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CHAPTER 1

Introduction

1.1. Sets and mappings

The power set of a given set A is defined to be

2A := {all subsets of A} ⊇ A.

Notions:
• A := B: A is defined by B,
• ∀: any/for any,
• ∃: there exists/exist · · · ,
• !: unique,
• ∃!: there exists a unique · · · ,
• N := {0, 1, 2, 3, · · · }: the set of all national numbers,
• Z: the set of all integers,
• Z<0 := Z \N,
• Q: the set of all rational numbers,
• R: the set of all real numbers,
• C: the set of all complex numbers,
• i.e.: (Latin) id est = that is/in other words,
• e.g.: (Latin) exempli gratia = for example,
• WLOG: without loss of generality,
• TFAE: the following are equivalent,
• resp.: respectively,

1.1.1. Arbitrary unions and intersections. Let A be a collection of sets.
(1) Union: ⋃

A∈A

A := {x : x ∈ A for at least one A ∈ A }.

(2) Intersection:⋂
A∈A

A := {x : x ∈ A for every A ∈ A }.

When A = ∅, we let ∪A∈A A = ∅.

1.1.2. Cartesian products I. Let A, B be two sets.
(1) Cartesian product:

A× B := {(a, b) : a ∈ A and b ∈ B}.
(2) Order pair:

(a, b) := {{a}, {a, b}}
where a is called the first coordinate while b the second coordinate.
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6 1. INTRODUCTION

1.1.3. Maps. Let C, D be two sets.

(1) A rule of assignment is a subset R of C× D such that

(c, d) ∈ R and (c, d′) ∈ R =⇒ d = d′.

(2) Suppose that R is a rule of assignment. Define

Dom(R) ≡ domain(R) := {c ∈ C : ∃ d ∈ D such that (c, d) ∈ R},
Im(R) ≡ image(R) := {d ∈ D : ∃ c ∈ C such that (c, d) ∈ R}.

A map f is a pair (R, B), where R is a rule of assignment and B is a set (called
the range of f ), such that Im(R) ⊂ B.

(1) domain of f ≡ Dom( f ) := Dom(R),
(2) image of f ≡ Im( f ) := Im(R),
(3) We write:

f : A −→ B, a 7−→ f (a),

where A is the domain of f , B is the range of f (so that Im( f ) ⊆ B), and
f (a) is the unique element of B satisfying (a, f (a)) ∈ R.

Example 1.1.1. Assume C = D := R, f (x) := x2, R := R×R≥0, and B := R. In
this case, A = R and Im( f ) = R≥0.

Consider two maps f : A→ B and g : B→ C.

(1) For a given subset A0 of A, define the restriction of f to A0 as the map
f |A0 = f : A0 → B.

(2) Composite:
g ◦ f : A −→ C, a 7−→ c

where f (a) = b and g(b) = c for some b ∈ B.

Suppose that f : A→ B is a map.

(1) f is injective if
f (a) = f (a′) =⇒ a = a′.

(2) f is surjective if

∀ b ∈ B ∃ a ∈ A such that f (a) = b.

(3) f is bijective if f is injective and surjective.
(4) If f is bijective, we define its inverse f−1 by

f−1(b) = a⇐⇒ f (a) = b.

Lemma 1.1.2. Let f : A→ B be a map. If there exist a left inverse g : B→ A of f (i.e.,
g( f (a)) = a for all a ∈ A) and a right inverse h : B→ A of f (i.e., f (h(b)) = b for all
b ∈ B), then f is bijective and g = h = f−1.
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Exercise 1.1.3. (1) Show that if f has a left (resp., right) inverse, then f is injective
(resp., surjective).

(2) Given examples of maps that have a left (resp., right) inverse but no right
(resp., left) inverse.

(3) Can a map have more than one left (or right) inverse?
(4) Prove Lemma 1.1.2.

Let f : A→ B be a map, A0 ⊆ A and B0 ⊆ B.
(1) Image of A0 under f ≡ f (A0) := { f (a) : a ∈ A0},
(2) Preimage of B0 under f ≡ f−1(B0) := {a : f (a) ∈ B0}.
(3) It is clear that

A0 ⊆ f−1( f (A0)), B0 ⊇ f ( f−1(B0)).

There are examples such that both equalities in (3) may not be true (Find such ex-
amples!).

When B is a number field, we will say functions instead of maps.

1.1.4. Categories. A category C consists of
1) a family Ob(C) of objects of C,
2) ∀ pair (X, Y) of Ob(C), ∃ set HomC(X, Y) of morphisms from X to Y,

and
3) ∀ triple (X, Y, Z) of Ob(C), ∃map

HomC(X, Y)×HomC(Y, Z) −→ HomC(X, Z), ( f , g) 7−→ g ◦ f

called the composition map.
These data satisfy

a) composition is associative, i.e., ( f ◦ g) ◦ h = f ◦ (g ◦ h),
b) ∀ X ∈ Ob(C) ∃ idX ∈ HomC(X, X) such that

f ◦ idX = f , idX ◦ g = g

for any f ∈ HomC(X, Y) and g ∈ HomC(Y, X).

Example 1.1.4. There are some classical categories:
(1) Set: sets and functions,
(2) Group: groups and group homomorphisms (in abstract algebra),
(3) VectR: real vector spaces and R-linear maps (in linear algebra),
(4) Top: topological spaces and continuous maps (in topology),
(5) Calabi-Yau category: in differential geometry/algebraic geometry ho-

mological mirror symmetry/SYZ conjecture.

Let C be a category.
(1) Write f ∈ HomC(X, Y) as f : X → Y.
(2) f ∈ HomC(X, Y) is an isomorphism if there exists a morphism g ∈

HomC(Y, X) such that

f ◦ g = idY and g ◦ f = idX .
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(3) A subcategory C′ of C is a category such that
– Ob(C′) ⊆ Ob(C),
– HomC′(X, Y) ⊆ HomC(X, Y) for all X, Y ∈ Ob(C′),
– idX ∈ HomC′(X, X) for each X ∈ Ob(C′).

We say that C′ is a full subcategory of C if it is a subcategory and more-
over HomC′(X, Y) = HomC(X, Y) for each pair (X, Y) of objects.

(4) Top is a subcategory, but not a full subcategory, of Set.
(5) The opposite category C◦ of C is defined as follows:

Ob(C◦) := Ob(C), HomC◦(X, Y) := HomC(Y, X).

(6) Let f ∈ HomC(X, Y).
– f is a monomorphism or is said to be injective if for any W ∈ Ob(C)

and any g, g′ ∈ HomC(W, X) with f ◦ g = f ◦ g′, we have g = g′.

W
g−−−−→
g′

X
f−−−−→ Y

– f is an epimorphism or is said to be surjective if for any Z ∈ Ob(C)
and any h, h′ ∈ HomC(Y, Z) with h ◦ f = h′ ◦ f , we have h = h′.

X
f−−−−→ Y h−−−−→

h′
Z

– f is said to be bijective if it is both injective and surjective.
(7) P ∈ Ob(C) is initial if for any Y ∈ Ob(C), HomC(P, Y) has exactly one

element. Q ∈ Ob(C) is final if for any X ∈ Ob(C), HomC(X, Q) has
exactly one element.

Exercise 1.1.5. (1) Prove that two initial (resp., final) objects are isomorphic.
(2) Isomorphism is bijective, but the converse may not true.

A (covariant) functor F : C→ C′ between two categories consists
1) a map F : Ob(C)→ Ob(C′),
2) ∀ pair (X, Y) in Ob(C), ∃map F : HomC(X, Y)→ HomC′(F(X), F(X′)).

These data satisfy
a) F(idX) = idF(X), and
b) F( f ◦ g) = F( f ) ◦ F(g).

A contravariant functor G : C→ C′ is a functor G : C◦ → C′.

Example 1.1.6. (1) Forgetful factor F : Top→ Set.
(2) Fundamental group functor π1 : Top∗ → Group, (X, x) 7→ π1(X, x) (the

fundamental group of X at x).
(3) For a given X ∈ Ob(C), define

HomC(X, ·) : C −→ Set, Z 7−→ HomC(X, Z),
HomC(·, X) : C −→ Set, Z 7−→ HomC(Z, X).

Then
HomC(X, ·) is covariant and HomC(·, X) is contravariant.



1.1. SETS AND MAPPINGS 9

Consider two functors F1, F2 : C→ C′. A morphism or natural transformation
θ : F1 → F2 consists of

X ∈ Ob(C) =⇒ θ(X) ∈ HomC′(F1(X), F2(X)).

These data satisfy the following diagram

F1(X)
θ(X)−−−−→ F2(X)

F1( f )
y yF2( f )

F1(Y) −−−−→
θ(Y)

F2(Y)

F2( f ) ◦ θ(X) = θ(Y) ◦ F1( f ),

is commutative, i.e., F2( f ) ◦ θ(X) = θ(Y) ◦ F1( f ), for any X, Y ∈ Ob(C) and f ∈
HomC(X, Y).

Definition 1.1.7. Given two categories C and C′, define a new category Func(C,C′)
with

Ob
(
Func(C,C′)

)
:= {functors F : C→ C′}

and
HomFunc(C,C′)(F1, F2) := {morphisms θ : F1 → F2}.

Definition 1.1.8. Let C be a category. We say that F : C → Set is a representable
functor if ∃ X ∈ Ob(C) such that F is isomorphic to HomC(X, ·) in the category
Func(C, Set).

Remark 1.1.9. If F : C→ Set is representable, then X is unique up to isomorphism
and is called a representative of F.

Definition 1.1.10. We say a functor F : C→ C′ is fully faithful if ∀ X, Y ∈ Ob(C),
the map HomC(X, Y)→ HomC′(F(X), F(Y)) is bijective.

Theorem 1.1.11. (Yoneda’s lemma) (1) For any X ∈ Ob(C) and F ∈ Ob(C∨), where
C∨ := Func(C◦, Set), we have

HomC∨(HomC(X), F) ' F(X)

in Set, where HomC : C→ C∨ is a functor given by HomC(X) := HomC(·, X).
(2) HomC is a fully faithful functor.
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PROOF. (1) To f ∈ HomC∨(HomC(X), F), we associate φ( f ) ∈ F(X) as fol-
lows:

f (X) : HomC(X, X) −→ F(X), idX 7−→ φ( f ) := f (X)(idX).
Conversely, to s ∈ F(X), we can associate ψ(s) ∈ HomC∨(HomC(X), F) as follows:

HomC(Y, X)
F−−−−→ HomSet(F(X), F(Y)) s−−−−→ F(Y)

with ψ(s)(Y) := s ◦ F. Then φ and ψ are inverses to each other.
(2) For any X, Y ∈ Ob(C), one has

HomC∨(HomC(X), HomC(Y)) ' HomC(·, Y)(X) = HomC(X, Y)

which implies that HomC is fully faithful. �

1.1.5. Relations. A relation on a set A is a subset C of A× A. If C is a relation
on A, then we write xCy to be (x, y) ∈ C.

An equivalence relation on a set A is a relation C on A having the following
properties:

a) (Reflexivity) ∀ x ∈ A =⇒ xCx,
b) (Symmetry) xCy =⇒ yCx,
c) (Transitivity) xCy and yCz =⇒ xCz.

Notion: ∼:= equivalence relation.
(1) The equivalence class of x ∈ A:

[x] := {y ∈ A : y ∼ x} 3 x.

(2) Two equivalence classes are either disjoint or equal. Hence

A =
⋃
{[x] : x ∈ A}.

(3) A partition of a set A is a collection of disjoint nonempty subsets of A
whose union is A.

(4) Given a partition D of A, there exists an equivalence relation∼ on A from
which it is derived.

Indeed, define ∼ on A by requiring x ∼ y if and only if x, y belong to
the same element of D . Then ∼ is an equivalence relation on A. Assume
that ∼ and ∼′ are two equivalence relations on A that give rise to the
same collection of equivalence classes D . Given x ∈ A, let

[x] := {y ∈ A : y ∼ x}, [x]′ := {y ∈ A : y ∼′ x}.
Because [x] ∩ [x]′ 3 {x}, we must have [x] = [x]′.

A relation C on a set A is called an order relation or simple order or linear
order, if it has the following properties:

a) (Comparability) ∀ x, y ∈ A with x 6= y =⇒ either xCy or yCx,
b) (Nonreflexivity) there does not exist x ∈ A such that xCx,
c) (Transitivity) xCy and yCz =⇒ xCz.

Notion: <:= order relation.
(1) Equivalently:

a) x 6= y =⇒ either x < y or y < x,
b) x < y =⇒ x 6= y,
c) x < y and y < z =⇒ x < z.
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(2) x ≤ y means x < y or x = y.
(3) Let (X,<) be an order relation. For a < b, define

(a, b) := {x ∈ X : a < x < b}
called an open interval in X. If (a, b) =, then a is the immediate prede-
cessor of b, and b is theimmediate successor of a.

(4) Consider two sets with order relations (A,<A) and (B,<B). We say A
and B have the same order type if there exists a bijective correspondence
between them that preserves orders. That is, there exists a bijective func-
tion f : A→ B such that

a1 <A a2 =⇒ f (a1) <B f (a2).

For example, ((−1, 1),<) and (R,<) have the sane order type (x 7→
x

1−x2 ); ({0} ∪ (1, 2),<) and ([0, 2),<) have the same order type (0 7→ 0
and x 7→ x− 1 for 1 < x < 2).

(5) Let (A,<A) and (B,<B) be two sets with order relations. Define an order
relation < on A× B by

(a1, b1) < (a2, b2)

if a1 <A a2 or if a1 = a2 and b1 <B b2.
Assume that (A,<) is a set with order relation, and A0 is a subset of A.
(1) b is the largest number of A0 if b ∈ A0 and if x ≤ b for any x ∈ A0. a is

the smallest number of A0 if a ∈ A0 and if a ≤ x for any x ∈ A0.
(2) A0 is bounded above if there is a b ∈ A such that x ≤ b for all x ∈ A0.

We call b is an upper bound for A0. Let

sup(A0) := the smallest element among
all upper bounds for A0,

be the least upper bound or supremum.
A0 is bounded below if there is a a ∈ A such that a ≤ x for all x ∈ A0.

We call a is a lower bound for A0. Let

inf(A0) := the largest element among
all lower bounds for A0,

be the greatest lower bound or infimum.
(3) (A,<) is said to have the least upper bound property (or shortly LUBP)

if any nonempty subset A0 of A that is bounded above has a least upper
bound. Similarly, it is said to have the greatest lower bound property
(or shortly GLBP) if any nonempty subset A0 of A that is bounded below
has a greatest lower bound. Observe that LUBP⇔ GLBP.

The set B := (−1, 0) ∪ (0, 1) does not have the least upper bound
property (check it!).

Given a set A, a relation ≺ on A is called a strict partial order on A if it has
the following properties:

1) (Non-reflexivity) a ≺ a never hold,
2) (Transitivity) a ≺ b and b ≺ c⇒ a ≺ c.

On R2, there is a natural strict partial order ≺ defined by

(x0, y0) ≺ (x1, y1) ⇐⇒ y0 = y1 and x0 < x1.



12 1. INTRODUCTION

Let A be a set with a strict partial order ≺.
(1) If B ⊆ A, an upper bound on B is an element c of A such that for any

b ∈ B, either b = c of b ≺ c.
(2) A maximal element of A is an element m of A such that for no element a

of A does the relation m ≺ a hold.
(3) Zorn’s lemma (1935):

Let A be a set that is strictly partially ordered. If any simply
ordered subset of A has an upper bound in A, then A has a
maximal element.

One of applications of Zorn’s lemma is as follows: Let A = {an}n≥1 with
ai ∈ R and |ai| ≤ M for some positive number M. Then (A,<) is a set with the
strict partial order <. By Zorn’s lemma, A has a maximal element.

In general, consider a sequence of functions f (x, t) such that | f (x, t)| ≤ M for
all x ∈ [0, 1] and t ∈ R. For each x ∈ [0, 1], define

Ax := { f (x, t)}t∈R.

Then Ax has a maximal element f (x). Then we get a map

f : [0, 1] −→ A := ∪x∈[0,1]Ax, x 7−→ f (x).

What’s behavior of this function f (x)?

1.1.6. Cartesian products II. Let A be a nonempty collection of sets. An in-
dexing function for A is a surjective function f from some set J, called the index
set, to A .

(1) We say (A , f ) an indexed family of sets.
(2) Given α ∈ J, denote the set f (α) ∈ A by Aα, and the indexed family of

sets by {Aα}α∈J .
(3) Define ⋃

α∈J
Aα := {x : ∃ α ∈ J such that x ∈ Aα},

⋂
α∈J

Aα := {x : ∀ α ∈ J, x ∈ Aα}.

(4) When J = {1, · · · , n}, we denote (3) to be⋃
α∈J

Aα =
⋃

1≤i≤n
Ai,

⋂
α∈J

Aα =
⋂

1≤i≤n
Ai.

(5) When J = Z≥1, we denote (3) to be⋃
α∈J

Aα =
⋂
i≥1

Ai,
⋂
α∈J

Aα =
⋂
i≥1

Ai.

Let m ∈ N. Given a set X, we define an m-tuple of elements of X to be a
function

x : {1, · · · , m} −→ X
For each i{1, · · · , m}, write

x(i) := xi,
i-th coordinate of x, and x = (x1, · · · , xm).
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(1) Let {A1, · · · , Am} be a family of sets indexed with the set {1, · · · , m}. Let

X := A1 ∪ · · · ∪ Am.

We define the Cartesian product of this indexed family, denoted by

∏
1≤i≤m

Ai,

to be the set of all m-tuples (x1, · · · , xm) of elements of X such that xi ∈
Ai, 1 ≤ i ≤ m.

Remark 1.1.12. (1) Recall two definitions of A× B:

A×1 B := {(a, b) : a ∈ A and b ∈ B},
A×2 B := {x : {1, 2} → A ∪ B such that x(1) ∈ A and x(2) ∈ B}.

Define
f : A×1 B −→ A×2 B, (a, b) 7−→ f ((a, b))

with f ((a, b))(1) = a and f ((a, b))(2) = b. Science f is bijective, A×1 B ∼= A×2 B.
(2) For A, B, C, we have three Cartesian products

A× (B× C), (A× B)× C, A× B× C

that are bijective. In particular, we can define Am for m ≥ 1.

Given a set X, define ω-tuple of elements of X to be the function

x : Z≥1 −→ X, n 7−→ xn := x(n),

and write x = (xn)n≥1. Let {Ai}i∈Z≥1 be a family of sets indexed with the positive
integers. Let

X :=
⋃

i∈Z≥1

Ai.

The Cartesian product of {Ai}i∈Z≥1 , denoted by

∏
i∈Z≥1

Ai,

is defined to be the set of ω-tuples (xi)i∈Z≥1 of X such that xi ∈ Ai.

In general, let J be an index set and X a set.
(1) An J-tuple of X is a function

x : J −→ X, α 7−→ xα := x(α),

where xα is said to be the α-coordinate of x. Write x = (xα)α∈J .
(2) Let

X J := {J-tuples of elements of X}.
(3) Let {Aα}α∈J be an index family of sets, and X := ∪α∈J Aα. The Cartesian

product of {Aα}α∈J , denoted by

∏
α∈J

Aα,

is defined to be the set of all J-tuples (xα)α∈J of X such that xα ∈ Aα.
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When Xn are all R, we obtain

Rω := ∏
n≥1

Xn.

1.1.7. Finite, countable and uncountable sets. In this subsection we study
the set

{0, 1}ω := ∏
n≥1

Xn

where Xn := {0, 1}.

Definition 1.1.13. A set A is finite, if it is empty or there is a bijective correspon-
dence of A with some {1, · · · , n}. When A = ∅ we say that A has cardinality 0,
otherwise we say that A has cardinality n.

Lemma 1.1.14. Suppose that n ∈ Z≥1, A is a nonempty set, and a0 ∈ A. There is
a bijective correspondence f of A with {1, · · · , n + 1} if and only if there is a bijective
correspondence g of A \ {a0} with {1, · · · , n}.

PROOF. ⇐: Define f : A→ {1, · · · , n + 1} to be

f (a0) := n + 1, f (x) := g(x) (x 6= a0).

⇒: If f (a0) = n + 1, then we define g := f |A\{a0}. Suppose now that f (a0) =

m ∈ {1, · · · , n}, and let a1 ∈ A be such that f (a1) = n + 1. Then a1 6= a0. Define
h : A \ {a0} → {1, · · · , n} to be h(a1) = m and h(x) := f (x) for x 6= a1. �

Theorem 1.1.15. Let A be a set and assume there is a bijection f : A → {1, · · · , n} for
some n ∈ Z≥1. If B is a proper subset of A, then there is no bijection g : B→ {1, · · · , n},
but (provided B 6= ∅) there is a bijection h : B→ {1, · · · , m} for some m < n.

PROOF. WLOG, we may assume that B 6= ∅. We prove it by induction. When
n = 1, A = {a}, and B = ∅. Suppose that the theorem is true for n. Let f : A →
{1, · · · , n + 1} be a bijection and B a nonempty proper subset of A. Take a0 ∈ B
and a1 ∈ A \ B. By Lemma 1.1.14, there is a bijection g : A \ {a0} → {1, · · · , n}.
Since B \ {a0} is a proper subset of A \ {a0}, the inductive hypothesis implies that
there is no bijection h : B \ {a0} → {1, · · · , n}, and either B \ {a0} = ∅ or there is
a bijection k : B \ {a0} → {1, · · · , m} (for some m < n). Applying again Lemma
1.1.14, the theorem holds for n + 1. �

Corollary 1.1.16. (1) If A is finite, then there is no bijection of A with a proper subset of
itself.

(2) Z≥1 is not finite.
(3) The cardinality of a finite set A is uniquely determined by A.
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(4) Any subset of a finite set is finite. If B is a proper subset of a given finite set A,
then the cardinality of B is strictly less than the cardinality of A.

(5) B 6= ∅⇒ TFAF:
(i) B is finite,

(ii) there is a surjective function from some {1, · · · , n} onto B,
(iii) there is an injective function from B into some {1, · · · , n}.
(6) Finite union and finite Cartesian products of finite sets are finite.

PROOF. (1) Assume that B is a proper subset of A and there is a bijection f :
A → B. Because A is finite, there is a bijection g : A → {1, · · · , n}. Then g ◦ f−1 :
B→ {1, · · · , n} is a bijection, which is impossible!

(2) Define the map f : Z≥1 → Z≥1 \ {1} by f (n) := n + 1. Since Z≥1 \ {1} is
proper and f is bijective, it follows from (1) that Z≥1 can not be finite.

(3) Suppose that f : A → {1, · · · , n} and g : A → {1, · · · , m} are bijective,
for some m, n ∈ Z≥1. Then g ◦ f−1 : {1, · · · , n} → {1, · · · , m} is bijective, so that
m = n.

(4) Clearly.
(5) (i) ⇒ (ii) : clearly. (ii) ⇒ (iii) : Suppose that f : {1, · · · , n} → B is

surjective. Define g : B→ {1, · · · , n} to be

g(b) := the smallest element of f−1({b}).

For b 6= b′, f−1({b}) ∩ f−1({b′}) = ∅, so that g is injective. (iii) ⇒ (i) : Suppose
that g : B → {1, · · · , n} is injective. Then there is some m ≤ n such that g : B →
{1, · · · , m} is bijective. Then B is finite.

(6) If A and B are finite and both are not empty. There are bijections f :
{1, · · · , m} → A and g : {1, · · · , n} → B for some choice of m and n. Define

h : {1, · · · , m + n} −→ A ∪ B, i 7−→
{

f (i), 1 ≤ i ≤ m,
g(i−m), m + 1 ≤ i ≤ m + n.

Since h is surjective, according to (5) we see that A ∪ B is finite. By induction, we
can prove that finite unions of finite sets is finite.

From the relation
A× B :=

⋃
a∈A
{a} × B

which is the finite union of finite sets, we conclude that A× B and therefore finite
Cartesian products of finite sets are finite. �

Unfortunately, the situation of infinite Cartesian products of finite sets is more
complicated. We need the following definitions.

Definition 1.1.17. (1) A set A is said to be infinite if it is not finite. It is said to be
countably infinite if there is a bijective correspondence f : A→ Z≥1.

(2) A set is said to be countable if it is either finite or countably infinite. A set
that is not countable is said to be uncountable.
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Theorem 1.1.18. B 6= ∅ =⇒ TFAE:
(a) B is countable,
(b) there is surjective function f : Z≥1 → B,
(c) there is injective function g : B→ Z≥1.

PROOF. (a)⇒ (b) : obvious.
(b) ⇒ (c) : Let f : Z≥1 → B be surjective. Define g : B → Z≥1 by g(b) :=

the smallest element of f−1({b}).
(c) ⇒ (a) : Let g : B → Z≥1 be an injective function. Then there is a bijection

of B with subset of Z≥1. Hence we suffice to prove that every subset of Z≥1 is
countable (see Lemma 1.1.19). �

Lemma 1.1.19. If C is an infinite subset of Z≥1, then C is countable infinite.

PROOF. Define h : Z≥1 → C a bijection as follows. Denote by h(1) the smallest
element of C. Then assuming that h(1), · · · , h(n− 1) are defined. Let

h(n) := the smallest element of C \
⋃

1≤i≤n−1

h(i).

Claim 1: h is injective. If m < n, then h(m) ∈ h({1, · · · , n − 1}) so that
h(m) 6= h(n).

Claim 2: h is surjective. Let c ∈ C. The injectivity of h implies h(Z≥1) is
infinite and therefore h(n) > c for some c ∈ Z≥1. Let

m := the smallest element of Z≥1 such that h(m) ≥ c.

For each i = 1, · · · , m− 1, we have h(i) < c so that c ∈ C \ ∪1≤i≤m−1h(i). From
the definition of h(m), we must have h(m) ≤ c. Hence h(m) = c. �

Corollary 1.1.20. (1) A subset of a countable set is countable.
(2) Z≥1 ×Z≥1 is countably infinite.

PROOF. (1) Let A ⊆ B and B be countable. By Theorem 1.1.18, there is an
injection f : B→ Z≥1. Then f |A : A→ Z≥1 is also injective, so that A is countable.

(2) Since Z≥1 × Z≥1 is infinite, we now construct an injection f : Z≥1 ×
Z≥1 → Z≥1. Define

f (n, m) := 2n3m.

If f (n, m) = f (p, q), then 2n3m = 2p3q. If n < p, then 3m = 2p−n3q, contradicting!
Therefore n = p and then m = q. �
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Theorem 1.1.21. (1) A countable union of countable sets is countable.
(2) A finite Cartesian product of countable sets is countable.
(3) {0, 1}ω is uncountable.
(4) Given a set A. Then there are no injection f : 2A → A and surjection g : A →

2A.
(5) 2Z≥1 is uncountable.

PROOF. Observe that (5) follows from (4) and Theorem 1.1.18.
(1) Let {An}n∈J be an indexed family of countable sets, where the index set J

is either {1, · · · , N} or Z≥1. Assume each An 6= ∅. By Theorem 1.1.18, there are
surjections fn : Z≥1 → An and g : Z≥1 → J. Define

h : Z≥1 ×Z≥1 −→
⋃
n∈J

An, (k, m) 7−→ fg(k)(m).

Then h is a surjective function.
(2 )WLOG, we may assume that the Cartesian product of two countable sets A

and B is countable. As in (1), there are surjections f : Z≥1 → A and g : Z≥1 → B.
Define h : Z≥1 ×Z≥1 → A× B to be h(m, n) := ( f (m), g(n)).

(3) Let X = {0, 1}. For any given function g : Z≥1 → Xω, we claim that g is
not surjective. Denote

g(n) := (xn1, xn2, xn3, · · · , xnn, · · · ), xij ∈ {0, 1}.

Define y := (yi)i∈Z≥1 by

yn :=
{

0, xnn = 1,
1 xnn = 0.

Then y ∈ Xω but y /∈ g(Z≥1).
(4) It suffices to prove that given a map g : A→ 2A, the map g is not surjective

(because the existence of an injection implies the existence of a surjection). Define

B := {a ∈ A : a ∈ A \ g(a)} ∈ 2A.

Assume that g(a0) = B. Then

a0 ∈ B ⇐⇒ a0 ∈ A \ g(a0) ⇐⇒ a0 ∈ A \ B.

Hence g is not surjective. �

Exercise 1.1.22. (1) A real number x is said to be algebraic if it satisfies some poly-
nomial equation of positive degree

0 = xn + an−1xn−1 + · · ·+ a1x + a0, ai ∈ Q.

Assuming that each polynomial equation has only finitely many roots, show that
the set of algebraic numbers is countable.

(2) A real number is said to be transcendental if it is not algebraic. Assum-
ing that R is uncountable, show that the transcendental numbers are uncountable
(e.g., e, π are transcendental).
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Exercise 1.1.23. We say that two sets A and B have the same cardinality if there
exists bijection of A and B.

(1) Show that if B ⊆ A and if there is bijection f : A→ B, then A and B have
the same cardinality. [Hint: define A1 := A, B1 := B, and for any n ≥ 2,
An := f (An−1), Bn := f (Bn−1). Then A1 ⊇ B1 ⊇ A2 ⊇ B2 ⊇ A3 ⊇ · · · .
Define

h : A −→ B, x 7−→
{

f (x), if x ∈ An \ Bn for some n,
x, otherwise.

]
(2) (Schroeder-Berstein theorem) If there exist injections A→ B and B→ A,

then A and B have the same cardinality.

1.2. One variable functions

We have learned elementary functions in high schools:
(1) Constant functions: y = c,
(2) Power functions: y = xa, a 6= 0,
(3) Exponential functions: y = ax, a > 0, a 6= 1, x ∈ R,
(4) Logarithmic functions: y = loga x, a > 0, a 6= 1, x > 0,
(5) Trigonometric functions: sin x, cos x, tan x, cot x, sec x, csc x,
(6) Inverse trigonometric functions: sin−1 x, cos−1 x, tan−1 x, cot−1 x, sec−1 x,

csc−1 x.

1.2.1. Some special type functions. We also know, for example, periodic func-
tions, bounded functions, even/odd functions, monotone functions, inverse func-
tions, · · · .

Example 1.2.1. (a) Dirichlet function

D(x) :=
{

1, x ∈ Q,
0, x ∈ R \Q.

(b) sign function

sgn(x) :=

 −1, x < 0,
0, x = 0,
1, x > 0.

(c) Define
bxc := n if n ≤ x < n + 1,

and
〈x〉 := x− bxc.

(d) Define
π(x) := # (prime numbers ≤ x).

(e) Möbius function

µ(n) :=
{

(−1)r, n = p1 · · · pr with p1, · · · , pr distinct,
0, otherwise.
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Figure: Johann Peter Gustav Lejeune Dirichlet (1805/2/13 - 1859/5/5)

(f) Margoldt function

Λ(n) :=
{

ln p, n = pα, α ≥ 1,
0, otherwise.

(g) Hyperbolic functions:

sinh x :=
ex − e−x

2
, cosh x :=

ex + e−x

2
, tanh x :=

ex − e−x

ex + e−x .

Observe that y = sin x (resp. y = sinh x) is a solution of ODE y′′ + y = 0 (resp.
y′′ − y = 0).

1.2.2. Prime numbers and prime number theorem. Let p1 < p2 < · · · be the
sequence of all prime numbers.

Theorem 1.2.2. (Euclid’s theorem) There are infinitely many prime numbers.

PROOF. Otherwise, there are finite many prime numbers p1 < · · · < pN . Con-
sider

a := p1 · · · pN + 1.

Then there is some pi that divides a; consequently, pi|1, which is a contradiction.
�

Basic Questions:

(A) Are there formulas giving the nth prime number? The answer is yes,
and there are many! But they are useless! For example,

pn = 1 + ∑
1≤m≤2n

⌊⌊
n

1 + π(m)

⌋1/n
⌋

.
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When n = 2, this formula yields

p2 = 1 + ∑
1≤m≤4

⌊⌊
2

1 + π(m)

⌋1/2
⌋
= 1 + 1 + 1 + 0 + 0 = 3.

(B) Behavior or distribution of primes. The answer is the Prime number
theorem.

From Theorem 1.2.2, we see that

pk+1 ≤ p1 + · · · pk + 1, k ≥ 1.

Because p1 = 2, we have

(1.2.1) pk ≤ 22k−1
, k ≥ 1.

Indeed, by the induction hypothesis, one has

pk+1 ≤ ∏
1≤i≤k

pi + 1 ≤ ∏
1≤i≤k

22i−1
+ 1 = 22k − 1 + 1 = 22k

.

Corollary 1.2.3. For any x ≥ 2, we get

(1.2.2) π(x) > ln ln x.

PROOF. There is an integer ` ∈ Z≥1 such that 22`−1 ≤ x < 22` . Hence π(x) ≥ `

because p` ≤ 22`−1 ≤ x. From 2` > ln x/ ln2 we can conclude that

π(x) > ` >
ln(ln x/ ln 2)

ln 2
>

ln ln x
ln 2

> ln ln x

since 0 < ln 2 < 1. �

By the Taylor series (we shall learn later), (1− z)−1 = ∑n≥0 zn (|z| < 1), we
see

2 ≥ p
p− 1

=

(
1− 1

p

)−1
= 1 +

1
p
+

1
p2 + · · ·

and

2π(x) ≥ ∏
p≤x

(
1− 1

p

)−1
= ∏

p≤x

(
1 +

1
p
+

1
p2 + · · ·

)

≥ ∑
n≤x

1
n
≥

∫ bxc+1

1

dt
t

= ln(bxc+ 1) > ln x.

Here the definite integral will be given later.

Theorem 1.2.4. For any x ≥ 2, we have

(1.2.3) π(x) ≥ 1
2 ln 2

lnbxc

and then

(1.2.4) pn ≤ 4n, n ≥ 1.
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Figure: Leonhard Euler (1707/4/15 - 1783/9/18)

PROOF. Let 2 = p1 < p2 < · · · < pj ≤ x be all primes ≤ x. Write any n ≤ x as

n = `2 ·m
where ` is a positive integer and m is square-free (i.e., m = pε1

1 · · · p
εj
j , ε1, · · · , εj ∈

{0, 1}). Then ` ≤
√

x. There are at most
√

x possibilities for ` at most 2j possibili-
ties for m. Hence

x ≤
√

x2j =⇒ j ≥ ln
√

x
ln 2

=
ln x

2 ln 2
.

Thus π(x) = π(bxc) ≥ lnbxc/2 ln 2. �

Chebyshev estimates:
(1) Leonhard Euler (1762) and Carl Friedrich Gauss (1792) conjectured:

(1.2.5) π(x) ∼ x
ln x

.

(2) Adrien-Marie Legendre (1798) conjectured:

(1.2.6) π(x) ∼ x
A ln x + B

with (1808) A = 1 and B = −1.08366.
(3) Charles-Jean de la Vallée Poussin and Jacques Hadamard (1896) proved

the prime number theorem:

(1.2.7) π(x) ∼ x
ln x

.

(4) Logarithmic integral (Gauss):

(1.2.8) li(x) := p.v.
∫ x

0

dt
ln t

= lim
ε→0

(∫ 1−ε

0
+
∫ x

1+ε

)
dt

ln t
, x ≥ 2,

is a good approximation for π(x). Define

(1.2.9) Li(x) :=
∫ x

2

dt
ln t

(definite integral).
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Figure: Johann Carl Friedrich Gauss (1777/4/30 - 1855/2/23)

Figure: Adrien-Marie Legendre (1752/9/18 - 1833/1/10)

Then

(1.2.10) Li(x) = lim
ε→0

(∫ 1−ε

0
+
∫ 2

1+ε

)
dt

ln t︸ ︷︷ ︸
well-defined improper integral

+Li(x).
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Figure: Jacques Solomon Hadamard (1865/12/8 - 1963/10/17)

Figure: Pafnuty Chebyshev (1821/5/26 - 1894/12/8)

Figure: Paul Erdös (1913/3/26 - 1996/9/20)
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Because

lim
ε→0

(∫ 1−ε

0
+
∫ 2

1+ε

)
dt

ln t
= lim

ε→0

(∫ 1−ε

0

dt
ln t

+
∫ 1−ε

0

ds
ln(2− s)

)

= lim
ε→0

[∫ 1

ε

du
ln(1− u)

+
∫ 1

ε

du
ln(1 + u)

]
=

∫ 1

0

[
1

ln(1− u)
+

1
ln(1 + u)

]
du

and

lim
u→0

u1/2
[

1
ln(1− u)

+
1

ln(1 + u)

]
= lim

u→0

u−1/2

2
[−(1− u) + (1 + u)] = 0.

(5) Prime number theorem implies

li(x) ∼ Li(x) ∼ x
ln x
∼ π(x).

Since

Li(x) =
x

ln x
+

x
ln2 x

− 2
ln 2
− 2

ln2 2
− 2

∫ x

2

dt
ln3 t

=
x

lnx

[
1 +

1
ln x

+ O
(

1
ln2 x

)]
,

we get

π(x) ∼ x
ln x

1
1− 1

ln x
=

x
ln x− 1

.

(6) Chebyshev’s estimate (1850):
– for any x ≥ 2,

(1.2.11) c1
x

ln x
≤ π(x) ≤ C1

x
ln x

,

where c1 := ln(21/231/351/5/301/30) ≈ 0.921292 and C1 = 6c1/5 ≈
1.1055.

– if π(x)/(x/ ln x) has the limit as x → ∞, then this limit must be 1.

Theorem 1.2.5. (Erdös) For any x ≥ 2, we have

(1.2.12)
3 ln 2

8
x

ln x
≤ π(x) ≤ 6 ln 2

x
ln x

.

PROOF. Step 1: Let ep(n!) be the exponent of which p appears in the factor-
ization of n!. Then

ep(n!) = ∑
k≥1

⌊
n
pk

⌋
For example,

e2(4) = e2(23 × 3) = 3 = 2 + 1 = b4/2c+ b4/22c.

Assume it holds for n and write n + 1 = pum where p - m. Then

ep((n + 1)!) = ep(n!) + u = ∑
1≤k≤u

(⌊
n
pk

⌋
+ 1
)

︸ ︷︷ ︸
b(n+1)/pkc

+ ∑
k>u

⌊
n
pk

⌋
.
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Step 2: For any n ≥ 2, one has

∏
n<p≤2n

p
∣∣∣∣(2n

n

)
and

(
2n
n

)∣∣∣∣ ∏
p<2n

prp

where rp is the unique integer satisfying prp ≤ 2n < prp+1. Indeed, the first
divisibility relation is obvious. For p < 2n,

ep

((
2n
n

))
= ep((2n)!)− 2ep(n!) = ∑

k≥1

(⌊
2n
pk

⌋
− 2

⌊
n
pk

⌋)
.

If k > rp, then pk ≥ prp+1 > 2n so that b2n/pkc = 0 = bn/pkc. Therefore

ep

((
2n
n

))
= ∑

1≤k≤rp

(⌊
2n
pk

⌋
− 2

⌊
n
pk

⌋)
= ∑

1≤k≤rp

1 = rp

since b2yc − 2byc = 1 if m
2 ≤ y ≤ m+1

2 for some m ≥ 0.

Step 3: For any x ≥ 2,

π(x) ≥ 3 ln 2
8

x
ln x

.

By Step 2, (2n
n ) ≤ (2n)π(2n). Because

(1 + 1)2n = ∑
0≤k≤2n

(
2n
k

)
and

(
2n
n

)
≥
(

2n
k

)
(0 ≤ k ≤ 2n),

we get (
2n
n

)
>

22n

2n + 1
> 2n, n ≥ 3.

Consequently,

2n <
22n

2n + 1
<

(
2n
n

)
≤ (2n)π(2n) =⇒ π(2n) >

ln 2
2

2n
ln(2n)

(n ≥ 3).

Assume that x ≥ 8 and let n be the unique integer satisfying 2n ≤ x < 2n + 2 (so
n ≥ 3). Moreover, 2n > x − 2 ≥ 3

4 x. Since the function y 7→ y/ ln y is increasing
for any y ≥ e (i.e., (y/ ln y)′ = (ln y− 1)/(ln y)2 ≥ 0 for y ≥ e), we conclude that

π(x) ≥ π(2n) ≥ ln 2
2

2n
ln(2n)

≥ ln 2
2

3x/4
ln(3x/4)

=
3 ln 2

8
x

ln x + ln 3
4
>

3 ln 2
8

x
ln x

for x ≥ 8.

Step 4: For x ≥ 2, one has

π(x) ≤ 6 ln 2
x

ln x
.

By Step 2, πn<p≤2n p < (1 + 1)2n = 22n and

2n ln 2 > ∑
n<p≤2n

ln p ≥ ln n[π(2n)− π(n)] = π(2n) ln n− π(n)
(

ln
n
2
+ ln 2

)
.

Using π(n) ≤ n yields

π(2n) ln n− π(n) ln
n
2
< 2n ln 2 + π(n) ln 2 < (3 ln 2)n.
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Write
f (x) := π(2n) ln 2;

then
f (n)− f (n/2) < (3 ln 2)n.

Take n = 2i (2 ≤ i ≤ k) and obtain

f (2i)− f (2i−1) < (3 ln 2)2i.

Hence

π(2k+1) ln(2k) < 3 ln 2 ∑
2≤i≤k

2i + π(4) ln 2 < 3 ln 2 ∑
1≤i≤k

2i < (3 ln 2)2k+1

so that

π(2k+1) < (6 ln 2)
2k

ln(2k)
.

Given x ≥ 2, choose k ≥ 1 in such a way that 2k ≤ x < 2k+1. If x ≥ 4, then k ≥ 2
and 2k ≥ 4 > e. Thus 2k/ ln(2k) ≤ x/ ln x when x ≥ 4. Therefore

π(x) ≤ π(2k+1) < 6 ln 2
2k

ln(2k)
< (6 ln 2)

x
ln x

.

Step 3 and Step 4 give the desired result. �

Bertrand’s postulate:

(1) In 1845, Joseph Bertrand proved that for any n ≤ 6 · 106, there is a prime
number in [n, 2n].

(2) Bertrand conjectured that (1) was true for any n ∈ Z≥1.
(3) In 1850, Chebyshev proved (2)

Theorem 1.2.6. For each n ∈N, there exists a prime number p such that n < p ≤ 2n.

PROOF. The following proof is due to Erdös.

Step 1: For each n ∈N,

∏
p≤n

p < 4n.

WLOG, we may assume that n ≥ 3 and the result holds for each k− 1, · · · , n− 1.
If n is even, then

∏
p≤n

p = ∏
p≤n−1

p.

Hence one can assume that n is odd. Write n = 2m + 1 and observe

∏
m+1<p≤2m+1

p
∣∣∣∣(2m + 1

m + 1

)
,
(

2m + 1
m + 1

)
≤ 22m+1

2
= 4m.

So

∏
p≤2m+1

p =

(
∏

p≤m+1
p

)(
∏

m+1<p≤2m+1
p

)
≤ 4m+1 · 4m = 42m+1.
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Step 2: If n ≥ 3, p is prime, and 2
3 n < p ≤ n, then

p -
(

2n
n

)
.

Indeed, p > 2
3 n ≥ 2. Because 3p > 2n, we see that p and 2p are the only multiplies

of p which are ≤ 2n. Therefore p2 ‖ (2n)!. Since(
2n
n

)
=

(2n)!
(n!)2 ,

we conclude that (2n
n ) is not a multiple of p.

Step 3: Assume that n ≥ 4, and the result is false for some n (so that there are
no primes in the interval [n, 2n]). In this step, we shall show that n < 512. By Step
2, each prime number p which divides (2n

n ) is ≤ 2
3 n. Let pα ‖ (2n

n ). Then

α ≤ rp and prp ≤ 2n < prp+1.

If α ≥ 2, then p2 ≤ pα ≤ 2n and p ≤
√

2n, so that(
2n
n

)
= ∏

p|(2n
n )

p =

 ∏
p‖(2n

n ), α=1

pα

 ∏
p‖(2n

n ), α≥2

pα


≤ ∏

p≤2n/3
p · ∏

p≤
√

2n

prp ≤ 42n/3 · (2n)
√

2n.

Using (2n
n ) ≥ 22n/(2n + 1) yields

42n/3(2n)
√

2n ≥ 4n

2n + 1
⇒ 4n/3 ≤ (2n)

√
2n+2 ⇒ ln 2

3
(2n) < (

√
2n + 2) ln(2n).

Setting y :=
√

2n, we get

ln 2
3

y2 − 2(y + 2) ln y < 0.

Consider the function f (y) := ln 2
3 y2 − 2(y + 2) ln y with y ≥ 0. From

f ′(y) =
2 ln 2

3
y− 2 ln y− 2

y + 2
y

, f ′′(y) =
2
3

ln 2− 2
y
+

4
y2 >

2
3

ln 2− 2
y

,

we see that when y > 32, f ′′(y) > 0. Since f ′(32) = 64
3 ln 2− 2 ln(32)− 2.2 > 0,

we obtain that f ′(y) > 0 for y ≥ 32. In particular, f (y) ≥ f (32) for y ≥ 32. But

f (32) = 210 ln 2
3
− 340× ln 2 =

1024− 1020
3

ln 2 =
4
3

ln 2 > 0,

we conclude that f (y) > 0 for any y ≥ 32. This contradiction shows y < 32 or
n < 512.

For each n = 1, · · · , 511, the interval [n, 2n] always contains a prime number.
Therefore in Step 4 the assumption is wrong. Thus the result holds. �

Twin prime conjecture:
(1) Theorem 1.2.6 implies

(1.2.13) pn+1 − pn ≤ pn.
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Figure: Yitang Zhang (1955 - )

Conjecture 1.2.7. (Gramer, 1936) One has

(1.2.14) lim sup
n→∞

pn+1 − pn

(ln pn)2 ≤ 1.

The sup/inf limit will be defined later.

(2) Baker-Haman-Pintz (2001) proved

(1.2.15) pn+1 − pn < p0.525
n , n� 1.

(4) If p and p + 2 are both prime numbers, we say (p, p + 2) is twin prime.

Conjecture 1.2.8. (Twin prime conjecture) There exist infinitely many integers n such
that pn+1 − pn = 2. Equivalently

(1.2.16) lim inf
n→∞

(pn+1 − pn) = 2.

(4) Goldston-Pintz-Yildrim (2009-2010) proved

(1.2.17) lim inf
n→∞

pn+1 − pn

ln pn
= 0, lim inf

n→∞

pn+1 − pn√
ln pn(ln ln pn)2

< ∞.

Theorem 1.2.9. (Y.-T. Zhang, 2013) One has

(1.2.18) lim inf
n→∞

(pn+1 − pn) ≤ 7× 107.

Let b1 < · · · < bk be positive integers. For each prime number p, set

(1.2.19) νb1,··· ,bl
(p) := # {bi (mod p) : 1 ≤ i ≤ k} .
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Figure: Godfrey Harold Hardy (1877/2/7 - 1947/12/1)

When k = 2, (b1, b2) = (0, 2), we have

ν0,2(p) = #{0 (mod p), 2 (mod p)} =
{

1, p = 2,
2, p ≥ 3. =⇒ ν0,2(p) < p.

Conjecture 1.2.10. (Dickson, 1904) If νb1,··· ,bk
(p) < p for all prime numbers p, then

there exist infinitely many positive integers n such that n + b1, · · · , n + bk are all prime
numbers.

It is clear that Conjecture 1.2.10 implies Conjecture 1.2.8.

Conjecture 1.2.11. (Hardy-Littlewood, 1923) For any x, y ≥ 1, we have

(1.2.20) π(x + y) ≤ π(x) + π(y).

Hensley-Richards (1972) proved that Conjecture 1.2.10 and Conjecture 1.2.11
are incompatible. People believe that Conjecture 1.2.10 is true, while Conjecture
1.2.11 would be false.

1.2.3. π and e. As we will prove later that

e = lim
n→∞

(
1 +

1
n

)n
= ∑

k≥0

1
k!

,(1.2.21)

π2

6
= ∑

n≥1

1
n2 ,(1.2.22)

n! ∼ nne−n
√

2πn, n→ ∞. (Stirling′s f ormula)(1.2.23)
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1.2.4. Metric spaces. Consider the n dimensional Euclidean space Rn with
the usual distance function dRn given by

dRn(x, y) :=

(
∑

1≤i≤n
(xi − yi)2

)1/2

, x = (x1, · · · , xn), y = (y1, · · · , yn).

In high school it is well known that
• dRn(x, y) ≥ 0 and dRn(x, y) = 0 if and only if x = y,
• dRn(x, y) = dRn(y, x),
• dRn(x, z) ≤ dRn(x, y) + dRn(y, z).

Definition 1.2.12. A metric space is a pair (X, d), where X is nonempty and d is a
metric on X. That is, d : X× X → R := R∪ {∞} satisfying

1) (Positiveness) d(x, y) ≥ 0 and d(x, y) = d(y, x),
2) (Symmetry) d(x, y) = d(y, x),
3) (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

We say that d is finite if the image of d is contained in R.

Any metric space induces a finite metric on some set. Indeed, let (X, d) be a
metric space, and pick a point x ∈ X. Define

[x]d := {y ∈ X : d(x, y) 6= ∞}.
Then y ∼d x ⇔ y ∈ [x]d is an equivalence relation. Then d is a finite metric on [x]d.

Definition 1.2.13. A map f : (X, dX) → (Y, dY) between two metric spaces is
called distance-preserving if

(1.2.24) dY( f (x1), f (x2)) = dX(x1, x2), x1, x2 ∈ X.

A bijective distance-preserving map is called an isometry, Two metric spaces are
isometric if there is an isometry between them.

Example 1.2.14. (1) For any given nonempty set X, we can define the trivial metric

(1.2.25) dR(x, y) :=
{

0, x = y,
1 x 6= y.

(2) Let X = R. There are two useful metrics:

(1.2.26) d(x, y) := |x− y|, dln(x, y) := ln(1 + |x− y|).
The second one appears in the complex algebraic geometry and differential geom-
etry.

(3) Given two metric spaces (X, dX) and (Y, dY), define the product metric on
X×Y by

(1.2.27) dX×Y((x1, y1), (x2, y2)) := (dX(x1, x2) + dY(y1, y2))
1/2 .
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Figure: Felix Hausdorff (1868/11/8 - 1942/1/26)

(4) X = Rn:

dRn(x, y) :=

(
∑

1≤i≤n
(xi − yi)2

)1/2

.

(5) For a metric space (X, d) and λ > 0, define

(1.2.28) dλ(x, y) := λd(x, y).

(6) If (X, d) is a metric space and Y ⊆ X, we see that (Y, dY := d|X) is itself a
metric space.

Assume that (X, d) is a metric space.

(1) We say that (xn)n∈N is a Cauchy sequence if d(xn, xm)→ 0 as n, m→ ∞.
That is, for any ε > 0, there exists a positive integer n0 ∈ N such that
d(xn, xm) < ε whenever n, m ≥ n0.

(2) (X, d) is said to be complete if any Cauchy sequence has a limit in X. It
is clear that this limit is unique.

(3) (R \ 0, dR|R\0) is non-complete.
(4) For δ > 0, define the δ-neighborhood of A ⊆ X to be

Aδ := {x ∈ X : d(x, A) < δ}

where d(x, A) := inf{d(x, a) : a ∈ A}.
(5) The Hausdorff distance between two given subsets A, B ⊆ X is

(1.2.29) dX
H(A, B) := inf{δ > 0 : A ⊆ Bδ and B ⊆ Aδ}.

Given metric spaces (X, dX) and (Y, dY), define the Gromov-Hausdoff dis-
tance
(1.2.30)

dGH((X, dX), (Y, dY)) := inf

dZ
H( f (X), g(Y)) :

(Z, dZ) metric space and
f : X ↪→ Z, g : Y ↪→ Z
isometric embeddings

 ,
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Figure: Mikhail Gromov (1943/12/23 - )

where isometric embeddings mean that (X, dX) → ( f (X), dZ| f (X)) and (Y, dY) →
(g(Y), dZ|g(Y)) are isometries.

We say a sequence of metric spaces {(Xn, dn)}n≥1 converges in the Gromov-
Hausdorff sense to a metric space (X, d), written as (Xn, dn)→GH (X, d), if

(1.2.31) lim
n→∞

dGH((xn, dn), (X, d)) = 0.

For example, a sequence of cylinders with decreasing to zero radius converges
in the Gromov-Hausdorff sense to a line.

This concept is an important tool to study the behavior of “singular space”,
particularly the study of the Ricci flow (introduced by Hamilton) which leads to a
proof (Perelman) of Poincaré’s conjecture (that is, any closed, simply-connected,
three dimensional manifold is diffeomorphic to S3).

1.2.5. Functionals. Consider the function

f (x) := x2, x ∈ R.

It is easy to check that f is continuous, minx∈R f (x) = f (0) = 0, and f ′(0) = 0.
Let X denote the set of all functions defined on R and consider

F : X −→ R, f 7−→ f (0)2.

Clearly that min f∈X F ( f ) = F (0) = 0.
Question: How can we define the “derivative” of F ?

Definition 1.2.15. A vector space (over R) is a set X, of elements x, y, z, · · · (vec-
tors), together with two operations of addition (+) and multiplication (·), satisfy-
ing

(1) x + y ∈ X, ∀ x, y ∈ X,
(2) a ∈ R, x ∈ X =⇒ a · x ∈ X,
(3) x, y ∈ X =⇒ x + y = y + x,
(4) x, y, z ∈ X =⇒ (x + y) + z = x + (y + z),
(5) ∃ 0 ∈ X (zero vector) such that x + 0 = x, ∀ x ∈ X,
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(6) ∀x ∈ X, ∃ − x ∈ X such that x + (−x) = 0,
(7) ∀ a, b ∈ R, ∀ x ∈ X =⇒ a · (b · x) = (ab) · x,
(8) ∀ a ∈ R, ∀x, y ∈ X =⇒ a · (x + y) = a · x + a · y,
(9) ∀a, b ∈ R, ∀x ∈ X =⇒ (a + b) · x = a · x + b · x,

(10) ∀x ∈ X, 1 · x = x.
Equivalently, (X,+, ·) is a vector space if (X,+) is an Abelian group and (X,+, ·)
is a left R-module.

Example 1.2.16. (1) Rn is a vector space.
(2) Fix an interval I ⊂ R, define

X := {real-valued functions defined on I}.
Let

(φ + ψ)(x) := φ(x) + ψ(x), (a · φ)(x) := a · φ(x).
Then (X,+, ·) is a vector space.

(3) Let
X′ := { f ∈ X : f (0)− f (1) = 1}

where X is the vector space given in (2) with I = [0, 1]. Then (X′,+, ·) is not a
vector space (Hint: consider functions f (x) = 1− x and g(x) = 1− x2).

Definition 1.2.17. A functional is a map F from a vector space X to R.

Example 1.2.18. (Examples of functionals) (1) F (x) := (x2)2 − (x1)2 for x =
(x1, x2) ∈ R2.

(2) X = C[0, π/2] the space of all continuous functions over [0, π/2], and

F (φ) :=
∫ π/2

0

[
2φ(x)3 + 9(sin x)φ(x)2 + 12(sin2 x)φ(x)− cos x

]
dx.

(3) X = R2, and

F (x) :=

{
xy2

x2+y4 , x 6= 0,
0, x = 0.

Definition 1.2.19. Consider a functional F : X → R. The Gâteaux variation of F
at x ∈ D ⊆ X is

(1.2.32) aF (x; h) := lim
ε→0

F (x + εh)−F (x)
ε

.



34 1. INTRODUCTION

Example 1.2.20. (1) F (x) := (x2)2 − (x1)2 for x = (x1, x2),

aF (x; h) = lim
ε→0

[(x2 + εh2)2 − (x1 + εh1)2]− (x2)2 − (x1)2

ε
= 2(x2h2 − x1h1).

(2) For F defined in Example 1.2.18 (2),

aF (φ; φ) =
∫ π/2

0

[
6φ(x)2ψ(x) + 18 sin xφ(x)ψ(x) + 12 sin2 xψ(x)

]
dx.

(3) For F defined in Example 1.2.18 (3),

aF (0; h) =
{

(h2)2/(h1)2, h1 6= 0,
0, h1 = 0.
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CHAPTER 2

Sequences

2.1. Convergent sequences

2.1.1. Definition. Let X = R, d(x, y) := |x− y|. Then (X, d) is a metric space.
Actually (X, d) is a complete metric space, i.e., any Cauchy sequence has a limit in
X. Recall that

(xn)n∈N is Cauchy ⇐⇒ ∀ε > 0, ∃N ∈N such that d(xn, xm) < ε, ∀n, m ≥ N,
lim

n→∞
xn = x ∈ X ⇐⇒ ∀ε > 0, ∃N ∈N such that d(xn, xm) < ε, ∀n ≥ N.

Definition 2.1.1. Given a sequence (an)n∈N ⊂ R.
(1) a ∈ R is called a limit of (an)n∈N if ∀ε > 0, ∃N ∈N such that

|an − a| < ε, whenever n > N.

We write an → a or limn→∞ an = a.
We shall prove that a limit of (an)n∈N, if exists, is unique. Hence we

can say that a is the limit of (an)n∈N.
(2) (an)n∈N is convergent if ∃ a ∈ R such that an → a. Otherwise, we say

that (an)n∈N is divergent.

2.1.2. Examples. We give some examples to practice “ε-N”.

Example 2.1.2. (1) |q| < 1 =⇒ limn→∞ qn = 0.
(2) limn→∞(

√
n + 1−

√
n) = 0.

(3) a ≥ 1 =⇒ limn→∞
n
√

a = 1.
(4) limn→∞

n
√

n = 1.

PROOF. (1) When q = 0, each qn is zero. Assume now that 0 < |q| < 1.

|qn − 0| < ε⇐⇒ |q|n < ε⇐⇒ n >
ln ε

ln |q| .

Hence ∀ε > 0, ∃ N = bln ε/| ln |q|c such that

|qn − 0| < ε whenever n > N.

(2) Write
√

n + 1−
√

n =
(n + 1)− n√
n + 1 +

√
n
=

1√
n + 1 +

√
n
<

1
2
√

n
.

Then we can take N = b1/4ε2c.

35
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(3) WLOG, we may assume that a > 1. Hence n
√

a > 1 and write it as n
√

a =
1 + yn. Because yn > 0 and

a = (1 + yn)
n = 1 + nyn +

n(n− 1)
2

y2
n + · · ·+ yn

n > 1 + nyn,

we see that ∣∣ n
√

a− 1
∣∣ = |yn| <

a− 1
n
−→ 0.

(4) As in (3), write n
√

n = 1 + yn with yn > 0. Then

n = (1 + yn)
n = 1 + nyn +

n(n− 1)
2

y2
n + · · ·+ yn

n > 1 +
n(n− 1)

2
y2

n

and ∣∣ n
√

n− 1
∣∣ = |yn| <

√
2

n− 1
−→ 0.

�

Let (an)n≥1 be a divergent sequence. Then ∀a ∈ R, an 9 a. Thus

an 9 a⇐⇒ ∃ε0 > 0, ∀N ∈N, ∃n0 > N such that |an0 − a| ≥ ε0.

Example 2.1.3. (1) {(−1)n−1}n≥1 is divergent.
(2) {sin n}n≥1 is divergent.

PROOF. (1) We first prove that (−1)n−1 9 1. ∃ε0 = 1, ∀N ∈ N, ∃n0 = 2N >
N such that

|an0 − a| =
∣∣∣(−1)2n−1 − 1

∣∣∣ = | − 2| = 2 > 1 = ε0.

Next, for any a 6= 1, we show that (−1)n−1 9 a. ∃ε0 = |a − 1|/2, ∀N ∈ N,
∃n0 = 2N + 1 such that |an0 − a| = |1− a| > ε0.

(2) Because | sin n| ≤ 1, we suffice to show that ∀ A ∈ [−1, 1], sin n 9 A.
WLOG, we may assume that 0 ≤ A ≤ 1. ∃ε0 =

√
2/2, ∀N ∈ N, ∃n0 = b(2Nπ −

π
2 ) +

π
4 c such that sin n0 < −

√
2/2 and | sin n0 − A| ≥

√
2/2 = ε0. �

Remark 2.1.4. (1) Example 2.1.2 (2) implies that

lim
n→∞

(an − an−1) = 0 ; lim
n→∞

an convergent.

(2) Example 2.1.3 implies that

{an}n≥1 bounded ; lim
n→∞

an exists.

Example 2.1.5. If limn→∞ an = a, then

lim
n→∞

a1 + · · ·+ an

n
= a.
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PROOF. ∀ε > 0, ∃N0 ∈N such that |an − a| < ε/2 whenever n > N0. Write∣∣∣∣ a1 + · · ·+ an

n
− a
∣∣∣∣ =

∣∣∣∣ a1 + · · ·+ an − na
n

∣∣∣∣
=

∣∣∣∣ a1 + · · ·+ aN0 − N0a
n

+
(aN0+1 − a) + · · ·+ (aN − a)

n

∣∣∣∣
≤
|a1 + · · ·+ aN0 − N0a|

n
+
|aN0+1 − a|+ · · ·+ |an − a|

n

≤ n− N0

n
ε

2
+
|a1 + · · ·+ aN0 − N0a|

n
.

Take

N > max
{

N0,
|a1 + · · ·+ aN0 − N0a|

ε/2

}
.

We then get ∣∣∣∣ a1 + · · ·+ an

n
− a
∣∣∣∣ < ε

2
+

ε

2
= ε.

�

Example 2.1.6. Any real number is a limit of some sequence of rational numbers.

PROOF. Given a real number a ∈ R. Define an := bnac/n. Because

na− 1 < bnacna,

we have

a− 1
n
<
bnac

n
< a

or

|an − a| =
∣∣∣∣ bnac

n
− a
∣∣∣∣ < 1

n
−→ 0.

�

2.2. Properties of convergent sequences

2.2.1. Basic properties. We left a question in Definition 2.1.1 that a limit, if
exists, is unique. In this subsection we shall prove this fact.

Theorem 2.2.1. (1) an → a,an → b =⇒ a = b.
(2) {an}n≥1 is convergent =⇒ {an}n≥1 is bounded.
(3) an → a, bn → b, a < b =⇒ ∃N ∈N such that an < bn, ∀n ≥ N.
(4) an → a and b < a < c =⇒ ∃N ∈N such that b < an < c, ∀n > N.
(5) an → a, bn → b, an ≤ bn (∀n > N) =⇒ a ≤ b.
(6) an → a =⇒ |an| → |a|.
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PROOF. (1) Given ε > 0, ∃N1, N2 ∈N such that

|an − a| < ε (∀n > N1) and |bn − b| < ε (∀n > N2).

Then
|a− b| ≤ |an − b + |an − a| < 2ε (∀n > max(N1, N2)).

By the arbitrary of ε we must have a = b.
(2) Take ε = 1, ∃N1 ∈N such that a− 1 < an < a+ 1, ∀n > N1. Hence ∀n ≥ 1,

min{a1, · · · , aN , a− 1} ≤ an ≤ max{a1, · · · , aN , a + 1}.

(3) Take ε = b−a
2 > 0, ∃N1, N2 ∈N such that

|an − a| < b− a
2

(n > N1) and |bn − b| < b− a
2

(n > N2).

Hence

an <
b− a

2
+ a =

b + a
2

< bn (n > max(N1, N2)).

(4) Letting bn >= b in (3), we can find N ∈N such that b = bn < an (n > N).
(5) If limn→∞ bn = b < a = limn→∞ an, then by (3), we have bn < an for al

n > N.
(6) an → a implies that ∀ε > 0, ∃N ∈ N such that |an − a| < ε. Hence

||an| − |a|| ≤ |an − a| < ε. �

Remark 2.2.2. (1) {an}n≥1 is bounded ; {an}n≥1 is convergent.
(2) an → a, bn → b, an < bn ; a < b. For example, an = 1/n, bn = 2/n, but

a = b = 0.
(3) {|an|}n≥1 is convergent ; {an}n≥1 is convergent.

Theorem 2.2.3. If xn ≤ yn ≤ zn holds for any n ≥ N0 and limn→∞ xn = limn→∞ zn =
a, then limn→∞ yn = a.

PROOF. ∀ε > 0, ∃N1, N2 ∈N such that

|xn − a| < ε, |zn − a| < ε.

Then
a− ε < xn ≤ yn ≤ zn < a + ε

for all n > max(N0, N1, N2). Hence xn → a. �

Example 2.2.4. (1) a1, · · · , ak > 0 =⇒

(2.2.1) lim
n→∞

n
√

an
1 + · · ·+ an

k = max{a1, · · · , ak}.

WLOG, we may assume that max{a1, · · · , ak} = a1. Then

a1 < n
√

an
1 + · · ·+ an

k ≤
n
√

kan
1 = (

n√k)a1 → a1.
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(2) One has

(2.2.2) lim
n→∞

1 + n
√

2 + · · ·+ n
√

n
n

= 1.

Indeed,
1 + 1 + · · ·+ 1

n
≤ 1 + n

√
2 + · · ·+ n

√
n

n
≤

n
√

n + · · ·+ n
√

n
n

so 1 ≤ (1 + n
√

2 + · · ·+ n
√

n)/n ≤ n
√

n→ 1.

2.2.2. Algebraic operations. Suppose we have two sequences {an}n≥1 and
{bn}n≥1, we can ask the behaviors of an ± bn, anbn, and an/bn (bn 6= 0 for larger n).

Theorem 2.2.5. Assume that an → a, bn → b, and α, β ∈ R. Then

(2.2.3) αan ± βbn → αa± βb, anbn → ab,
an

bn
→ a

b
(b 6= 0).

PROOF. (1) bb → b implies −bn → −b. We may prove αan + βbn → αa + βb.

0 ≤ |(αan + βbn)− (αa + βb)| ≤ |α||an − a|+ |β||bn − b| → 0.

(2) {an}, {bn} are convergent =⇒ |an| ≤ M1 and |bn| ≤ M2.

0 ≤ |anbn − ab| = |an(bn − b) + (an − a)b| ≤ M1|bn − b|+ M2|an − a| → 0.

(3) bn → b =⇒ |bn| → |b|. Since |b| > 0, it follows that |bn| > |b|/2 for n� 1.

0 ≤
∣∣∣∣ an

bn
− a

b

∣∣∣∣ = ∣∣∣∣ b(an − a)− a(bn − b)
bnb

∣∣∣∣
≤ |b||an − a|+ |a||bn − b|

|bn||b|
≤ 2
|b|2 (|b||an − a|+ |a||bn − b|) → 0.

�

Remark 2.2.6. (1) limn→∞(an + bn) exists ; limn→∞ an exists or limn→∞ bn exists.
For example, an = (−1)n−1, bn = (−1)n.

(2) limn→∞ anbn exists ; limn→∞ an exists or limn→∞ bn exists. For example,
an = bn = (−1)n−1.

(3) limn→∞ an/bn exists ; limn→∞ an exists or limn→∞ bn exists. For example,
an = (−1)n, bn = n.

Example 2.2.7. (1) For all a > 0,

(2.2.4) lim
n→∞

n
√

a = 1.
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Example 2.1.2 implies (2.2.4) holds for a ≥ 1. When 0 < a < 1,

lim
n→∞

n
√

a = lim
n→∞

1
n
√

1
a

=
1
1
= 1.

(2) For q > 1,

(2.2.5) lim
n→∞

logq n

n
= 0.

In fact,
lim

n→∞
n
√

n < qε =⇒ n
√

n < qε (∀n > N).

So
logq n

n
< ε (∀n > N) =⇒

logq n

n
→ 0.

2.2.3. Infinitely small and infinitely large sequences. A sequence {an}n≥1 is
said to be an infinitely small sequence, if limn→∞ an = 0 or an → 0.

(1) an → a⇐⇒ an − a→ 0⇐⇒ an = a + αn with αn → 0.
(2) an → 0⇐⇒ |an| → 0.
(3) an → 0, bn → 0 =⇒ an + bn, an − bn, anbn → 0.
(4) an → 0, bn → 0 ; an/bn → 0. For example,{

an = 1
n ,

bn = 1
n ,

an

bn
≡ 1,

{
an = 1

n ,
bn = 1

n2 ,
an

bn
= n,

{
an = 1

n2 ,
bn = 1

n ,
an

bn
=

1
n

.

(5) an → 0, |bn| ≤ M =⇒ anbn → 0.

A sequence {an}n≥1 is said to be an infinitely large sequence, if ∀C > 0,
∃N ∈N such that

|an| ≥ C whenever n > N.

Notation: limn→∞ an = ∞ or an → ∞.

(1) Write

limn→∞ an = +∞
or an → +∞ ⇐⇒ {an}n≥1 is an infinitely large sequence

and an > 0 (∀n ≥ N0).

(2) Write

limn→∞ an = −∞
or an → −∞ ⇐⇒ {an}n≥1 is an infinitely large sequence

and an < 0 (∀n ≥ N0).

(3) an → +∞ or an → −∞ =⇒ an → ∞. But the convergence is not true, for
example an = (−1)nn.

(4) an, bn → ±∞ =⇒ an + bn → ±∞.
(5) an → ±∞, bn → ∓∞ =⇒ an − bn → ±∞.
(6) an → ∞, |bn| ≤ M =⇒ anbn → ∞.
(7) an, bn → ±∞ =⇒ anbn → ±∞.
(8) an → ±∞, bn → ∓∞ =⇒ anbn → −∞.
(9) an → 0, an 6= 0 =⇒ 1/an → ∞.
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Example 2.2.8. (1) |q| > 1 =⇒ qn → ∞. Indeed,

|qn| = |q|n ≥ |q|
ln C
ln |q| = C

for n ≥ N = bln C/ ln |q|c.
(2) an := ∑1≤k≤n 1/(

√
n +
√

k)→ +∞. Indeed,

an >
n

2
√

n
=

√
n

2
→ +∞.

(3) Set

an :=
x0nk + x1nk−1 + · · ·+ xk−1n + xk

y0n` + y1n`−1 + · · ·+ y`−1n + y`
, (k, ` ∈N, x0y0 6= 0).

Since

an = nk−` x0 +
x1
n + · · ·+ xk−1

nk−1 +
xk
nk

y0 +
y1
n + · · ·+ y`−1

n`−1 +
y`
n`

,

we get

lim
n→∞

an =

 0, k < `,
x0/y0, k = `,

∞, k > `.

(4) an = n
√

n!→ +∞. Observe that

(n!)2 = (1 · n)[2 · (n− 1)] · · · [k(n− k)] · (n · 1) = ∏
1≤k≤n

[k(n− k + 1)] ≥ n2

since k(n− k + 1) ≥ n which can be deduced from the inequality (k− 1)(n− k) ≥
0 (1 ≤ k ≤ n).

2.2.4. Stolz’s theorems. These theorems are used to deal with “∞/∞ or “0/0”
limits.

Theorem 2.2.9. (Stolz’s theorem I: “∞/∞” type) Given two sequence {xn}n≥1 and
{yn}n≥1. If

yn < yn+1, yn → +∞, and lim
n→∞

xn − xn−1

yn − yn−1
= a (a real number or ±∞),

then

(2.2.6) lim
n→∞

xn

yn
= lim

n→∞

xn − xn−1

yn − yn−1
= a.

PROOF. Case 1: a = 0. ∀ε > 0, ∃N1 ∈N such that

|xn − xn−1| < ε(yn − yn−1), ∀ n > N1.

In particular,

|xn − xN1 | ≤ ∑
N1+1≤i≤n

|xi − xi−1| ≤ ∑
N1+1≤i≤n

ε(yi − yi−1) = ε(yn − yN1);
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thus ∣∣∣∣ xn

yn
−

xN1

yn

∣∣∣∣ ≤ ε

(
1−

yN1

yn

)
< ε.

But yn → +∞, ∃N2 ∈N such that |xN1 /yn| < ε whenever n > N2. Finally,∣∣∣∣ xn

yn

∣∣∣∣ ≤ ε + ε = 2ε

whenever n > N = max{N1, N2}.

Case 2: a 6= 0. The basic idea is to construct new sequences and then apply
Case 1. Let

x̃n := xn − ayn.
Then

x̃n − x̃n−1

yn − yn−1
=

(xn − ayn)− (xn−1 − ayn−1)

yn − yn−1
=

xn − xn−1

yn − yn−1
− a→ 0.

From Case 1, we have x̃n/yn → 0 or xn/y0 → a.

Case 3: a = +∞. ∃N1 ∈ N such that xn − xn−1 > yn − yn−1 > 0 (∀n > N1).
Moreover

xn − xN1 = ∑
N1+i≤i≤n

(xi − xi−1) > ∑
N1+1≤i≤n

(yi − yi−1) = yn − yN1 .

Letting n→ +∞ yields xn → +∞. According to Case 1,

lim
n→∞

yn

xn
= lim

n→∞

yn − yn−1

xn − xn−1
=

1
+∞

= 0.

Case 4: a = −∞. Observe that
xn − xn−1

yn − yn−1
→ −∞⇐⇒ (−xn)− (−xn−1)

yn − yn−1
→ +∞.

Now the last case follows from Case 3. �

Theorem 2.2.10. (Stolz’s theorem II: “0/0” type) Given two sequences {xn}n≥1 and
{yn}n≥1. If

xn → 0, yn > yn+1, yn → 0, and lim
n→∞

xn − xn+1

yn − yn+1
= a (a real number or ±∞)

then

(2.2.7) lim
n→∞

xn

yn
= lim

n→∞

xn − xn+1

yn − yn+1
= a.

PROOF. Case 1: a ∈ R. ∀ε > 0, ∃N ∈N such thst

a− ε <
xn − xn+1

yn − yn+
< a + ε, ∀n > N,

or
(a− ε)(yn − yn+1) < xn − xn+1 < (a + ε)(yn − yn+1), ∀n > N.
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In particular,

(a− ε)(yn − yn+p) < xn − xn+p < (a + ε)(yn − yn+p), ∀n > N and p ≥ 1.

Letting p→ +∞ yields

(a− ε)yn ≤ xn ≤ (a + ε)yn =⇒
∣∣∣∣ xn

yn
− a
∣∣∣∣ ≤ ε.

Case 2: a = +∞. Given C > 0, ∃N ∈ N such that xn − xn+1 > C(yn − yn+1)
=⇒ xn − xn+p > C(yn − yn+p), ∀n > N and p ≥ 1. Letting p → +∞ yields
xn/yn ≥ C.

Case 3: a = −∞. The proof is similar to that given in Theorem 2.2.9 Case
4. �

Example 2.2.11. (1) an → a =⇒

lim
n→∞

a1 + 2a2 + · · ·+ nan

n2 =
a
2

.

(2) limn→∞ an = a or ±∞ =⇒ limn→∞
1
n (a1 + · · ·+ an) = a.

(3) limn→∞(an+1 − an) = ` =⇒ Find limn→∞ an/n and limn→∞
1

n2 ∑1≤i≤n ai.
(4) an ≤ an+1, limn→∞

1
n (a1 + · · ·+ an) = a =⇒ limn→∞ an = a.

(5) an = sn − sn−1, σn = 1
n+1 (s0 + · · ·+ sn), nan → 0, σn is convergent =⇒ sn

is also convergent and
lim

n→∞
sn = lim

n→∞
σn.

PROOF. (1) Let yn := a1 + 2a2 + · · ·+ nan, and yn := n2. By Theorem 2.2.9,

lim
n→∞

xn

yn
= lim

n→∞

xn − xn−1

yn − yn−1
= lim

n→∞

nan

n2 − (n− 1)2 = lim
n→∞

nan

2n− 1
=

a
2

.

(2) Let xn = a1 + · · ·+ an and yn. Then

lim
n→∞

a1 + · · ·+ an

n
= lim

n→∞

xn

yn
= lim

n→∞

xn − xn−1

yn − yn−1
= lim

n→∞
an = a.

(3) Let xn := an+1 − an and

yn :=
1

n + 1 ∑
1≤i≤n

xi =
an+1 − a0

n + 1
.

Because xn → `, we obtain yn → ` (by (2)) and then an/n→ `. Similarly set

ỹn :=
1
n2 ∑

1≤i≤n
i(ai+1 − ai) =

1
n2

(
nan+1 − ∑

1≤i≤n
ai

)
.

By (1), ỹn → `/2 so that ∑1≤i≤n ai/n2 = an+1
n − ỹn → `− `

2 = `
2 .

(4) Since an ≤ an+1, it follows that σn := 1
n (a1 + · · ·+ an) ≤ nan/n = an. On

the other hand, for all m > n,

σm =
1
m

(
∑

1≤i≤n
ai + ∑

n+1≤i≤m
ai

)
≥ 1

m ∑
1≤i≤n

ai +
m− n

m
an → an

as m→ ∞. Therefore σn → a.
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(5) Observe that

sn − σn =
1

n + 1 ∑
1≤i≤n

iai.

Then

lim
n→∞

1
n + 1 ∑

1≤i≤n
iai = lim

n→∞

∑1≤i≤n iai −∑1≤i≤n−1 iai

(n + 1)− n
= lim

n→∞
nan = 0.

�

(6) According to (3), we know that an → a =⇒ 1
n (a1 + · · ·+ an)→ a. However,

the converse is not true. For example, consider the sequence {(−1)n}n≥1.

Example 2.2.12. (1) k ∈ Z+ =⇒

lim
n→∞

n

(
1k + 2k + · · ·+ nk

nk+1 − 1
k + 1

)
=

1
2

.

(2) limn→∞ n(an − a) = b, k ∈ Z+ =⇒

lim
n→∞

n

(
a1 + 2ka2 + · · ·+ nkan

nk+1 − a
k + 1

)
=

b
k
+

a
2

.

PROOF. (1) Using Theorem 2.2.9 we have

lim
n→∞

n

(
1k + · · ·+ nk

nk+1 − 1
k + 1

)
= lim

n→∞

(k + 1)(1k + · · ·+ nk)− nk+1

(k + 1)nk

= lim
n→∞

[(k + 1)(1k + · · ·+ nk)− nk+1]− [(k + 1)(1k + · · ·+ (n− 1)k)− (n− 1)k+1]

(k + 1)nk − (k + 1)(n− 1)k

= lim
n→∞

(k + 1)nk − [nk+1 − (n− 1)k+1]

(k + 1)[nk − (n− 1)k]
= lim

n→+∞

1
2 k(k + 1)nk + · · ·
k(k + 1)nk + · · ·

=
1
2

.

(2) Observe that

lim
n→∞

n

(
a1 + 2ka2 + · · ·+ nkan

nk+1 − a
k + 1

)

= lim
n→∞

(k + 1)∑1≤i≤n ikai − ank+1

(k + 1)nk = lim
n→∞

(k + 1)nkan − a(nk+1 − (n− 1)k+1)

(k + 1)[nk − (n− 1)k]
and

nk+1− (n− 1)k+1 = (n− 1+ 1)k+1− (n− 1)k+1 = (k+ 1)(n− 1)k +
k(k + 1)

2
(n− 1)k−1 + · · · .

Hence

lim
n→∞

n

(
a1 + 2ka2 + · · ·+ nkan

nk+1 − a
k + 1

)

= lim
n→∞

(k + 1)annk − (k + 1)a(n− 1)k − ak(k+1)
2 (n− 1)k−1 + · · ·

(k + 1)[k(n− 1)k−1 + · · · ]
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= lim
n→∞

(k + 1)nk(an − a) + (k + 1)a[nk − (n− 1)k]− k(k+1)a
2 (n− 1)k−1 + · · ·

(k + 1)[k(n− 1)k + · · · ]

=
b
k
+ a− a

2
=

b
k
+

a
2

.

�

Theorem 2.2.13. (Toeplitz’s theorem) Assume that pn0 + pn1 + · · ·+ pnn = 1 for all
n ∈N, and each pij ≥ 0. Let

yn := ∑
0≤i≤n

pnixi, n ∈N.

Then TFAE:
(i) xn → a =⇒ yn → a,

(ii) pnm → 0 for each m ∈N.

PROOF. =⇒: Take xn = δnm. Then xn → 0 and yn = pnm (n ≥ m). Hence

lim
n→∞

pnm = lim
n→∞

yn = lim
n→∞

xn = 0.

⇐=: Suppose xn → a. Then ∃M > 0 such that |xn − a| ≤ M for all n ∈ Z+.
∀ε > 0, ∃N∗ ∈ N such that |xn − a| < ε/2 for all n > N∗. But from limn→∞ pni =
0, we get that ∃Ni > N∗ such that

0 ≤ pni ≤
ε

2N∗M
, n > Ni.

Let N := max0≤i≤N∗ Ni. Then

|yn − a| =

∣∣∣∣∣ ∑
0≤i≤n

pnixi − ∑
0≤i≤n

pnia

∣∣∣∣∣
≤ ∑

0≤i≤N∗
pni|xi − a|+ ∑

N∗+1≤i≤n
pni|xi − a|

< MN∗
ε

2N∗M
+

ε

2 ∑
N∗+1≤i≤n

pni <
ε

2
+

ε

2
= ε.

�

Example 2.2.14. (1) bn > 0, b0 + b1 + · · ·+ bn → ∞, an/bn → s =⇒

lim
n→∞

a0 + a1 + · · ·+ an

b0 + b1 + · · ·+ bn
= s.

(2) pk > 0, pn
p0+p1+···+pn

→ 0, sn → s =⇒

lim
n→∞

∑0≤i≤n si pn−i

∑0≤i≤n pi
= s.
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(3) pk, qk > 0, pn
p0+···+pn

→ 0, qn
q0+···+qn

→ 0 =⇒

lim
n→∞

rn

∑0≤i≤n ri
= 0.

Here rn := ∑0≤i≤n piqn−i.

PROOF. (1) Let xn := an/bn, pnm := bm/ ∑0≤i≤n bi, and yn := ∑0≤i≤n pnixi.
Then

lim
n→∞

pnm = 0, ∑
0≤i≤n

pni = 1, pnm ≥ 0.

By Theorem 2.2.13,

lim
n→∞

∑0≤i≤n ai

∑0≤i≤n bi
= lim

n→∞
yn = lim

n→∞
xn = s.

(2) Let pnm := pn−m/ ∑0≤i≤n pi, where 0 ≤ m ≤ n and n = 1, 2, · · · , and

xn := sn, yn := ∑
0≤i≤n

pnixi =
∑0≤i≤n si pn−i

∑0≤i≤n pi
.

(3) Let
Pn := ∑

0≤i≤n
pi, Qn := ∑

0≤i≤n
qn, Rn := ∑

0≤i≤n
ri,

and
pnm :=

pn−mQm

∑0≤i≤n piQn−i
, xn :=

qn

Qn
, yn := ∑

0≤i≤n
pnixi.

�

Example 2.2.15. (1) Show that

(2.2.8)
(n

3

)n
< n! <

(
n + 2√

6

)n
.

(2) Show that

(2.2.9) n <

(
1 +

2√
n

)n
.

PROOF. (1) Recall that

(n!)2 = ∏
1≤k≤n

[k(n− k + 1)] ≥ nn

so that
n! > nn/2 = (

√
n)n.

The inequality (2.2.8) gives a better lower bound for n! than (
√

n)n. Suppose that
k! > (k/3)k holds. Since

(k + 1)! = (k + 1)k! > (k + 1)
(

k
3

)k
,
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it follows that in order to prove (k + 1)! > ((k + 1)/3)k+1 we shall prove

(k + 1)
(

k
3

)k
>

(
k + 1

3

)k+1

or

3kk > (k + 1)k ⇐⇒
(

1 +
1
k

)k
< 3.

But (
1 +

1
k

)k
= 1 + 1 + ∑

2≤i≤k

k(k− 1) · · · (k− i + 1)
i!

1
ki

< 2 + ∑
2≤i≤k

1
i!

< 2 + ∑
2≤i≤k

1
i(i− 1)

< 3.

Assume that k! < ((k + 2)/
√

6)k. From (k + 1)! = (k + 1)k! < (k + 1)((k +
2)/
√

6)k, we shall prove that

(k + 1)
(

k + 2√
6

)k
<

(
k + 3√

6

)k+1
.

Indeed,(
k + 3√

6

)k+1
=

(
k + 2√

6
+

1√
6

)k+1
>

(
k + 2√

6

)k+1
+ (k + 1)

(
k + 2√

6

)k 1√
6

+
(k + 1)k

2

(
k + 2√

6

)k−1 1
(
√

6)2
+

(k + 1)k(k− 1)
6

(
k + 2√

6

)k−2 1
(
√

6)3

=

(
k + 2√

6

)k
[

k + 2√
6

+
k + 1√

6
+

k(k + 1)
2
√

6(k + 2)
+

(k + 1)k(k− 1)
6
√

6(k + 2)2

]

=

(
k + 2√

6

)k 16k3 + 75k2 + 125k + 72
6
√

6(k + 2)2
.

We now claim that
16k3 + 75k2 + 125k + 72

6
√

6(k + 2)2
> k+ 1⇔ 16k3 + 75k2 + 125k+ 72 > 6

√
6(k3 + 5k2 + 8k+ 4).

But this follows from the following observation: 16 > 6
√

6, 75 > 30
√

6, 125 >

48
√

6, and 72 > 24
√

6.
(2) it follows from(
1 +

2√
n

)
= 1 + n · 2√

n
+

n(n− 1)
2

(
2√
n

)2
+ · · · > n(n− 1)

2
4
n
= 2(n− 1).

When n ≥ 2, we get 2(n− 1) ≥ n. �

Example 2.2.16. Let x1 = a, x2 = b, and xn = (xn−1 + xn−2)/2. Find limn→∞ xn.
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PROOF. Observe that

xn+1 − xn =
xn + xn−1

2
− xn =

xn−1 − xn

2
= · · · = x2 − x1

(−2)n−1 =
b− a

(−2)n−1

and

xn+1 = ∑
1≤m≤n

(xm+1 − xm) + x1 = (b− a) ∑
1≤m≤n

1
(−2)m−1 + a

= (b− a)
1− (−1/2)n−1

1− (−1/2)
+ a → 2

3
(b− a) + a =

2b + a
3

.

�

Example 2.2.17. (1) Suppose that λ ∈ R and |λ| < 1. Then

lim
n→∞

an = a ⇐⇒ lim
n→∞

(an+1 − λan) = (1− λ)a.

(2) We have

lim
n→∞

an = a ⇐⇒ lim
n→∞

(4an+2 − 4an+1 + an) = a.

PROOF. (1) The “⇒” is clear. Now we assume that an+1 − λan → (1− λ)a.
Let

xn := an+1 − λan.
Then an+1

λn+1 =
an

λn +
xn

λn+1

and

an = λn

(
a0 + ∑

1≤k≤n

xk−1

λk

)
, n ∈ Z+.

When 0 < λ < 1, we have λn → 0 and by Theorem 2.2.9

lim
n→∞

an = lim
n→∞

a0 + ∑1≤k≤n
xk−1
λk

( 1
λ )

n
= lim

n→∞

xn
λn+1

( 1
λ )

n+1 − ( 1
λ )

n

= lim
n→∞

xn

1− λ
=

(1− λ)a
1− λ

= a.

When λ = 0, the conclusion is trivial. When −1 < λ < 0, we consider the term

a2n = λ2n

(
a0 + ∑

1≤k≤2n

xk−1

λk

)
.

Hence
lim

n→∞
a2n =

1
1− λ2 lim

n→∞
(x2n+1 + λx2n) = a.

Similarly,

−a2n+1 = (−λ)2n+1

(
a0 + ∑

1≤k≤2n+1

xk−1

λk

)
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and
lim

n→∞
a2n+1 = − 1

λ2 − 1
lim

n→∞
(x2n+2 + λx2n+1) = a.

According to Theorem 2.3.9, limn→∞ an = a.

(2) Assume that 4an+2 − 4an+1 + an → a. Observe that

4an+2 − 4an+1 + an = 4
(

an+2 − an+1 +
1
4

an

)
= 4

[(
an+2 −

1
2

an+1

)
− 1

2

(
an+1 −

1
2

an

)]
:= 4

(
yn+1 −

1
2

yn

)
.

Hence

yn+1 −
1
2

yn →
1
4

a =

(
1− 1

2

)
a
2

.

By (1), we must have

lim
n→∞

yn =
a
2

or an+1 −
1
2

an →
(

1− 1
2

)
a.

Using (1) again yields an → a. �

Example 2.2.18. Define

an+1 := sin an, n ∈N and 0 < a0 < π.

Show that
an is decreasing and lim

n→∞
an = 0.

Moreover
lim

n→∞

an√
3/n

= 1.

PROOF. a1 = sin a0 ∈ (0, π). In general, we have 0 < an < π. Since
sin x < x for all x ∈ (0, π), it follows that an+1 < an. By Theorem 2.3.1, the
limit lim)n→ ∞an exists, says α ∈ [0, π). Hence α = sin α which implies α = 0.

By Theorem 2.2.9,

lim
n→∞

1
na2

n
= lim

n→∞

1
a2

n

n
= lim

n→∞

1
a2

n+1
− 1

a2
n

(n + 1)− n

= lim
n→∞

(
1

a2
n+1
− 1

a2
n

)
= lim

n→∞

(
1

sin2 an
− 1

a2
n

)
=

1
3

.

Here we used the fact that

lim
x→0

(
1

sin2 x
− 1

x2

)
= lim

x→0

x2 − sin2 x
x2 sin2 x

= lim
x→0

x4

3
x4 =

1
3

and sin2 x ∼ (x− x3

6 + o(x4))2 ∼ x2 − x4

3 + · · · . �
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2.3. Convergence tests

The most important test is the so-called Cauchy criterion which gives a neces-
sary and sufficient condition on the convergence of a given sequence.

2.3.1. Monotone sequences. A sequence {an}n≥1 is said to be (monotoni-
cally) increasing (resp. decreasing) if an ≤ an+1 (resp. an ≥ an+1) for all n =
1, 2, · · · .

Theorem 2.3.1. Suppose that {an}n≥1 is monotonic (i.e., monotonically increasing or
decreasing). Then

(2.3.1) {an}n≥1 is convergent ⇐⇒ {an}n≥1 is bounded.

PROOF. =⇒: clearly.
⇐=: WLOG, we may assume that an ≤ an+1. Let E := {an : n = 1, 2, · · · }. If

{an}n≥1 is bounded, then by Zorn’s lemma a := sup E exists and hence an ≤ a.
∀ ε > 0, ∃N ∈ N such that a − ε < aN ≤ a, for otherwise, a − ε would be

an upper bound of E. Since an is increasing, we get that a − ε < an ≤ a for all
n > N. �

Example 2.3.2. (1) a1 :=
√

2, an+1 :=
√

2 + an (n ≥ 1) =⇒ Find limn→∞ an.
(2) a1 > 0, an+1 = 1

2 (an +
1
an
) (n ≥ 1) =⇒ Find limn→∞ an.

PROOF. (1) Observe that
• If limn→∞ an = a, then “a =

√
2 + a” =⇒ (a− 2)(a + 1) = 0 =⇒ a = 2.

• a2 =
√

2 + a1 =
√

2 +
√

2 > a1, a2 <
√

2 + 2 = 2; a3 =
√

2 + a2 >√
2a2 > a2.

In general, we claim that
√

2 ≤ an < 2 and an+1 > an.

In fact,
√

2 ≤ an < 2 =⇒ an+1 =
√

2 + an <
√

2 + 2 = 2, and an+1 > an =⇒
an+2 =

√
2 + an+1 >

√
2an+1 > an+1. Hence {an}n≥1 is monotonically increasing

and bounded =⇒ limn→∞ an = 2.
(2) ∀n ≥ 1, we have an > 0 and

an+1 − 1 =
1
2

(
an +

1
an

)
− 1 =

1
2

(√
an −

1√
an

)2
≥ 0.

On the other hand,

an+1 ≤
1
2
(an + an) = an.

Hence an ≥ an+1 ≥ · · · ≥ 1 =⇒ limn→∞ an = a exists and a ≥ 1. Solving the
equation a = 1

2 (a + 1
a ) yields a = 1. �
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Example 2.3.3. a1 = 1, an+1 = 1
1+an

(n ≥ 1) =⇒ Find limn→∞ an.

PROOF. Observe

a2 =
1
2

, a3 =
2
3

, a4 =
3
5

, a5 =
5
8

, · · · .

We claim that {a2n}n≥1 is increasing but {s2n−1}n≥1 is decreasing, and 1
2 ≤ an ≤ 1.

Indeed, 1
2 ≤ an ≤ 1 =⇒ an+1 ≥ 1

1+1 = 1
2 and an+1 ≤ 1

1+0 = 1. Moreover

a2n+2 =
1

1 + a2n+1
≥ 1

1 + a2n−1
= a2n, a2n+1 =

1
1 + a2n

≤ 1
1 + a2n−2

= a2n−1.

Let limn→∞ a2n = A and limn→∞ a2n−1 = B =⇒ B = 1/(1+ A) and A = 1/(1+ B)
=⇒ A = B = (

√
5− 1)/2. Thus an → (

√
5− 1)/2. �

2.3.2. Three important constants π, e, and γ. Recall that π = 3.1415926 · · ·
and e = 2.7182818284590 · · · .

A. Constant π. The following theorem is will-known.

Theorem 2.3.4. (Euler, 1734) We have

(2.3.2) ∑
n≥1

1
n2 := lim

N→∞
∑

1≤n≤N

1
n2 =

π2

6
.

PROOF. (1) The first proof is due to John Scholes.

Claim 1: For any m ∈N,

cot2
(

π

2m + 1

)
+ · · ·+ cot2

(
mπ

2m + 1

)
=

2m(2m− 1)
6

.

Consider

cos(nx) + i sin(nx) = einx = (eix)n = (cos x + i sin x)n.

The imaginary part yields

sin(nx) =
(

n
1

)
sin x cosn−1 x−

(
n
3

)
sin3 x cosn−3 x± · · · .

Let n := 2m + 1 and x = rπ
2m+1 (1 ≤ r ≤ m) =⇒

0 = sin(nx) =
(

n
1

)
sin x cosn−1 x−

(
n
3

)
sin3 x cosn−3 x± · · · .

Divided by sinn x (0 < x < π
2 ) we get

0 =

(
n
1

)
cotn−1 x−

(
n
3

)
cotn−3 x± · · ·

=

(
2m + 1

1

)
cot2m x−

(
2m + 1

3

)
cot2m−2 x± · · · .
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Let

P(t) :=
(

2m + 1
1

)
tm −

(
2m + 1

3

)
tm−1 ± · · ·+ (−1)m

(
2m + 1
2m + 1

)
.

This polynomial has m different roots

ar := cot2
(

rπ

2m + 1

)
, 1 ≤ r ≤ m.

Therefore

P(t) =
(

2m + 1
1

)
∏

1≤r≤m

[
t− cot2

(
rπ

2m + 1

)]
.

In particular

∑
1≤r≤m

ar =
(2m+1

3 )

(2m+1
1 )

=
2m(2m− 1)

6
.

Claim 2: One has

∑
1≤r≤m

csc2
(

rπ

2m + 1

)
=

2m(2m + 2)
6

.

Indeed,

∑
1≤r≤m

csc2
(

rπ

2m + 1

)
= ∑

1≤r≤m

1
sin2( rπ

2m+1 )

= ∑
1≤r≤m

[
1 + cot2

(
rπ

2m + 1

)]
= m +

2m(2m− 1)
6

.

In the interval (0, π/2), the following relations hold:

0 < sin y < y < tan y, 0 < cot y <
1
y
< csc y, 0 < cot2 y <

1
y2 < csc2 y.

Consequently,

2m(2m− 1)
6

< ∑
1≤r≤m

(
2m + 1

rπ

)2
<

2m(2m + 2)
6

.

Equivalently

π2

6
2m

2m + 1
2m− 1
2m + 1

< ∑
1≤r≤m

1
r2 <

π2

6
2m

2m + 1
2m + 2
2m + 1

.

Finally letting m→ ∞ yields ∑n≥1
1

n2 = π2/6.

(2) The second proof is due to Beukers-Calabi-Kolk. Observe

∑
n≥1

1
n2 = ∑

n≥0

1
(2n− 1)2 + ∑

n≥1

1
(2n)2 .

Hence

∑
n≥1

1
n2 =

π2

6
⇐⇒ ∑

k≥0

1
(2k + 1)2 =

π2

8
.

Define

J :=
∫∫

[0,1]×[0,1]

dxdy
1− x2 − y2 = ∑

k≥0

1
(2k + 1)2 .
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If

u = cos−1

√
1− x2

1− x2y2 , v := cos−1

√
1− y2

1− x2y2 ,

then x = sin u/ cos v, y = sin v/ cos u, and

J =
∫ π/2

0

∫ π/2−u

0
dudv =

π2

8
.

�

B. Constant e. Define

an :=
(

1 +
1
n

)n
, bn :=

(
1 +

1
n

)n+1
, en := 1 + ∑

1≤k≤n

1
k!

= ∑
0≤k≤n

1
k!

.

Claim 1: For each n,
an < an+1, bn > bn+1.

PROOF. For each n,

an =

(
1 +

1
n

)n
= ∑

0≤k≤n

(
n
k

)
1
nk = 1 + ∑

1≤k≤n

n(n− 1) · · · (n− k)
k!

1
nk

= 1 + 1 +
1
2!

(
1− 1

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·
(

1− n− 1
n

)
< 1 + 1 +

1
2!

(
1− 1

n + 1

)
+ · · ·+ 1

n!

(
1− 1

n + 1

)
· · ·
(

1− n− 1
n + 1

)
+

1
(n + 1)!

(
1− 1

n + 1

)
· · ·
(

1− n
n + 1

)
= an+1.

For bn,

bn−1

bn
=

(1 + 1
n−1 )

n

(1 + 1
n )

n+1
=

(
1 + 1

n−1

1 + 1
n

)n
1

1 + 1
n

=

(
1 +

1
n2 − 1

)n 1
1 + 1

n
>

(
1 +

n
n2 − 1

)
1

1 + 1
n

>

(
1 +

1
n

)
1

1 + 1
n

= 1.

�

Claim 2: We have

(2.3.3) lim
n→∞

an = lim
n→∞

bn := e

exists.

PROOF. Because

an < 1 + 1 + ∑
2≤k≤n

1
k!
≤ 2 + ∑

2≤k≤n

1
k(k− 1)

= 3− 1
n
< 3,

the claim follows from Theorem 2.3.1 and Claim 1. �
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Claim 3: For any n ∈ Z+,

(2.3.4)
(

1 +
1
n

)n
<

(
1 +

1
n + 1

)n+1
< e <

(
1 +

1
n + 1

)n+2
<

(
1 +

1
n

)n+1
.

Claim 4: We have

(2.3.5) lim
n→∞

en = e.

PROOF. Observe that en < en+1 and

an = 1 + 1 +
1
2!

(
1− 1

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·
(

1− n− 1
n

)

> 1 + 1 +
1
2!

(
1− 1

n

)
+ · · ·+ 1

k!

(
1− 1

n

)
· · ·
(

1− k− 1
n

)
.

Letting n→ ∞ yields

e ≥ 1 + 1 +
1
2!

+ · · ·+ 1
k!

= ek.

On the other hand, an < en. So limn→∞ en = e. �

Example 2.3.5. (1) ∀n ≥ 1 =⇒

(2.3.6)
(

n + 1
e

)n
< n! < e

(
n + 1

e

)n+1
.

(2) We have

(2.3.7) lim
n→∞

n
√

n!
n

=
1
e

.

PROOF. (1) ∀k ≥ 1, (
k + 1

k

)k
< e <

(
k + 1

k

)k+1
.

So

(n + 1)n

n!
= ∏

1≤k≤n

(
k + 1

k

)k
< en < ∏

1≤k≤n

(
k + 1

k

)k+1
=

(n + 1)n+1

n!
.

(2) By (1), one has

n + 1
e

<
n√n! <

n + 1
e

n
√

n + 1

and
n + 1

n
· 1

e
<

n
√

n!
n

<
n + 1

n
· n
√

n + 1 · 1
e

.

Letting n→ ∞ yields (2.3.7). �



2.3. CONVERGENCE TESTS 55

C. Euler constant γ. Given p > 0 and let

Sn := ∑
1≤k≤n

1
kp , n ∈ Z+.

Then Sn < Sn+1, and

Sn ≤ S2n−1

= 1 +
(

1
2p +

1
3p

)
︸ ︷︷ ︸

<2−(p−1)

+

(
1
4p + · · ·+ 1

7p

)
︸ ︷︷ ︸
<4−(p−1)=2−2(p−1)

+ · · ·+
(

1
2(n−1)p

+ · · ·+ 1
(2n − 1)p

)
︸ ︷︷ ︸

<2−(n−1)(p−1)

<
1

1− 1
2p−1

=
2p−1

2p−1 − 1
.

Hence
lim

n→∞
Sn exists for all p > 1.

When p = 1, by Theorem 2.2.9,

lim
n→∞

1 + 1
2 + · · ·+ 1

n
ln n

= lim
n→∞

1
n

ln n− ln(n− 1)
= lim

n→∞

1
n

ln(1 + 1
n−1 )

= lim
n→∞

1
n

ln(1 + 1
n )
· lim

n→∞

ln(1 + 1
n )

ln(1 + 1
n−1 )

= 1,

because
1

n + 1
< ln

(
1 +

1
n

)
<

1
n

.

Consequently

Sn ≥ 1 +
1
2
+ · · ·+ 1

n
→ +∞, if 0 < p ≤ 1.

In particular

1 +
1
2
+ · · ·+ 1

n
∼ ln n as n→ ∞.

Define

(2.3.8) an := ∑
1≤k≤n

1
k
− ln n.

Then
an > an+1 > 0, lim

n→∞
an exists.

Indeed,

an = 1 +
1
2
+ · · ·+ 1

n
− ln n > ln

2
1
+ ln

3
2
+ · · ·+ ln

n + 1
n
− ln n = ln

n + 1
n

> 0

and

an+1 − an =
1

n + 1
− ln(n + 1) + ln n =

1
n + 1

− ln
(

1 +
1
n

)
< 0.
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Figure: Joseph Liouville (1809/3/24 - 1882/9/8)

Definition 2.3.6. The Euler constant γ is defined to be

(2.3.9) γ := lim
n→∞

(
∑

1≤k≤n

1
k
− ln n

)
.

Conjecture 2.3.7. γ is irrational, i.e., γ ∈ R \Q.

Theorem 2.3.8. (1) (Liouville, 1840) e is irrational.
(2) π is irrational.

PROOF. (1) Recall that

e = ∑
k≥0

1
k!

= lim
n→∞ ∑

0≤k≤n

1
k!

.

Assume that e = a/b is rational, with a, b > 0. Then

n!be = n!a, ∀ n ∈N.

On the other hand,

bn!e = bn!
[(

1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

)
+

(
1

(n + 1)!
+

1
(n + 2)!

+ · · ·
)]

= bn!
(

1 +
1
1!

+
1
2!

+ · · ·+ 1
n!

)
+ b

(
1

n + 1
+

1
(n + 1)(n + 2)

+
1

(n + 1)(n + 2)(n + 3)
+ · · ·

)
︸ ︷︷ ︸

1
n+1<?< 1

n+1+
1

(n+1)2
+···= 1

n

When n is large enough, the second term is not an integer. This contradiction
shows that e is not rational.
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(2) We give a proof due to Niven (1946). Let π = a/b. Define

f (x) :=
xn(a− bx)n

n!
, F(x) := f (x)− f (2)(x) + f (4)(x)− · · ·+ (−1)n f (2n)(x).

But
Z 3 F(π) + F(0) =

∫ π

0
f (x) sin xdx

with 0 < f (x) sin x < πnan

n! � 1 (as n� 1). �

2.3.3. Subsequences. Let {an}n≥1 be a sequence and ϕ : N → N s strictly
increasing function. Then {aϕ(k)}k≥1 is called a subsequence and write {ank}k≥1.

Theorem 2.3.9. (1) If limn→∞ an = a, then for any subsequence {ank}k≥1 one has

lim
k→∞

ank = a.

(2) {an}n≥1 is convergent =⇒ each subsequence is convergent.
(3) ∃ divergent subsequence of {an}n≥1 =⇒ {an}n≥1 is divergent.
(4) ∃ two convergent subsequences with distinct limits =⇒ {an}n≥1 is divergent.
(5) {an}n≥1 is convergent⇐⇒ {a2n−1}n≥1 and {a2n}n≥1 are convergent and have

the same limits.

PROOF. (1) - (4) can be proved by directly definition. For (5), assume that
limn→∞ a2n−1 = limn→∞ a2n = a. Then ∀ε > 0, ∃N ∈N such that

|bn − a| < ε, |cn − a| < ε, bn := a2n, cn := a2n−1.

For an, if n = 2k, then |an − a| < ε (n > 2N); if n = 2k − 1, then |an − a| < ε
(n > 2N − 1). �

Example 2.3.10. (Fibonacci sequence) Let

a1 = a2 = 1, an+1 = an + an−1 (n ≥ 2) =⇒ find lim
n→∞

an+1

an
.

Let
bn :=

an+1

an
.

Then
bn =

an + an−1

an
= 1 +

an−1

an
= 1 +

1
bn−1

.

We have proved as in Example 2.3.3 that

b2n−1 < b2n+1, b2n > b2n+2, 1 ≤ bn ≤ 2.

Then

lim
n→∞

bn =

√
5 + 1
2

, lim
n→∞

(bn − 1) = lim
n→∞

1
bn−1

=

√
5− 1
2

≈ 0.618.

The explicit expression for an is

an =
1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]
.
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Figure: Fibonacci sequence

Suppose
an − αan−1 = β(an−1 − αan−2).

Then
α + β = 1, αβ = −1

so that (α, β) = ((1 +
√

5)/2, (1−
√

5)/2) or ((1−
√

5)/2, (1 +
√

5)/2). From

an −
1 +
√

5
2

an−1 =
1−
√

5
2

(
an−1 −

1 +
√

5
2

an−2

)
,

an −
1−
√

5
2

an−1 =
1 +
√

5
2

(
an−1 −

1−
√

5
2

an−2

)
we obtain

an −
1−
√

5
2

an−1 =

(
1 +
√

5
2

)n−2(
a2 −

1−
√

5
2

a1

)
,

an −
1 +
√

5
2

an−1 =

(
1−
√

5
2

)n−2(
a2 −

1 +
√

5
2

a1

)
.

Eliminating an−1 yields the formula for an.

Theorem 2.3.11. (Bolzano-Weierstrass theorem) Every bounded sequence has a con-
vergent subsequence.
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Figure: Karl Theodor Wihelm Weierstrass (1815/10/31 - 1897/2/19)

PROOF. Assume {an}n≥1 is bounded, i.e., an ∈ [a, b] for some interval [a, b]
and all n ≥ 1. Then one of [a, a+b

2 ] and [ a+b
2 , b] contains infinitely many an’s,

say [a1, b1]. Take xn1 ∈ [a1, b1]. In this process, we can find a sequence of closed
intervals

[a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [ak, bk] ⊃ · · ·
with

bk − ak =
b− a

2k → 0 and ∃xnk ∈ [ak, bk].

But an is increasing and bn is decreasing, we conclude that limn→∞ an = a and
limn→∞ bn = b both exist. Moreover

0 ≤ b− a ≤ bn − an → 0.

Hence
lim

n→∞
an = lim

n→∞
bn = c

and c ∈ [ak, bk] for each k. From |xnk − 1| ≤ bk − ak, we see that limn→∞ xnk =
c. �

Theorem 2.3.12. {an}n≥1 is unbounded =⇒ ∃ subsequence {ank}k≥1 such that
{ank}k≥1 is unbounded.

PROOF. ∃ n1 such that |an1 | > 1. Then ∃n2 > n1 such that |an2 | > 2. Hence ∃
subsequence {nk}k≥1 such thst |ank | ≥ k. �



60 2. SEQUENCES

Figure: Augustin Louis Cauchy (1789/8/21 - 1857/5/23)

2.3.4. Cauchy sequences. We say that a sequence {an}n≥1 is a Cauchy se-
quence if ∀ε > 0, ∃ N ∈N such that |an − am| < ε whenever n, m ≥ N.

Example 2.3.13. (1) {an}n≥1 is not Cauchy, where an = 1 + 1
2 + · · ·+ 1

n .
(2) {an}n≥1 is Cauchy, where an = 1 + 1

2
√

2
+ · · ·+ 1

n
√

n .

PROOF. (1) ∀ n ≥ 1,

a2n − an =
1

n + 1
+ · · ·+ 1

2n
≥ n

2n
=

1
2

.

(2) ∀n ≥ 1,

1√
n
− 1√

n + 1
=

√
n + 1−

√
n√

n(n + 1)
=

1√
n(n + 1)

· 1√
n + 1 +

√
n
>

1
2

1
(n + 1)

√
n + 1

.

Hence ∀ m > n,

am − an =
1

(n + 1)
√

n + 1
+ · · ·+ 1

m
√

m
<

2√
n
− 2√

m
<

2√
n

.

�

Remark 2.3.14. Cauchy sequence is bounded.

PROOF. ∃ N ∈N such that |am − an| < 1 whenever m, n ≥ N. �
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Theorem 2.3.15. (Cauchy criterion) {an}n≥1 is convergent⇐⇒ {an}n≥1 is Cauchy.

PROOF. =⇒: Let limn→∞ an = a. Then ∀ε > 0, ∃N ∈N such that

|an − a| < ε, ∀ n > N.

Hence
|am − an| ≤ |am − a|+ |an − a| < 2ε

for all n, m > N.
⇐=: ∃N0 ∈N such that |an− aN0+1| < 1, ∀n > N0. In particular, |an| ≤ M. By

Theorem 2.3.11, ∃ subsequence {ank}k≥1 such that limk→∞ ank = a. Furthermore

|an − a| ≤ |an − ank |+ |ank − a| < ε + |ank − a|
whenever n, nk > N. �

Remark 2.3.16. The above theorem may not be true for any metric spaces. For
example,

x0 = 2, xn+1 :=
1
2

(
xn +

2
xn

)
∈ Q.

Then {xn}n≥1 is a Cauchy sequence in Q, but xn →
√

2 /∈ Q.

Remark 2.3.17. We have defined that a metric space is complete if ∀ Cauchy se-
quence is convergent. Hence R is complete, but Q is not.

Remark 2.3.18. “Completeness” can be specialized on Riemannian manifolds so
that the completeness is, in this case, equivalent to the fact that every geodesic can
be extended for any time.





CHAPTER 3

Continuous functions

3.1. Limits of functions

We begin with an example. Find a function f : R→ R+ satisfying

f (x + y) = f (x) f (y)

for any x, y ∈ R? Letting x = y yields

f (2) = f (1 + 1) = [ f (1)]2.

In general, one has
f (n) = [ f (1)]n

for any n ∈ Z+. Moreover

f (1) = f

 1
n
+ · · ·+ 1

n︸ ︷︷ ︸
n

 =

[
f
(

1
n

)]n
and f (1) = f (1) f (0)

so that

f (0) = 1, f
(

1
n

)
= [ f (1)]

1
n .

For any p/q ∈ Q one has

f
(

p
q

)
= f

1
q
+ · · ·+ 1

q︸ ︷︷ ︸
p

 =

[
f
(

1
q

)]p
= [ f (1)]

p
q .

For any x ∈ R, we have proved that there is a sequence {an}n≥1 in Q such that

lim
n→∞

an = x.

In summary,

f (x)
we expect←−−−−− f (an) = [ f (1)]an n→∞−−−−→ [ f (1)]x

If one can prove

f
(

lim
n→∞

an

)
= f (x) = lim

n→∞
f (an),

we have
f (x) = [ f (1)]x, x ∈ R.

We can conclude that when f and lim can be changed, f (x) = [ f (1)]x for all x ∈ R.
As we shall see later by Heine’s theorem, f (x) = [ f (1)]x for all x ∈ R when f is
continuous.

63
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3.1.1. Definitions. We start with the definition of limits of functions.

Definition 3.1.1. (1) If f : (a,+∞)→ R and A ∈ R, we define

(3.1.1) lim
x→+∞

f (x) = A⇐⇒
∀ ε > 0 ∃ M > a such that

| f (x)− A| < ε
whenever x > M

(2) If f : (−∞, b)→ R and A ∈ R, we define

(3.1.2) lim
x→−∞

f (x) = A⇐⇒
∀ ε > 0 ∃ M < b such that

| f (x)− A| < ε
whenever x < M

(3) If f : R→ R and A ∈ R, we define

(3.1.3) lim
x→∞

f (x) = A⇐⇒
∀ ε > 0 ∃ M > 0 such that

| f (x)− A| < ε
whenever |x| > M

Theorem 3.1.2. If f : R→ R and A ∈ R, then

(3.1.4) lim
x→∞

f (x) = A⇐⇒ lim
x→+∞

f (x) = A = lim
x→−∞

f (x).

Example 3.1.3. Compute

lim
x→∞

ex

1 + ex , lim
x→∞

sin x
x

.

Since
lim

x→+∞

ex

1 + ex = 1 and lim
x→−∞

ex

1 + ex = 0,

it follows that the limit limx→∞
ex

1+ex does not exist. For the second one,∣∣∣∣ sin x
x

∣∣∣∣ ≤ 1
|x| ,

we see that limx→∞ sin x/x = 0.

Definition 3.1.4. Consider a deleted neighborhood Ů(a, ρ) := (a− ρ, a) ∪ (a, a +
ρ). Let f : Ů(a, ρ)→ R, A ∈ R, define

(3.1.5) lim
x→a

f (x) = A⇐⇒
∀ ε > 0 ∃ δ > 0 (δ ≤ ρ) such that

| f (x)− A| < ε
whenever 0 < |x− a| < δ.

If f is defined at a, then limx→a f (x) = f (a) is the definition of the continuity
of f at a.
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Definition 3.1.5. (One-sided limits) (1) f : (a− ρ, a)→ R (ρ > 0), A ∈ R, define

(3.1.6) lim
x→a−

f (x) ≡ f (a−) = A⇐⇒
∀ ε > 0 ∃ δ > 0 such that

| f (x)− A| < ε
whenever − δ < x− a < 0

(2) f : (a, a + ρ)→ R (ρ > 0), A ∈ R, define

(3.1.7) lim
x→a+

f (x) ≡ f (a+) = A⇐⇒
∀ ε > 0 ∃ δ > 0 such that

| f (x)− A| < ε
whenever 0 < x− a < δ

Theorem 3.1.6. We have

(3.1.8) lim
x→a

f (x) = A ⇐⇒ f (a+) = A = f (a−).

Example 3.1.7. (1) If

f (x) =

 −1, x < 0,
0, x = 0,
1, x > 0,

then f (0+) = −1 and f (0+) = 1.
(2) If

f (x) =
{

0, x ≤ 0,
1
x , x > 0,

then f (0−) = 0, but f (0+) does not exist.

3.1.2. Properties of the limits of a function. The following properties can be
proved as for the limits of sequences.

Theorem 3.1.8. (1) (Uniqueness) limx→a f (x) is unique, if it exists.
(2) (Local boundedness) limx→a f (x) exists =⇒ f is bounded in some delated

neighborhood of a.
(3) limx→a f (x) = A > B = limx→a g(x) =⇒ f (x) > g(x) in some Ů(a, ρ).
(4) limx→a f (x) = A =⇒ limx→a | f (x)| = |A|.
(5) g(x) ≤ f (x) ≤ h(x) for any x ∈ Ů(a, ρ) =⇒ if limx→a g(x) = limx→a h(x) =

A, then limx→a f (x) = A.
(6) If limx→a f (x) = A, limx→a g(x) = B, α, β ∈ R, then

lim
x→a

(α f (x) + βg(x)) = αA + βB, lim
x→a

f (x)g(x) = AB, lim
x→a

f (x)
g(x)

=
A
B

(if B 6= 0).

(7) limx→x0 g(x) = u0, limu→u0 f (u) = A, g 6= u0 in Ů(x0, ρ) =⇒
lim

x→x0
f (g(x)) = A.
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Example 3.1.9. (1) limx→0 xb1/xc = 1. Indeed, 1/x− 1 < b1/xc ≤ 1/x.
(2) limx→∞ xk/ax = 0 (a > 0 and k ∈ N). Because 0 < xk/ax ≤ (bxc +

1)k/abxc+1a.

3.1.3. Two important limits. When 0 < x < π, we know that 0 < sin x < x.
The following property shows that when x is very small, we can use x to substitute
sin x.

Proposition 3.1.10. One has

(3.1.9) lim
x→0

sin x
x

= 1.

PROOF. When 0 < x < π/2, we have

sin x < x < tan x

so that

cos x <
sin x

x
< 1.

Hence limx→0+ sin x/x = 1. Similarly, we can prove that limx→0− sin x/x = 1. �

Remark 3.1.11. (1) We have proved that

0 x→∞←−−−− sin x
x

x→0−−−−→ 1

What about the value of the integral∫ ∞

0

sin x
x

dx
(
=

π

2

)
?

Proposition 3.1.12. One has

(3.1.10) lim
x→∞

(
1 +

1
x

)x
= e.

PROOF. For any x ≥ 1 we have(
1 +

1
bxc+ 1

)bxc
<

(
1 +

1
x

)x
<

(
1 +

1
bxc

)bxc+1
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Using e = limn→∞(1 + 1/n)n, we get limx→+∞(1 + 1/x)x = e. Similarly, when
x → −∞, we set y := −x → +∞. Then(

1 +
1
x

)x
=

(
1− 1

y

)−y
=

(
1 +

1
y− 1

)y
=

(
1 +

1
y− 1

)y−1 y
y− 1

→ e

as x → −∞. �

Remark 3.1.13. (1) limy→0(1 + y)1/y = e.
(2) limy→∞(1− 1/y)y = 1/e.
(3) limn→∞[n sin(2πn!e)] = 2π.

PROOF. We give a proof of (3). From e = ∑k≥0
1
k! we have

n!e = n! ∑
0≤k≤n

1
k!︸ ︷︷ ︸

∈Z

+ n! ∑
k≥n+1

1
k!︸ ︷︷ ︸

:=εn→0

.

Then

n sin(2πn!e) = n sin(2πεn) =
sin(2πεn)

2πεn

2πεn

1/n
→ 1× 2π = 2π.

Here
1

n + 1
< εn :=

1
n + 1

+
1

(n + 1)(n + 2)
+ · · · < 1

n + 1
+

1
(n + 1)2 + · · · = 1

n
.

�

3.1.4. Heine’s theorem. This theorem builds a bridge between limits of func-
tions and limits of sequences.

Theorem 3.1.14. (Heine) f : Ů(a, ρ)→ R, A ∈ R =⇒

lim
x→a

f (x) = A ⇐⇒ ∀ {an}n≥1 ⊂ Ů(a, ρ) with an → a
we have limn→∞ f (an) = A.

(3.1.11)

⇐⇒ ∀ {an}n≥1 ⊂ Ů(a, ρ) with an → a
we have { f (an)}n≥1 converges.

(3.1.12)

PROOF. (1)⇐: If limx→a f (x) 6= A, then ∃ε0 > 0, ∀δ > 0, ∃x ∈ Ů(a, δ) such
that

| f (x)− A| ≥ ε0 > 0.

Take δ1 = ρ, δ2 = ρ/2, · · · , δn = ρ/n, · · · , and find a1, · · · , an ∈ Ů(a, ρ/n) such
that | f (an)− A| ≥ ε0. Since an → a, we have f (an) 9 A.
⇒: Clearly.
(2)⇒: Clearly.
⇐: We should prove that any sequence ( f (an))n≥1 has the same limit. Sup-

pose that an → a and bn → a, but f (an) → A 6= B ← f (bn). Consider the new
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sequence (xn)n≥1:
a1, b1, a2, b2, a3, b3, · · · , an, bn, · · · .

Then xn → a but f (xn)n≥1 diverges. Hence A must be equal to B. �

Example 3.1.15. (1) sin 1
x has no limit at x = 0.

(2) Dirichlet function has no limit at every point x ∈ R.

PROOF. (1) For xn = 1/nπ andyn = 1/(2nπ + π
2 ), we get

sin
1
xn

= 0, sin
1
yn

= 1.

Hence sin 1
x has no limit at x = 0.

(2) Recall that

D(x) =
{

1, x ∈ Q,
0, x ∈ R \Q.

For any a ∈ R, we can find a sequence {an}n≥1 such that an → a. On the other
hand, ∃bn ∈ R \Q such that bn → a. But D(an) = 1 6= 0 = D(bn). �

(3) Topologist’s sine curve:

X =

{(
x, sin

1
x

)
: x ∈ (0, 1]

}
which can be obtained by the continuous map

(0, 1] −→ X ⊆ R2, x 7−→
(

x, sin
1
x

)
.

By the continuity of f , X and hence X are connected, but X is not path-connected.

Theorem 3.1.16. We have

lim
x→∞

f (x) exists ⇐⇒
∀ ε > 0 ∃ M > 0 such that
| f (x1)− f (x2)| < ε

whenever |x1|, |x2| > M.
(3.1.13)

lim
x→a−

f (x) exists ⇐⇒
∀ ε > 0 ∃ δ > 0 such that
| f (x1)− f (x2)| < ε

whenever a− δ < x1, x2 < a.
(3.1.14)

PROOF. =⇒: Clearly.
⇐=: Cauchy test for sequence ⇒ ∀{an}n≥1 → ∞, { f (an)}n≥1 converges ⇒

limx→∞ f (x) exists by Heine’s theorem, Theorem 3.1.14. �

3.2. Various comparison symbols

We have proved that limx→0 sin x/x = 1, so that in principal, we can replace
sin x by x. A natural question is in context when/how we can do it. This section
answers this question.
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3.2.1. Infinitesimals. Actually we have six limit types:

x → a, x → a+, x → a−, x → −∞, x → +∞, x → ∞.

We will focus on the first type.

Definition 3.2.1. We say that f (x) is an infinitesimal or f (x) = o(1) as x → a if
limx→a f (x) = 0.

Remark 3.2.2. (1) limx→a f (x) = A⇐⇒ f (x)− A = o(1) as x → a.
(2) f (x) = o(1) as x → a⇐⇒ | f (x)| = o(1) as x → a.
(3) f (x) = o(1), g(x) = o(1) as x → a⇐⇒ ∀α, β ∈ R, α f (x) + βg(x) = o(1) as

x → a.
(4) f (x) = o(1) as x → a, and g(x) is bounded in Ů(a, δ) (for some δ > 0) =⇒

f (x)g(x) = o(1) as x → a.

Example 3.2.3. (1) x → 0:

sin x = o(1), tan x = o(1), ax − 1 = o(1) (a > 0).

x → 0+:
xα = o(1) (α > 0), 1− cos x = o(1).

x → +∞:
1
xα

= o(1) (α > 0), ax = o(1) (0 < a < 1).
x → ∞:

1
xn = o(1) (n ∈ Z+),

1
x1/3 = o(1).

x → −∞:
ax = o(1) (a > 1).

(2) x → 0:

xex + 3 ln(1 + x) = o(1), esin x cos x− 1 = o(1).

x → ∞:
x + sin x

x2 + 5x− 2
=

3x
ex + ln x

=
√

x + 1−
√

x = ln
(

1 +
1
x

)
+

sin x
x

= o(1).

(3) Find A and B so that

lim
x→∞

(√
x2 + 2x + 5 + Ax + B

)
= 1.

PROOF. Write√
x2 + 2x + 5 + Ax + B = 1 + α(x), α(x) = o(1) (x → +∞).

Then

A = −
√

1 +
2
x
+

5
x2 +

1− B
x

+
α

x
.
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Letting x → +∞ yields A = −1 and then

B = 1 + α + x−
√

x2 + 2x + 5.

But B is a constant, we must have

B = 1 + lim
x→+∞

−2x− 5√
x2 + 2x + 5 + x

= 1− lim
x→+∞

2 + 5
x

1 +
√

1 + 2
x + 5

x2

= 0.

Thus
√

x2 + 2x + 5− x− 1 = o(1) as x → ∞. �

Definition 3.2.4. Assume that u(x) = o(1) and v(x) = o(1) as x → a.
(1) We say

(3.2.1) u(x) = o(v(x)) as x → a ⇐⇒ lim
x→a

u(x)
v(x)

= 0.

In particular, when v(x) ≡ 1, we get our old notion.
(2) We say

(3.2.2) u(x) = O(v(x)) as x → a ⇐⇒
∣∣∣∣u(x)

v(x)

∣∣∣∣ ≤ M (in some Ů(a, δ)).

(3) We say

u(x) ≈ v(x) as x → a ⇐⇒ u(x) = O(v(x)) and v(x) = O(u(x)) as x → a

⇐⇒ 0 < m ≤
∣∣∣∣u(x)

v(x)

∣∣∣∣ ≤ M (∃ 0 < m < M in Ů(a, δ)).(3.2.3)

(4) We say

(3.2.4) u(x) ∼ v(x) as x → a ⇐⇒ lim
x→a

u(x)
v(x)

= 1.

Proposition 3.2.5. (1) u(x) = v(x) = o(1) as x → a and limx→a u(x)/v(x) exists
=⇒

u(x) = O(v(x)) as x → a.
(2) u(x) = v(x) = o(1) as x → a and limx→a u(x)/v(x) = c 6= 0 =⇒

u(x) ≈ v(x) as x→ a.

Definition 3.2.6. (1) We say that u(x) is an k-th infinitesimal as x → a if

(3.2.5) u(x) ≈ (x− a)k (k > 0).

(2) We say that c(x− a)k is the principal part of u(x) as x → a if

(3.2.6) u(x) ∼ c(x− a)k as x → a.
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Example 3.2.7. (1) sin x ≈ (x− 0)1, 1− cos x ≈ (x− 0)2, 1− cos x ≈ 1
2 (x− 0)2 as

x → 0.
(2) ln x = o(1) as x → 0+, but

xα ln x = o(1) as x → 0 + (α > 0, k ∈ Z+)

and
xα(ln x)k = o(1) as x → 0 + .

(3) As x → 0

(3.2.7) sin x ∼ x ∼ tan x ∼ ln(1 + x) ∼ ex − 1 ∼ (1 + x)α − 1
α

.

Because

lim
x→0

(1 + x)1/x = e =⇒ lim
x→0

ln(1 + x)
x

= 1.

Letting t = ex − 1 yields

lim
x→0

ex − 1
x

= lim
t→0

t
ln(1 + t)

= 1.

Writing
(1 + x)α − 1

x
=

eα ln(1+x) − 1
x

=
eα ln(1+x) − 1
α ln(1 + x)

α ln(1 + x)
x

we obtain (1 + x)α − 1 ∼ αx.

Proposition 3.2.8. We have
(1) u(x) = O(v(x)) and v(x) = O(w(x)) =⇒ u(x) = O(w(x)).
(2) u(x) = O(v(x)) and v(x) = o(w(x)) =⇒ u(x) = o(w(x)).
(3) O(u(x)) + O(v(x)) = O(u(x) + v(x)).
(4) O(u(x))O(v(x)) = O(u(x)v(x)). In particular, O(u(x)k) = [O(u(x))]k.
(5) o(1)O(u(x)) = o(u(x)).
(6) O(1)o(u(x)) = o(u(x)).
(7) O(u(x)) + o(u(x)) = O(u(x)).
(8) o(u(x)) + o(v(x)) = o(|u(x)|+ |v(x)|).
(9) o(u(x))o(v(x)) = o(u(x)v(x)). In particular, o(u(x)k) = [o(u(x))]k.
(10) u(x) ∼ v(x) and v(x) ∼ w(x) =⇒ u(x) ∼ w(x).
(11) u(x) ∼ v(x) and w(x) = o(u(x)) =⇒ u(x) ∼ v(x)± w(x).

3.2.2. Infinities. We say f (x) is an infinity if 1/ f (x) is an infinitesimal.
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Definition 3.2.9. Assume that f is defined in Ů(a, ρ). Define

lim
x→a

f (x) = +∞ ⇐⇒ ∀ C > 0 ∃ δ > 0, ∀ x ∈ Ů(a, δ)
with δ < ρ, we have f (x) ≥ C.

(3.2.8)

lim
x→a

f (x) = −∞ ⇐⇒ ∀ C > 0 ∃ δ > 0, ∀ x ∈ Ů(a, δ)
with δ < ρ, we have f (x) ≤ −C.

(3.2.9)

lim
x→a

f (x) = ∞ ⇐⇒ ∀ C > 0 ∃ δ > 0, ∀ x ∈ Ů(a, δ)
with δ < ρ, we have | f (x)| ≥ C.

(3.2.10)

Similarly we can consider

lim
x→a+

, lim
x→a−

, lim
x→+∞

, lim
x→−∞

, lim
x→∞

.

We give several remarks:

(1) u(x)→ ∞, v(x)→ ∞ =⇒

u(x) = o(v(x)) ⇐⇒ lim
x→a

u(x)
v(x)

= 0 or lim
x→a

v(x)
u(x)

= ∞.

(2) u(x)→ ∞, v(x)→ ∞ =⇒

u(x) = O(v(x)) ⇐⇒
∣∣∣∣u(x)

v(x)

∣∣∣∣ ≤ M (in some Ů(a, δ)).

(3) u(x)→ ∞, v(x)→ ∞ =⇒

u(x) ≈ v(x) ⇐⇒ u(x) = O(v(x)) and v(x) = O(u(x)).

(4) u(x)→ ∞, v(x)→ ∞ =⇒

u(x) ∼ v(x) ⇐⇒ lim
x→a

u(x)
v(x)

= 1.

Proposition 3.2.10. Proposition 3.2.8 also holds.

3.2.3. Equivalent substitutions. When x → 0, we proved that sin x ∼ tan x sin x,
hence tan x− sin x → 0 as x → 0.

Example 3.2.11. Compute

lim
x→0

tan x− sin x
x3 .

PROOF. Observe
tan x− sin x

x3 =
sin x
cos x − sin x

x3 =
sin x
cos x

· 1− cos x
x3 =

sin x
x
· 1

cos x
· 1− cos x

x2

which tends to 1× 1× 1
2 = 1

2 .
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If we use tan x− sin x = o(1), then the limit can not be calculated. The reason
is that o(1) is much more coarser than x3. It leads to to find more precise expression
for tan x− sin x. Actually, by Taylor’s expression, we have

sin x− x ∼ −1
3

x3, tan x− x ∼ 1
6

x3 (as x → 0).

By the remark in Example 3.2.13 (3), we have tan x− sin x ∼ 1
3 x3 + 1

6 x3 = 1
2 x3. �

Theorem 3.2.12. v(x) ∼ w(x) as x→ a are equivalent infinitesimal or infinity =⇒
lim
x→a

u(x)v(x) = A ⇐⇒ lim
x→a

u(x)w(x) = A,(3.2.11)

lim
x→a

u(x)
v(x)

= A ⇐⇒ lim
x→a

u(x)
w(x)

= A.(3.2.12)

PROOF. Because u(x)w(x) = u(x)v(x) · w(x)
v(x) and u(x)

w(x) =
u(x)
v(x) ·

v(x)
w(x) . �

Example 3.2.13. (1) limx→0

√
1+x− 3√1+x
ln(1+2x) .

PROOF. Because ln(1 + 2x) ∼ 2x as x → 0, we have
√

1 + x− 3
√

1 + x
ln(1 + 2x)

∼
√

1 + x− 3
√

1 + x
2x

=
(
√

1 + x− 1)− ( 3
√

1 + x− 1)
2x

.

Using (3.2.7) yields

(1 + x)1/2 − 1 ∼ 1
2

x, (1 + x)1/3 − 1 ∼ 1
3

x (x → 0).

Hence

lim
x→0

√
1 + x− 3

√
1 + x

ln(1 + 2x)
= lim

x→0

1
2 x
2x
− lim

x→0

1
3 x
2x

=
1

12
.

�

(2) limx→0

√
1+2x− 3√1+3x

x2 .

PROOF. From (1),
√

1 + 2x− 1 ∼ 1
2
× 2x = x as x → 0.

We shall consider
√

1 + 2x− 3
√

1 + 3x =
[√

1 + 2x− (1 + x)
]
−
[

3
√

1 + 3x− (1 + x)
]

.

Now

lim
x→0

√
1 + 2x− (1 + x)

x2 = lim
x→0

−x2

x2[
√

1 + 2x + (1 + x)]
= lim

x→0

−1
1 + x +

√
1 + 2x

=
−1
2

.
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Similarly

lim
x→0

3
√

1 + 3x− (1 + x)
x2 = lim

x→0

(1 + 3x)− (1 + x)3

x2[(1 + 3x)2/3 + (1 + 3x)1/3(1 + x) + (1 + x)2]

=
−3
3

= −1.

Finally,

lim
x→0

√
1 + 2x− 3

√
1 + 3x

x2 = −1
2
+ 1 =

1
2

.

�

(3) Actually, ∀ α > 0,
(3.2.13)

(1 + x)α −
[

1 + ∑
1≤i≤k−1

α(α− 1) · · · (α− i + 1)
i!

xi

]
∼ α(α− 1) · · · (α− k + 1)

k!
xk

as x → 0. For example,

(1 + x)1/2 −
[

1 +
1
2

x
]
∼ −1

4
x2

(1 + x)1/3 −
[

1 +
1
3

x
]
∼ −1

9
x2

and

(1 + 2x)1/2 − [1 + x] ∼ −1
2

x2,

(1 + 3x)1/3 − [1 + x] ∼ −x2

as x → 0.
In general, if

u(x)−
[

a0 + a1x + · · ·+ ak−1xk−1
]
∼ akxk,

v(x)−
[

a0 + a1x + · · ·+ ak−1xk−1
]
∼ bkxk,

with ak 6= bk, then

u(x)− v(x) ∼ (ak − bk)xk

as x → 0.

PROOF. The proof is simple. By the assumptions,

u(x)− v(x)
(ak − bk)xk =

[u(x)− P(x)]− [v(x)− P(x)]
(ak − bk)xk

→ ak
ak − bk

− bk
ak − bk

= 1

where P(x) := a0 + a1x + · · ·+ ak−1xk−1. �

(4) limx→+∞ arccos(
√

x2 + x− x).
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PROOF. Let u =
√

x2 + x− x so that

lim
x→+∞

u = lim
x→+∞

x
x +
√

x2 + x
=

1
2

.

Therefore
lim

x→+∞
arccos(

√
x2 + x− x) = lim

u→ 1
2

arccos u =
π

3
.

�

(5) Prove
√

x +
√

x +
√

x ∼ x1/2 as x → +∞.

PROOF. We have

lim
x→+∞

√
x +

√
x +
√

x

x1/2 = lim
x→+∞

1 +

(
x + x1/2

x

)1/2
1/2

= lim
u→0

(1 + u1/2)1/2 = 1, when u :=
x + x1/2

x2 .

�

(6) Find principal parts of

sin
(

x +
π

3

)
−
√

3
2

, π − 3 arccos
(

x +
1
2

)
(x → 0).

PROOF. Indeed,

sin
(

x +
π

3

)
−
√

3
2

= sin
(

x +
π

3

)
− sin

π

3
= 2 cos

( x
2
+

π

3

)
sin

x
2
∼ sin

x
2
∼ x

2
and

π − 3 arccos
(

x +
1
2

)
∼
[

π − 3 arccos
(

x +
1
2

)]
= sin

[
3 arccos

(
x +

1
2

)] (
sin(3θ) = 3 sin θ − 4 sin3 θ

)
= 3

√
1−

(
x +

1
2

)2
− 4

√1−
(

x +
1
2

)2
3

=

√
1−

(
x +

1
2

)2
{

3− 4

[
1−

(
x +

1
2

)2
]}
∼
√

3
2

(4x + 4x2) ∼ 2
√

3x

as x → 0. �

3.3. Continuities and discontinuities
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