(t)Rg(t)
∣∣2
g(t)

)
+ a

(
−2R3

g(t) +
26

3
Rg(t)

∣∣Ricg(t)∣∣2g(t) − 8trg(t)Ric
3
g(t)

)
≤

8|Ricg(t)|g(t)
Rg(t)

∣∣∇g(t)Rg(t)
∣∣
g(t)

∣∣∇g(t)Ricg(t)
∣∣
g(t)

− 2a

21

∣∣∇g(t)Ricg(t)
∣∣2
g(t)

+ a

(
−2R3

g(t) +
26

3
Rg(t)

∣∣Ricg(t)∣∣2g(t) − 8trg(t)Ric
3
g(t)

)
.



4.4 Gradient bounds for the scalar curvature – 236 –

Since

−2R3
g(t) +

26

3
Rg(t)

∣∣Ricg(t)∣∣2g(t) − 8trg(t)Ric
3
g(t) ≤

50

3
Rg(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
,

and 1
3 ≤ |Rcg(t)|g(t)

Rg(t)
≤ 1, |∇g(t)Rg(t)|g(t) ≤

√
3|∇g(t)Rcg(t)|g(t), and the pinching estimate

|Rcg(t) − 1
3Rg(t)g(t)|g(t) ≤ CR1−δ

g(t) for some δ ∈
(
0, 14
]
, it follows that

□g(t)V ≤
(
8
√
3− 2a

21
√
3

) ∣∣∇g(t)Ricg(t)
∣∣2
g(t)

+
50a

3
CR3−2δ

g(t) .

We choose a satisfying

8
√
3− 2a

21
√
3
≤ −1;

thus,

a ≥ 21
√
3

2

(
8
√
3 + 1

)
.

For example, we may choose a = 37
2

(
8
√
3 + 1

)
, and hence

□g(t)V ≤ −
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

+ CR3−2δ
g(t) . (4.4.14)

From □g(t)Rg(t) = 2|Rcg(t)|2g(t), we have

∂t

(
R2−δ
g(t)

)
= (2− δ)R1−δ

g(t)∂tRg(t)

= (2− δ)R1−δ
g(t)

(
∆g(t)Rg(t) + 2

∣∣Ricg(t)∣∣2g(t)) ,
∆g(t)

(
R2−δ
g(t)

)
= ∇i

(
(2− δ)R1−δ

g(t)∇iRg(t)

)
= (2− δ)

(
(1− δ)R−δ

g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

+R1−δ
g(t)∆g(t)Rg(t)

)
= (2− δ)R1−δ

g(t)∆g(t)Rg(t) + (2− δ)(1− δ)R−δ
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

.

Therefore

□g(t)R
2−δ
g(t) = −(1− δ)(2− δ)R−δ

g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

+ 2(2− δ)R1−δ ∣∣Ricg(t)∣∣2g(t) .
Now, the evolution inequality of V −R2−δ

g(t) is

□g(t)

(
V − βR2−δ

g(t)

)
≤ −

∣∣∇g(t)Ricg(t)
∣∣2
g(t)

+ β(1− δ)(2− δ)R−δ ∣∣∇g(t)Rg(t)
∣∣2
g(t)

+ CR3−2δ
g(t) − 2β(2− δ)R1−δ

g(t)

∣∣Ricg(t)∣∣2g(t) .
Since Rg(0) > 0 and M3 is compact, we have Rg(0) ≥ c := minM3 Rg(0) > 0 and hence

Rg(t) ≥ c. Calculate

−
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

+ β(1− δ)(2− δ)
∣∣∇g(t)Rg(t)

∣∣2
g(t)

≤
[
−1

3
+ β(1− δ)(2− δ)c−δ

] ∣∣∇g(t)Rg(t)
∣∣2
g(t)

.

If β ∈ [0, β0], where β0 := cδ

3(1−δ)(2−δ) , then

−
∣∣∇g(t)Ricg(t)

∣∣2
g(t)

+ β(1− δ)(2− δ)
∣∣∇g(t)Rg(t)

∣∣2
g(t)

≤ 0
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On the other hand,

CR3−2δ
g(t) − 2β(2− δ)R1−δ

g(t)

∣∣Ricg(t)∣∣2g(t)
≤ CR3−2δ

g(t) − 2(2− δ)

9
βR3−δ

g(t) = R3−2δ
g(t)

[
C − 2

9
(2− δ)βRδg(t)

]
.

If Rg(t) > ( 9C
2β(2−δ))

1/δ, then the right side is less than zero; if Rg(t) ≤ 9C
2β(2−δ))

1/δ, then the

right side is less than C [9C/2β(2− δ)]
3−2δ

δ . Hence in both cases, we have

CR3−2δ
g(t) − 2β(2− δ)R1−δ

g(t)

∣∣Ricg(t)∣∣2g(t) ≤ C ′(β)

for some constant C ′(β) depending only on β and g(0). Combining the above two estimates

yields

□g(t)

(
V − βR2−δ

g(t)

)
≤ C ′(β)

for any β ∈ [0, β0]. By the maximum principle, we conclude that

V − βR2−δ
g(t) ≤ C + C ′(β)t ≤ C(β) (4.4.15)

holds for any β ∈ [0, β0], since t ≤ Tmax ≤ 1
c . However, when β ≥ β0, from

V − βR2−δ
g(t) = V − β0R

2−δ
g(t) + (β0 − β)R2−δ

(t)

the inequality (4.4.15) is valid. Finally by the definition of V we prove (4.4.12).

Lemma 4.4

♥

The function

F :=
|Ricg(t)|2g(t) −

1
3R

2
g(t)

R2−δ
g(t)

(4.4.16)

satisfies

□g(t)F =
2(1− δ)

Rg(t)

〈
∇g(t)Rg(t),∇g(t)F

〉
g(t)

− 2

R4−δ
g(t)

∣∣Rg(t)∇iRjk −∇iRg(t) ·Rjk
∣∣2
g(t)

(4.4.17)

− δ(1− δ)

R4−δ
g(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

) ∣∣∇g(t)Rg(t)
∣∣2
g(t)

+
2

R3−δ

[
δ
∣∣Ricg(t)∣∣2g(t)(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
− J

]
where

J := 2
∣∣Ricg(t)∣∣4g(t) +Rg(t)

[
R3
g(t) − 5Rg(t)

∣∣Ricg(t)∣∣2g(t) + 4trg(t)Ric
3
g(t)

]
. (4.4.18)

Proof. Using (4.4.3) yields

□g(t)

(
|Rcg(t)|2g(t) −

1
3R

2
g(t)

R2−δ
g(t)

)
=

1

R2−δ
g(t)

□g(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)

− (2− δ)
|Ricg(t)|2g(t) −

1
3R

2
g(t)

R3−δ □g(t)Rg(t)
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− 2(2− δ)

R3−δ
g(t)

〈
∇g(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
,∇g(t)Rg(t)

〉
g(t)

.

Applying the evolution equation (4.4.10) to above, we obtain

□g(t)F = A+B

where

A := − 2

R2−δ
g(t)

(∣∣∇g(t)Ricg(t)
∣∣2
g(t)

− 1

3

∣∣∇g(t)Rg(t)
∣∣2
g(t)

)

− (2− δ)(3− δ)
|Ricg(t)|2g(t) −

1
3R

2
g(t)

R4−δ
g(t)

∣∣∇g(t)Rg(t)
∣∣2
g(t)

+ 2(2− δ)
1

R3−δ
g(t)

〈
∇g(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
,∇g(t)Rg(t)

〉
g(t)

are the gradient terms and

B :=
1

R2−δ
g(t)

(
−2R3

g(t) +
26

3
Rg(t)

∣∣Ricg(t)∣∣2g(t) − 8trg(t)Ric
3
g(t)

)

− 2(2− δ)
|Ricg(t)|2g(t) −

1
3R

2
g(t)

R3−δ
g(t)

∣∣Ricg(t)∣∣2g(t)
are the curvature terms. Simplifying A and B, we prove (4.4.17).

Corollary 4.7

♥

Let (M3, g) be a closed 3-manifold with positive Ricci curvature and g(t) is the solution

to the Ricci flow with initial metric g. Then there exists constants C = C(g(0)) < +∞
and δ ∈

(
0, 29
]

such that ∣∣∣∣Ricg(t) − 1

3
Rg(t)g(t)

∣∣∣∣
g(t)

≤ CR1−δ
g(t) .

Proof. Since M3 is closed, we can always find a positive constant ε ∈
(
0, 13
]

so that Ricg(0) ≥
εRg(0)g(0). (4.3.12) tells us that Ricg(t) ≥ εRg(t)g(t) for t ∈ [0, Tmax]. Note that

J ≥ 2ε2
∣∣Rcg(t)∣∣2g(t)(∣∣Rcg(t)∣∣2g(t) − 1

3
R2
g(t)

)
.

If we choose δ ≤ 2ε2 ≤ 2
9 <

1
4 , then from (4.4.17) we get

□g(t)F ≤ 2(1− δ)

F

〈
∇g(t)Rg(t),∇g(t)F

〉
g(t)

.

therefore the estimate immediately follows from the maximum principle.

4.4.3 Global scalar curvature pinching

In this subsection we apply the gradient estimate and the Bonnet-Myers theorem to show

that the global pinching of the scalar curvature tends to 1 as we approach the singularity time.

For any solution g(t) of the Ricci flow, we set

Rmax(t) := max
M3

Rg(t), Rmin(t) := min
M3

Rg(t).
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Lemma 4.5. (Global scalar curvature pinching)

♥

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that g(t),

t ∈ [0, Tmax) is the solution to the Ricci flow with initial value g. Then we have

lim
t→Tmax

Rmin(t)

Rmax(t)
= 1. (4.4.19)

In fact, there exist constants C < +∞ and γ > 0 depending only on g0 such that

1 ≥ Rmin(t)

Rmax(t)
≥ 1− C

Rγmax(t)
. (4.4.20)

Note 4.4

♣

In later we will prove limt→Tmax maxM3 |Rmg(t)|g(t) = +∞. In our case m =

3, Ricg(t) > 0 since Ricg0 > 0, and Rg(t) ≥ |Ricg(t)|g(t), we must have

limt→Tmax Rmax(t) = +∞. Together (4.4.20) we prove (4.4.19). Meanwhile,

lim
t→Tmax

Rmin(t) = +∞.

Proof. By (4.4.12) and limt→Tmax Rmax(t) = +∞, there exist constants C < +∞ and δ > 0

such that ∣∣∇g(t)Rg(t)
∣∣
g(t)

≤ CRmax(t)
3
2
−δ

on M3 for all t ∈ [0, Tmax). Given t ∈ [0, Tmax) there exists xt ∈ M3 such that Rmax(t) =

Rg(t)(xt). Given η > 0, to be chosen sufficiently small later, for any point

x ∈ Bg(t)(xt, 1/η
√
Rmax(t))

we have Rmax(t)−Rg(t)(x) ≤
maxM3 |∇g(t)Rg(t)|g(t)

η
√
Rmax(t)

≤ C
η Rmax(t)

1−δ. So that

Rg(t)(x) ≥ Rmax(t)

(
1− C

η
Rmax(t)

−δ
)

(4.4.21)

for all x ∈ Bg(t)(xt, 1/η
√
Rmax(t)). We claim that this ball is all of M3. Since

lim
t→Tmax

Rmax(t) = +∞,

by (4.4.21), there exists τ < Tmax such that for t ∈ [τ, Tmax) we have

Rg(t)(x) ≥ Rmax(t)(1− η)

for all x ∈ Bg(t)(xt, 1/η
√
Rmax(t)). Now the Bonnet-Myers theorem and the pinching es-

timate Ricg(t) ≥ εRg(t)g(t), where ε > 0, show that for η > 0 sufficiently small M3 =

Bg(t)(xt, 1/η
√
Rmax(t)).

4.4.4 Global sectional curvature pinching

The Rauch-Klingenberg-Berger topological sphere theorem states that if (Mm, g) is a

complete, simply-connected m-dimensional Riemanian manifold with 1
4 < Secg ≤ 1, then Mm

is homeomorphic to the m-sphere. In particular, if m = 3, then Mm is diffeomorphic to the

3-sphere (since in dimension 3, the differential and topological categories are the same).
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Lemma 4.6. (Global sectional curvature pinching)

♥

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that g(t),

t ∈ [0, Tmax), is the solution to the Ricci flow with initial value g. For every ε ∈ (0, 1),

there exists τ(ε) < Tmax such that for all t ∈ [τ(ε), Tmax) the sectional curvatures of

g(t) are positive and

min
M3

λ1
(
Rmg(t)

)
≥ (1− ε)max

M3
λ3
(
Rmg(t)

)
.

Note 4.5

♣

The Rauch-Klingenberg-Berger topological sphere theorem and Lemma 4.6 implies that

if (N 3, g) is a simply-connected Riemannian manifold satisfies

min
N 3

λ1 (Rmg) >
1

4
max
N 3

λ3 (Rmg)

then (N 3, g) is diffeomorphic to the 3-sphere. Hence the universal cover (M̃3, g̃(t)) of

(M3, g(t)) is diffeomorphic to the 3-sphere for t sufficiently closed to Tmax.

Proof. Recall λ1
(
Rmg(t)

)
≤ λ2

(
Rmg(t)

)
≤ λ3

(
Rmg(t)

)
. By (4.3.15), there exist C < +∞

and δ ∈ (0, 1/4] such that

λ1
(
Rmg(t)

)
λ3
(
Rmg(t)

) ≥ 1− C
R1−δ
g(t)

λ3
(
Rmg(t)

) ≥ 1− 3CRmin(t)
−δ

on x ∈ M3 for t ∈ [0, Tmax). Hence for any ε > 0, there exists τ(ε) < Tmax such that for all

t ∈ [τ(ε), Tmax) we have

λ1
(
Rmg(t)

)
≥ (1− ε)λ3

(
Rmg(t)

)
(4.4.22)

on M3. Hence, by (4.4.20),

λ1
(
Rmg(t)

)
(x) ≥ (1− ε)λ3

(
Rmg(t)

)
(x) ≥ 1− ε

3
Rg(t) ≥ (1− ε)2

3
Rmax(t)(x)

≥ (1− ε)2

3
Rg(t)(y) =

(1− ε)2

3

[
λ1
(
Rmg(t)

)
(y) + λ2

(
Rmg(t)

)
(y) + λ3

(
Rmg(t)

)
(y)
]

≥ (1− ε)2

3

[
λ3
(
Rmg(t)

)
(y) + 2(1− ε)λ3

(
Rmg(t)

)
(y)
]

≥ (1− ε)3λ3
(
Rmg(t)

)
(y).

Thus proves the lemma.

4.5 Exponential convergence of the normalized Ricci flow

Introduction

h Degree of tensor fields

h Maximum and average scalar curva-

tures under the Ricci flow

h Interpolation inequalities for tensor

fields

h Higher derivatives of the curvature

and the proof of Theorem 4.1
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Now we return back to the normalized Ricci flow

∂tg(t) = −2Ricg(t) +
2

3
Rg(t)g(t)

where Rg(t) :=
∫
M Rg(t)dVg(t)/

∫
M dVg(t) is the average of the scalar curvature. Since the

volume is preserved by the normalized flow, it follows that

Rg(t) =
1

Vg

∫
M3

Rg(t)dVg(t)

with

Vg =

∫
M
dVg.

4.5.1 Degree of tensor fields

Let (Mm, g) be an m-dimensional Riemannian manifold. We say that a tensor quantity αg
depending on the metric g has degree k in g if

αcg = ckαg (4.5.1)

for any c > 0.

Note 4.6

♣

Rm
(3,1)
g has degree 0, Rm(4,0)

g has degree 1, Ricg has degree 0, Rg has degree −1, and

dVg has degree m
2 .

Lemma 4.7

♥

If an expression Xg(t) formed algebraically from the metric and the Riemann curvature

tensor by contractions has degree k and if under the Ricci flow

□g(t)Xg(t) = Yg(t), (4.5.2)

then the degree of Yg(t) is k − 1 and the evolution under the normalized Ricci flow

∂t̄ḡ(t̄) = −2Ricḡ(t̄) +
2

m
Rḡ(t̄)ḡ(t̄)

of Xḡ(t̄) is given by

□ḡ(t̄)Xḡ(t̄) = Yḡ(t̄) + k
2

m
Rḡ(t̄)Xḡ(t̄). (4.5.3)

Note 4.7

♣

The above lemma also holds when the equalities in (4.5.2) and (4.5.3) are replaced by

inequalities going the same way.

Proof. It is clear that the degree of Yg(t) is k − 1. Recall that ḡ(t̄) = c(t)g(t), where

c(t) = exp

(
2

m

∫ t

0
Rg(τ)dτ

)
, t̄(t) =

∫ t

0
c(τ)dτ.

Then

∂t̄Xḡ(t̄) = ∂tXḡ(t̄) ·
dt

dt̄
= ∂t

(
[c(t)]kXg(t)

) 1

c(t)
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=
1

c(t)

(
k[c(t)]k−1dc(t)

dt
Xg(t) + [c(t)]k∂tXg(t)

)
= [c(t)]k−1

(
∆g(t)Xg(t) + Yg(t)

)
+ k[c(t)]k−1 2

m
Rg(t)Xg(t)

= ∆ḡ(t̄)Xḡ(t̄) + Yḡ(t̄) + k
2

m
Rḡ(t̄)Xḡ(t̄)

where we use the fact that Rḡ(t̄) = 1
c(t)Rg(t).

4.5.2 Maximum and average scalar curvatures under the Ricci flow

Next we study the maximum and average scalar curvatures under the Ricci flow.

Lemma 4.8

♥

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that g(t),

t ∈ [0, Tmax), is the solution to the Ricci flow with initial value g. Then

Rmax(t) ≥
1

2(Tmax − t)
(4.5.4)

and in particular ∫ Tmax

0
Rmax(t)dt = +∞. (4.5.5)

Proof. We have

R′
max(t) ≤ sup

M3

2
∣∣Ricg(t)∣∣2g(t) ≤ 2Rmax(t)

2.

Because limt→Tmax Rmax(t) = ∞, we have Rmax(t) ≥ 1
2(Tmax−t) . (4.5.5) is an immediate

consequence of (4.5.4).

Note 4.8

♣

If [0, Tmax) is the maximal time interval of existence of the normalized Ricci flow, then∫ Tmax

0
Rg(t)dt = +∞.

Indeed, ∫ t0

0
Rg(t)dt =

∫ t0

0
c(t)−1Rg(t)

dt

dt
dt =

∫ t0

0
Rg(t)dt.

Lemma 4.5 and Lemma 4.8 imply∫ Tmax

0
Rg(t)dt = +∞.

Lemma 4.9. (Estimates for the normalized Ricci flow)
Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that ḡ(t),

t̄ ∈ [0, Tmax), is the solution to the normalized Ricci flow with initial value g. Then there
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♥

exist constants C < +∞ and δ > 0 such that

lim
t̄→Tmax

Rmax(t̄)

Rmin(t̄)
= 1, (4.5.6)

Ricḡ(t̄) ≥ δRḡ(t̄)ḡ(t̄), (4.5.7)

Rmax(t̄) ≤ C, diam(M3, ḡ(t̄)) ≥ 1

C
(4.5.8)

Tmax = +∞, (4.5.9)

Rmin(t̄) ≥ 1

C
, diam(M3, ḡ(t)) ≤ C, (4.5.10)∣∣∣∣Ricḡ(t̄) − 1

3
Rḡ(t̄)ḡ(t̄)

∣∣∣∣
ḡ(t̄)

≤ Ce−δt̄, (4.5.11)

Rmax(t̄)−Rmin(t̄) ≤ Ce−δt̄, (4.5.12)∣∣∣∣Ricḡ(t̄) − 1

3
Rḡ(t̄)ḡ(t̄)

∣∣∣∣
ḡ(t̄)

≤ Ce−δt̄. (4.5.13)

In particular, there exists a constant C < +∞ such that
1

C
ḡ(0) ≤ ḡ(t̄) ≤ Cḡ(0) (4.5.14)

for all t̄ ∈ [0,∞), and the metrics ḡ(t̄) converge uniformly on compact sets to a continuous

metric ḡ(+∞) as t̄→ +∞.

Proof. (4.5.6) and (4.4.15) immediately follow from the corresponding results for the un-

normalized Ricci flow and the scalar-invariant properties.

Since under the normalized Ricci flow the volume is invariant, we have Vḡ(t̄) is constant.

On the other hand, applying the Bishop-Gromov volume comparison theorem to our case that

Ricḡ(t̄) ≥ 0, we have

Vḡ(t̄) ≤ C
[
diam(M3, ḡ(t̄))

]3
for some universal constant C. Byproduct we have diam(ḡ(t̄)) ≥ C > 0. Since Rcḡ(t̄) ≥
εRmax(t)ḡ(t) for some ε > 0, by the Bonnet-Myers theorem, we have

diam(M3, ḡ(t̄)) ≤ C√
Rmax(t)

and we conclude Rmax(t̄) ≤ C. (4.5.8) implies

Rḡ(t̄) =
1

Vḡ(t̄)

∫
M3

Rḡ(t̄)dVḡ(t̄) ≤ C.

If Tmax < +∞, then Note 4.8 shows that +∞ ≤ CTmax, a contradiction. Hence Tmax = +∞.

By Klingenberg’s injectivity radius estimate and replacing (M3, ḡ(t̄)) by their universal

covering Riemannian manifolds (M̃3, ˜̄g(t̄)), we have

inj˜̄g(t̄) ≥ εRmax(t̄)
−1/2

for some universal constant ε > 0. Since Sec˜̄g(t̄) ≤ CRmax(t̄), this implies

V˜̄g(t̄) ≥ εRmax(t̄)
−3/2
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for some other constant ε > 0. Hence we have

Vḡ(t̄) ≥ δ′Rmax(t̄)
−3/2

where δ′ > 0 depends also on |π1(M3)| < +∞. Hence Rmax(t̄) ≥ 1
C and the same es-

timate holds for Rmin(t̄) by (4.5.6). Note that we also obtained a uniform upper bound for

diam(M3, ḡ(t̄)).

Let

f̄(t̄) :=
|Ricḡ(t̄) − 1

3Rḡ(t̄)ḡ(t̄)|
2
ḡ(t̄)

R2
ḡ(t̄)

.

Then f̄(t̄) satisfies the following equation

□ḡ(t̄)f̄(t̄) = 2
〈
∇ḡ(t̄) lnRḡ(t̄),∇ḡ(t̄)f̄(t̄)

〉
ḡ(t̄)

− 2

R4
ḡ(t̄)

∣∣Rḡ(t̄)∇ḡ(t̄)Ricḡ(t̄) −∇ḡ(t̄)Rḡ(t̄) ⊗ Ricḡ(t̄)
∣∣2
ḡ(t̄)

+ 4P̄ (t̄)

where

P (t̄) =
1

R3
ḡ(t̄)

[
5

2
R2
ḡ(t̄)

∣∣Ricḡ(t̄)∣∣2ḡ(t̄) − 2Rḡ(t̄)trḡ(t̄)Ric
3
ḡ(t̄) −

1

2
R4
ḡ(t̄) −

∣∣Ricḡ(t̄)∣∣4ḡ(t̄)] .
We claim that

P (t̄) ≤ −δ2
|Ricḡ(t̄) − 1

3Rḡ(t̄)ḡ(t̄)|
2
ḡ(t̄)

Rḡ(t̄)
.

Let λ1 ≥ λ2 ≥ λ3 denote the eigenvalues of Rcg(t). Then

R3
ḡ(t̄)P (t̄) =

5

2
(λ1 + λ2 + λ3)

2 (λ21 + λ21 + λ23
)

− 2 (λ1 + λ2 + λ3)
(
λ31 + λ32 + λ33

)
− 1

2
(λ1 + λ2 + λ3)

4 −
(
λ21 + λ22 + λ23

)2
= − (λ1 − λ2)

2 [λ21 + (λ1 + λ2) (λ2 − λ3)
]
− λ23 (λ1 − λ3) (λ2 − λ3)

≤ −λ21 (λ1 − λ2)
2 − λ23 (λ2 − λ3)

2 ≤ −δ2R2
ḡ(t̄)

[
(λ1 − λ2)

2 + (λ2 − λ3)
2
]

≤ −δ2R2
ḡ(t̄)

1

3

[
(λ1 − λ2)

2 + (λ1 − λ3)
2 + (λ2 − λ3)

2
]

= −δ2R2
ḡ(t̄)

∣∣∣∣Ricḡ(t̄) − 1

3
Rḡ(t̄)ḡ(t̄)

∣∣∣∣2
ḡ(t̄)

.

Plugging this estimate into the evolution equation of f̄(t̄) yields

□ḡ(t̄)f̄(t̄) ≤ 2
〈
∇ḡ(t̄) lnRḡ(t̄),∇ḡ(t̄)f̄(t̄)

〉
ḡ(t̄)

− 4δ2Rḡ(t̄)f̄(t̄)

≤ 2
〈
∇ḡ(t̄) lnRḡ(t̄),∇ḡ(t̄)f̄(t̄)

〉
ḡ(t̄)

− 4δ2

C
f̄(t̄).

The maximum principle shows that f̄(t̄) ≤ Ce−δt for some universal constant C. From (4.5.8)

we derive (4.5.11).

(4.4.6) and (4.4.11) imply that

ψ(t) :=
|∇g(t)Rg(t)|2g(t)

Rg(t)
+ 168

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
satisfies, under the un-normalized Ricci flow

□g(t)ψ(t) ≤ 672Rg(t)

(∣∣Ricg(t)∣∣2g(t) − 1

3
R2
g(t)

)
.
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Hence, for the normalized Ricci flow, the corresponding quantity ψ(t̄), since ψ has degree −2,

satisfies

□ḡ(t̄)ψ(t̄) ≤ 672Rḡ(t̄)

(∣∣Ricḡ(t̄)∣∣2ḡ(t̄) − 1

3
R2
ḡ(t̄)

)
− 4

3
Rḡ(t̄)ψ(t̄) ≤ Ce−δt̄ − δ1ψ(t̄)

for some δ1 ∈ (0, δ]. We can conclude that

□ḡ(t̄)

(
eδ1 t̄ψ(t̄)− Ct̄

)
≤ 0

and hence ψ(t̄) ≤ Ce−δ1 t̄(1 + t̄) ≤ Ce−δ2 t̄ for some δ2 ∈ (0, δ1]. This gives us the gradient

estimate ∣∣∇ḡ(t̄)Rḡ(t̄)
∣∣
ḡ(t̄)

≤ Ce−δ2 t̄.

Since the diameters of ḡ(t̄) are uniformly bounded, we obtain (4.5.12) by integrating the gradient

estimate along minimal geodesics. Calculate∣∣∣∣Ricḡ(t̄) − 1

3
Rḡ(t̄)ḡ(t̄)

∣∣∣∣
ḡ(t̄)

≤
∣∣∣∣Ricḡ(t̄) − 1

3
Rḡ(t̄)ḡ(t̄)

∣∣∣∣
ḡ(t̄)

+
1

3

∣∣∣Rḡ(t̄) −Rḡ(t̄)

∣∣∣
ḡ(t̄)

≤
∣∣∣∣Ricḡ(t̄) − 1

3
Rḡ(t̄)ḡ(t̄)

∣∣∣∣
ḡ(t̄)

+
1

3
[Rmax(t̄)−Rmin(t̄)] .

It is clear that (4.5.13) follows from (4.5.11) and (4.5.12). The last result will be proved later.

4.5.3 Interpolation inequalities for tensor fields

Let T = (Ti1···iℓ) denote a `-form or a covariant tensor of degree `, on a compact Riemma-

nian manifold (Mm, g) of dimension m. The Lp-norm is denoted by || · ||Lp,g:

|| · ||Lp,g :=

(∫
Mm

| · |pgdVg
)1/p

.

Theorem 4.5

♥

Suppose
1

p
+

1

q
=

1

r
, r ≥ 1.

Then

||∇gT ||2L2r,g ≤ (2r − 2 +m)
∣∣∣∣∇2

gT
∣∣∣∣
Lp,g

||T ||Lq ,g . (4.5.15)

Proof. Calculate∫
Mm

|∇gT |2rg dVg =

∫
Mm

∇jT∇jT |∇gT |2r−2
g dVg

= −
∫
Mm

T∇j
(
∇jT |∇gT |2r−2

g

)
dVg

= −
∫
Mm

T
(
∆gT |∇gT |2r−2

g +∇jT∇j |∇gT |2r−2
g

)
dVg.

Since

∇j |∇gT |2r−2
g = ∇j

(
〈∇gT,∇gT 〉g

)r−1
= (r − 1) |∇gT |2r−4

g ∇j 〈∇gT,∇gT 〉g
= 2(r − 1)

〈
∇j∇gT,∇gT

〉
g
|∇gT |2r−4

g ,
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it follows that∫
M

|∇gT |2rg dVg = −
∫
M
T∆gT |∇gT |2r−2

g dVg

− 2(r − 1)

∫
M

〈T,∇jT 〉g
〈
∇gT,∇j∇gT

〉
g
|∇gT |2r−4

g dVg.

Now

|T∆gT |g ≤ m |T |g
∣∣∇2

gT
∣∣
g
,

〈T,∇jT 〉g
〈
∇gT,∇j∇gT

〉
g

≤ |T |g |∇gT |2g
∣∣∇2

gT
∣∣
g

and therefore∫
Mm

|∇gT |2rg dVg ≤ (2r − 2 +m)

∫
Mm

|T |g
∣∣∇2

gT
∣∣
g
|∇gT |2r−2

g dVg.

We can estimate the last integral using Hölder inequality with
1

p
+

1

q
+
r − 1

r
= 1,

and we get∫
Mm

|∇gT |2rg dVg ≤ (2r − 2 +m)

(∫
Mm

∣∣∇2
gT
∣∣2
g
dVg

)
(∫

Mm

|T |qg dVg
)1/q

·
(∫

M
|∇gT |2rg dVg

)1− 1
r

.

Simplifying above inequality yields the required result.

Corollary 4.8

♥

If p ≥ 1 then

||∇gT ||2L2p,g ≤ (2p− 2 + n)max
Mm

|T |g ·
∣∣∣∣∇2

gT
∣∣∣∣
Lp,g

. (4.5.16)

Next we need a result on convexity, which is geometrically obvious.

Lemma 4.10

♥

Let f(i) be real-valued function of the integer k for i = 0, 1, · · · , k. If

f(i) ≤ f(i− 1) + f(i+ 1)

2
, i = 1, · · · , k − 1.

then

f(i) ≤
(
1− i

k

)
f(0) +

i

k
f(k). (4.5.17)

Thus, the value f(i) is determined by the values of f at the endpoints.

Proof. Set

f(i) := f(i)−
(
1− i

k

)
f(0)− i

k
f(k)

and g(i) := f(i)− f(i− 1) for i = 1, · · · , n. We can check that the hypothesis for f also holds

for f :

f(i− 1) + f(i+ 1) = f(i− 1)−
(
1− i− 1

k

)
f(0)− i− 1

k
f(k)
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+ f(i+ 1)−
(
1− i+ 1

k

)
f(0)− i+ 1

k
f(k)

= f(i− 1) + f(i+ 1)−
(
2− 2i

k

)
f(0)− 2i

k
f(k)

≥ 2f(i)− 2

(
1− i

k

)
f(0)− 2i

k
f(k) = 2f(i).

Moreover f(0) = 0 = f(k), and g(i) ≤ g(i+ 1). Therefore we can choose an integer j so that

g(1) ≤ · · · ≤ g(j) ≤ 0 ≤ g(j + 1) ≤ · · · ≤ g(k).

For any i,

f(i) =
∑

1≤ℓ≤i
g(`) = −

∑
i+1≤ℓ≤k

g(`).

When i ≤ j, the first representation is negative and when i ≥ j the second is. This proves

f(i) ≤ 0 for 0 ≤ i ≤ k.

Corollary 4.9

♥

If f(i) satisfies

f(i) ≤ f(i− 1) + f(i+ 1)

2
+ C

for some constant C, then

f(i) ≤
(
1− i

k

)
f(0) +

i

k
f(k) + Ci(k − i).

Proof. Let

g(i) := f(i) + Ci2.

Then 2g(i) ≤ g(i− 1) + g(i+ 1). Lemma 4.10 implies

g(i) ≤
(
1− i

k

)
g(0) +

i

k
g(k)

that is the desired result.

Corollary 4.10

♥

If f(i) is nonnegative and satisfies

f(i) ≤ Cf(i− 1)1/2f(i+ 1)1/2

for some positive constant C > 0, then

f(i) ≤ Ci(k−i)f(0)1−
i
k f(k)

i
k .

Proof. Without loss of generality, we may assume f(i) > 0 for all i. Set

g(i) := ln f(i).

Hence

g(i) ≤ g(i− 1) + g(i+ 1)

2
+ lnC.
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By Corollary 4.10, g(i) ≤
(
1− i

k

)
g(0) + i

kg(k) + lnC · i(k − i).

Lemma 4.11

♥

For any k ∈ N there exists a constant C = C(k,m) depending only on k and m such

that for any tensor field T

(1) if j = 1, · · · , k − 1, then∫
Mm

∣∣∇j
gT
∣∣2k/j
g

dVg ≤ C(k,m)max
Mm

|T |
2
(

k
j
−1

)
g

∫
M

∣∣∣∇k
gT
∣∣∣2
g
dVg.

Here we can choose C(k,m) = (2k − 2 +m)2k
2 .

(2) if j = 0, · · · , k, then∫
Mm

∣∣∇j
gT
∣∣2
g
dVg ≤ C(k,m)

(∫
Mm

∣∣∣∇k
gT
∣∣∣2
g
dVg

) j
k
(∫

Mm

|T |2g dVg
)1− j

k

.

Here we can choose C(k,m) = m2k2 .

Proof. Pick p = 2k
i+1 , q = 2k

i−1 , and r = k
i ≥ 1 in Theorem 4.5. Then∣∣∣∣∇i

gT
∣∣∣∣2
L

2k
i ,g

≤
(
2k

i
− 2 +m

) ∣∣∣∣∇i+1
g ∇gT

∣∣∣∣
L

2k
i+1 ,g

∣∣∣∣∇i−1
g T

∣∣∣∣
L

2k
i−1 ,g

.

For i = 1, we use Corollary 4.8 to get

||∇gT ||2L2k,g ≤ (2k − 2 +m)max
Mm

|T |g
∣∣∣∣∇2

gT
∣∣∣∣
Lk,g

.

Let

C = 2k − 2 + n, f(0) = max
Mm

|T |g, f(i) =
∣∣∣∣∇i

gT
∣∣∣∣
L

2k
i ,g

, i = 1, · · · , k.

So f(i) ≤ Cf(i+ 1)1/2f(i− 1)1/2. By Corollary 4.10,

f(i) ≤ Ci(k−i)f(0)1−
i
k f(k)

i
k .

Thus, ∣∣∣∣∇i
gT
∣∣∣∣
L

2k
i ,g

≤ (2k − 2 +m)i(k−i)
(
max
Mm

|T |g
)1− i

k
∣∣∣∣∣∣∇k

gT
∣∣∣∣∣∣ ik
L2,g

.

For (2), we choose p = q = 2 and r = 1 in Theorem 4.5 and obtain∣∣∣∣∇i
gT
∣∣∣∣2
L2,g

≤ m
∣∣∣∣∇i+1

g T
∣∣∣∣
L2,g

∣∣∣∣∇i−1
g T

∣∣∣∣
L2,g

.

Applying Corollary 4.10 to above implies∣∣∣∣∇i
gT
∣∣∣∣
L2,g

≤ mi(k−i) ||T ||1−
i
k

L2,g

∣∣∣∣∣∣∇k
gT
∣∣∣∣∣∣ ik
L2,g

.

This completes the proof.

4.5.4 Higher derivatives of the curvature and the proof of Theorem 4.1

Next we study the higher derivatives of the curvature. It is easy to see that (or see later)

□g(t)

∣∣∣∇k
g(t)Rmg(t)

∣∣∣2
g(t)

≤ −2
∣∣∣∇k+1

g(t)Rmg(t)

∣∣∣2
g(t)

+ C
∑

0≤ℓ≤k

∣∣∣∇ℓ
g(t)Rmg(t)

∣∣∣
g(t)

∣∣∣∇k−ℓ
g(t)Rmg(t)

∣∣∣
g(t)

∣∣∣∇k
g(t)Rmg(t)

∣∣∣
g(t)

.
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Lemma 4.12

♥

Let (M3, g) be a closed 3-manifold with positive Ricci curvature. Suppose that ḡ(t̄),

t ∈ [0,+∞), is the solution to the normalized Ricci flow with initial value g0. Then there

exists positive constants C and δ depending on k and n such that∣∣∣∇k
ḡ(t̄)Ricḡ(t̄)

∣∣∣
ḡ(t̄)

≤ Ce−δt̄ (4.5.18)

for all k ∈ N.

Proof. First we consider the un-normalized Ricci flow. Calculate
d

dt

∫
M3

∣∣∣∇k
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t) + 2

∫
M3

∣∣∣∇k+1
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t)

≤ C
∑

0≤ℓ≤k

∫
M3

∣∣∣∇ℓ
g(t)Rmg(t)

∣∣∣
g(t)

∣∣∣∇k−ℓ
g(t)Rmg(t)

∣∣∣
g(t)

∣∣∇g(t)Rmg(t)

∣∣
g(t)

dVg(t)

≤ C
∑

0≤ℓ≤k

(∫
M3

∣∣∣∇ℓ
g(t)Rmg(t)

∣∣∣ 2kℓ
g(t)

dVg(t)

) ℓ
2k

(∫
M3

∣∣∣∇k−ℓ
g(t)Rmg(t)

∣∣∣ 2k
k−ℓ

g(t)
dVg(t)

) k−ℓ
2k
(∫

M3

∣∣∣∇k
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t)

)1/2

.

By Lemma 4.11, we have(∫
M3

∣∣∣∇ℓ
g(t)Rmg(t)

∣∣∣ 2kℓ
g(t)

dVg(t)

) ℓ
2k

≤ Cmax
M3

∣∣Rmg(t)

∣∣1− ℓ
k

g(t)(∫
M3

∣∣∣∇k
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t)

) ℓ
2k

(∫
M3

∣∣∣∇k−ℓ
g(t)Rmg(t)

∣∣∣ 2k
k−ℓ

g(t)
dVg(t)

) k−ℓ
2k

≤ Cmax
M3

∣∣Rmg(t)

∣∣ ℓk
g(t)(∫

M3

∣∣∣∇k
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t)

) k−ℓ
2k

.

Therefore
d

dt

∫
M3

∣∣∣∇k
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t) ≤ −2

∫
M3

∣∣∣∇k+1
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t)

+ Cmax
M3

∣∣Rmg(t)

∣∣
g(t)

∫
M3

∣∣∣∇k
g(t)Rmg(t)

∣∣∣2
g(t)

dVg(t).

Lemma 4.7 and (4.5.8), together with above inequality, shows that
d

dt

∫
M3

∣∣∣∇k
g(t)Ricg(t)

∣∣∣2
g(t)

dVg(t) ≤ −2

∫
M3

∣∣∣∇k+1
g(t)

Ricg(t)

∣∣∣2
g(t)

dVg(t)

+ C

∫
M3

∣∣∣∇k
g(t)Ricg(t)

∣∣∣2
g(t)

dVg(t)

where we use the fact that in dimension three Rm is equivalent to Ricg. For any k > 0 we have∣∣∣∇k
ḡ(t̄)Ricḡ(t̄)

∣∣∣2
ḡ(t̄)

=

∣∣∣∣∇k
ḡ(t̄)

(
Ricḡ(t̄) −

Rḡ(t̄)

3
ḡ(t̄)

)∣∣∣∣2
ḡ(t̄)

.
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Applying Lemma 4.11 to the tensor Ricḡ(t̄) −
Rḡ(t̄)

3 ḡ(t̄) yields∫
M3

∣∣∣∇k
ḡ(t̄)Ricg(t̄)

∣∣∣2
ḡ(t̄)

dVḡ(t̄) ≤ C

(∫
M3

∣∣∣∇k+1
ḡ(t̄)

Ricḡ(t̄)

∣∣∣2
g(t̄)

dVḡ(t̄)

) k
k+1

(∫
M3

∣∣∣∣Ricḡ(t̄) − Rḡ(t̄)

3
ḡ(t̄)

∣∣∣∣2
ḡ(t̄)

dVḡ(t̄)

) 1
k+1

.

Now we claim that for any x, y, ε > 0,

xny ≤ εxn+1 +
1

εn
yn+1. (4.5.19)

The proof of (4.5.19) is based on the following elementary inequality tn ≤ tn+1 + 1 for any

t > 0. Picking t = εx/y implies (4.5.19). For simplicity, we define

fi(t̄) :=

∫
M3

∣∣∣∇i
ḡ(t̄)Ricḡ(t̄)

∣∣∣2
ḡ(t̄)

dVḡ(t̄).

Using (4.5.19), we have, choosing ε = 2
C ,

d

dt̄
fk(t̄) ≤ −2fk+1(t̄) + Cεfk+1(t̄) +

C

εn

∫
M

∣∣∣∣Ricḡ(t̄) − Rḡ(t̄)

3
ḡ(t̄)

∣∣∣∣2
ḡ(t̄)

dVḡ(t̄) ≤ Ce−δt̄

for some δ > 0. Hence
d

dt̄

(
eδt̄fk(t̄)

)
≤ C + δeδt̄

which implies fk(t̄) ≤ C for some uniform constant C depending on k and n. We can apply

Lemma 4.11 again to obtain∫
M

∣∣∣∇j
ḡ(t̄)

Ricḡ(t̄)

∣∣∣ 2kj dVḡ(t̄) ≤ Cmax
M3

∣∣∣∣Ricḡ(t̄) − Rḡ(t̄)

3
ḡ(t̄)

∣∣∣∣2
(

k
j
−1

)
∫
M3

∣∣∣∇k
ḡ(t̄)Ricḡ(t̄)

∣∣∣2
ḡ(t̄)

dVḡ(t̄)

for any j = 1, · · · , k − 1. Hence, given j, p ∈ N, we may choose k = pj to conclude∫
M3

∣∣∣∇j
ḡ(t̄)

Ricḡ(t̄)

∣∣∣2p
ḡ(t̄)

dVḡ(t̄) ≤ Cmax
M3

∣∣∣∣Ricḡ(t̄) − Rḡ(t̄)

3
ḡ(t̄)

∣∣∣∣2(p−1)

∫
M3

∣∣∣∇pj
ḡ(t̄)

Ricḡ(t̄)

∣∣∣2
ḡ(t̄)

dVḡ(t̄) ≤ Ce−δt̄

for some C < +∞ and δ > 0, depending on j and p. Since all metrics ḡ(t̄) are uniformly

equivalent for t ∈ [0,+∞), the Sobolev constant is uniformly bounded and it follows from the

Sobolev inequality that for any k ∈ N, there exists C < +∞ and δ > 0, depending on k and n,

such that ∣∣∣∇k
ḡ(t̄)Ricḡ(t̄)

∣∣∣
ḡ(t̄)

≤ Ce−δt̄

that completes the proof.

From the above lemma and the fact that we can estimate the derivatives of the metrics in

terms of the estimates for the derivatives of the Ricci tensor, we can finish the proof of Theorem
4.1:

Proof of Theorem 4.1. By (4.5.14) the metrics ḡ(t̄) are uniformly equivalent and converge

uniformly on compact sets to a continuous metric ḡ(∞) as t̄ → +∞. On the other hand, the
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estimates (4.5.18) imply the exponential convergence in each Ck-norm of ḡ(t̄) to ḡ(∞). This

implies ḡ(∞) is C∞. By (4.5.13) we conclude∣∣∣∣Ricḡ(∞) −
Rḡ(∞)

3
ḡ(∞)

∣∣∣∣
ḡ(∞)

≡ 0.

That is, ḡ(∞) has constant positive sectional curvature.
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