Basic analysis

Yi Li

SCHOOL OF MATHEMATICS AND SHING-TUNG YAU CENTER, SOUTHEAST UNIVERSITY, NANJING, CHINA *E-mail address*: yilicms@seu.edu.cn; yilicms@163.com

Contents

Chapter	r 1. Introduction	5
1.1.	Sets and mappings	5
	One variable functions	18
1.3.	References	34
Chapter	r 2. Sequences	35
2.1.	Convergent sequences	35
2.2.	Properties of convergent sequences	37
2.3.	Convergence tests	50
Chapter	3. Continuous functions	63
3.1.	Limits of functions	63
3.2.	Various comparison symbols	68
3.3.	Continuities and discontinuities	75
Bibliography		77

CHAPTER 1

Introduction

1.1. Sets and mappings

The **power set** of a given set *A* is defined to be

 $2^A := \{ \text{all subsets of } A \} \supseteq A.$

Notions:

- A := B: *A* is defined by *B*,
- \forall : any/for any,
- \exists : there exists/exist \cdots ,
- !: unique,
- \exists !: there exists a unique \cdots ,
- $\mathbb{N} := \{0, 1, 2, 3, \cdots\}$: the set of all national numbers,
- **Z**: the set of all integers,
- $\mathbb{Z}_{<0} := \mathbb{Z} \setminus \mathbb{N}$,
- Q: the set of all rational numbers,
- **R**: the set of all real numbers,
- C: the set of all complex numbers,
- i.e.: (Latin) id est = that is/in other words,
- e.g.: (Latin) exempli gratia = for example,
- WLOG: without loss of generality,
- TFAE: the following are equivalent,
- resp.: respectively,

1.1.1. Arbitrary unions and intersections. Let *A* be a collection of sets.

(1) **Union**:

$$\bigcup_{A \in \mathscr{A}} A := \{ x : x \in A \text{ for at least one } A \in \mathscr{A} \}.$$

(2) Intersection:

$$\bigcap_{A \in \mathscr{A}} A := \{ x : x \in A \text{ for every } A \in \mathscr{A} \}.$$

When $\mathscr{A} = \emptyset$, we let $\cup_{A \in \mathscr{A}} A = \emptyset$.

- **1.1.2.** Cartesian products I. Let *A*, *B* be two sets.
- (1) Cartesian product:

$$A \times B := \{(a, b) : a \in A \text{ and } b \in B\}.$$

(2) Order pair:

$$(a,b) := \{\{a\}, \{a,b\}\}\$$

where *a* is called the **first coordinate** while *b* the **second coordinate**.

1.1.3. Maps. Let *C*, *D* be two sets.

(1) A **rule of assignment** is a subset *R* of $C \times D$ such that

 $(c,d) \in R$ and $(c,d') \in R \implies d = d'$.

(2) Suppose that *R* is a rule of assignment. Define

$$\mathbf{Dom}(R) \equiv \mathbf{domain}(R) := \{c \in C : \exists d \in D \text{ such that } (c,d) \in R\},\$$
$$\mathbf{Im}(R) \equiv \mathbf{image}(R) := \{d \in D : \exists c \in C \text{ such that } (c,d) \in R\}.$$

A map *f* is a pair (*R*, *B*), where *R* is a rule of assignment and *B* is a set (called the range of *f*), such that $Im(R) \subset B$.

- (1) **domain** of $f \equiv \mathbf{Dom}(f) := \mathbf{Dom}(R)$,
- (2) image of $f \equiv \text{Im}(f) := \text{Im}(R)$,
- (3) We write:

$$f: A \longrightarrow B, a \longmapsto f(a),$$

where *A* is the domain of *f*, *B* is the range of *f* (so that $Im(f) \subseteq B$), and f(a) is the unique element of *B* satisfying $(a, f(a)) \in R$.

Example 1.1.1. Assume $C = D := \mathbb{R}$, $f(x) := x^2$, $R := \mathbb{R} \times \mathbb{R}_{\geq 0}$, and B := R. In this case, $A = \mathbb{R}$ and $\operatorname{Im}(f) = \mathbb{R}_{>0}$.

Consider two maps $f : A \rightarrow B$ and $g : B \rightarrow C$.

- (1) For a given subset A_0 of A, define the **restriction of** f **to** A_0 as the map $f|_{A_0} = f : A_0 \to B$.
- (2) Composite:

$$g \circ f : A \longrightarrow C, \quad a \longmapsto c$$

where f(a) = b and g(b) = c for some $b \in B$.

Suppose that $f : A \rightarrow B$ is a map.

(1) *f* is **injective** if

$$f(a) = f(a') \Longrightarrow a = a'.$$

(2) *f* is **surjective** if

$$\forall b \in B \exists a \in A \text{ such that } f(a) = b.$$

- (3) *f* is **bijective** if *f* is injective and surjective.
- (4) If *f* is bijective, we define its **inverse** f^{-1} by

$$f^{-1}(b) = a \Longleftrightarrow f(a) = b.$$

Lemma 1.1.2. Let $f : A \to B$ be a map. If there exist a **left inverse** $g : B \to A$ of f (i.e., g(f(a)) = a for all $a \in A$) and a **right inverse** $h : B \to A$ of f (i.e., f(h(b)) = b for all $b \in B$), then f is bijective and $g = h = f^{-1}$.

Exercise 1.1.3. (1) Show that if *f* has a left (resp., right) inverse, then *f* is injective (resp., surjective).

(2) Given examples of maps that have a left (resp., right) inverse but no right (resp., left) inverse.

- (3) Can a map have more than one left (or right) inverse?
- (4) Prove Lemma 1.1.2.

Let $f : A \to B$ be a map, $A_0 \subseteq A$ and $B_0 \subseteq B$.

- (1) **Image of** A_0 **under** $f \equiv f(A_0) := \{f(a) : a \in A_0\},\$
- (2) **Preimage of** B_0 **under** $f \equiv f^{-1}(B_0) := \{a : f(a) \in B_0\}.$
- (3) It is clear that

$$A_0 \subseteq f^{-1}(f(A_0)), \quad B_0 \supseteq f(f^{-1}(B_0)).$$

There are examples such that both equalities in (3) may not be true (Find such examples!).

When *B* is a number field, we will say **functions** instead of maps.

1.1.4. Categories. A category & consists of

- 1) a family $Ob(\mathfrak{C})$ of objects of \mathfrak{C} ,
- 2) \forall pair (X, Y) of $\mathbf{Ob}(\mathfrak{C})$, \exists set $\operatorname{Hom}_{\mathfrak{C}}(X, Y)$ of morphisms from X to Y, and
- 3) \forall triple (*X*, *Y*, *Z*) of **Ob**(\mathfrak{C}), \exists map

 $\operatorname{Hom}_{\mathfrak{C}}(X,Y) \times \operatorname{Hom}_{\mathfrak{C}}(Y,Z) \longrightarrow \operatorname{Hom}_{\mathfrak{C}}(X,Z), \quad (f,g) \longmapsto g \circ f$

called the **composition map**.

These data satisfy

- a) composition is associative, i.e., $(f \circ g) \circ h = f \circ (g \circ h)$,
- b) $\forall X \in \mathbf{Ob}(\mathfrak{C}) \exists id_X \in \operatorname{Hom}_{\mathfrak{C}}(X, X)$ such that

$$f \circ \operatorname{id}_X = f$$
, $\operatorname{id}_X \circ g = g$

for any $f \in \text{Hom}_{\mathfrak{C}}(X, Y)$ and $g \in \text{Hom}_{\mathfrak{C}}(Y, X)$.

Example 1.1.4. There are some classical categories:

(1) **Set**: sets and functions,

(2) Group: groups and group homomorphisms (in abstract algebra),

(3) **Vect**_{\mathbb{R}}: real vector spaces and \mathbb{R} -linear maps (in linear algebra),

(4) **Top**: topological spaces and continuous maps (in topology),

(5) Calabi-Yau category: in differential geometry/algebraic geometry \rightarrow homological mirror symmetry/SYZ conjecture.

Let \mathfrak{C} be a category.

- (1) Write $f \in \text{Hom}_{\mathfrak{C}}(X, Y)$ as $f : X \to Y$.
- (2) $f \in \text{Hom}_{\mathfrak{C}}(X, Y)$ is an **isomorphism** if there exists a morphism $g \in \text{Hom}_{\mathfrak{C}}(Y, X)$ such that

$$f \circ g = \mathrm{id}_Y$$
 and $g \circ f = \mathrm{id}_X$.

1. INTRODUCTION

- (3) A **subcategory** \mathfrak{C}' of \mathfrak{C} is a category such that
 - $\mathbf{Ob}(\mathfrak{C}') \subseteq \mathbf{Ob}(\mathfrak{C})$,

8

- $\operatorname{Hom}_{\mathfrak{C}'}(X,Y) \subseteq \operatorname{Hom}_{\mathfrak{C}}(X,Y)$ for all $X,Y \in \operatorname{Ob}(\mathfrak{C}')$,
- $\operatorname{id}_X \in \operatorname{Hom}_{\mathfrak{C}'}(X, X)$ for each $X \in \operatorname{Ob}(\mathfrak{C}')$.

We say that \mathfrak{C}' is a **full subcategory** of \mathfrak{C} if it is a subcategory and moreover $\operatorname{Hom}_{\mathfrak{C}'}(X, Y) = \operatorname{Hom}_{\mathfrak{C}}(X, Y)$ for each pair (X, Y) of objects.

- (4) **Top** is a subcategory, but not a full subcategory, of **Set**.
- (5) The **opposite category** \mathfrak{C}° of \mathfrak{C} is defined as follows:

$$\mathbf{Ob}(\mathfrak{C}^\circ) := \mathbf{Ob}(\mathfrak{C}), \quad \operatorname{Hom}_{\mathfrak{C}^\circ}(X,Y) := \operatorname{Hom}_{\mathfrak{C}}(Y,X).$$

- (6) Let $f \in \operatorname{Hom}_{\mathfrak{C}}(X, Y)$.
 - *f* is a **monomorphism** or is said to be **injective** if for any $W \in \mathbf{Ob}(\mathfrak{C})$ and any $g, g' \in \operatorname{Hom}_{\mathfrak{C}}(W, X)$ with $f \circ g = f \circ g'$, we have g = g'.

$$W \xrightarrow{g}{g'} X \xrightarrow{f} Y$$

- *f* is an **epimorphism** or is said to be **surjective** if for any $Z \in \mathbf{Ob}(\mathfrak{C})$ and any $h, h' \in \operatorname{Hom}_{\mathfrak{C}}(Y, Z)$ with $h \circ f = h' \circ f$, we have h = h'.

$$X \xrightarrow{f} Y \xrightarrow{h} Z$$

- *f* is said to be **bijective** if it is both injective and surjective.

(7) $P \in \mathbf{Ob}(\mathfrak{C})$ is **initial** if for any $Y \in \mathbf{Ob}(\mathfrak{C})$, $\operatorname{Hom}_{\mathfrak{C}}(P, Y)$ has exactly one element. $Q \in \mathbf{Ob}(\mathfrak{C})$ is **final** if for any $X \in \mathbf{Ob}(\mathfrak{C})$, $\operatorname{Hom}_{\mathfrak{C}}(X, Q)$ has exactly one element.

Exercise 1.1.5. (1) Prove that two initial (resp., final) objects are isomorphic.(2) Isomorphism is bijective, but the converse may not true.

A (covariant) functor $F : \mathfrak{C} \to \mathfrak{C}'$ between two categories consists

1) a map $F : \mathbf{Ob}(\mathfrak{C}) \to \mathbf{Ob}(\mathfrak{C}')$,

2) \forall pair (X, Y) in **Ob**(\mathfrak{C}), \exists map F : Hom_{\mathfrak{C}} $(X, Y) \rightarrow$ Hom_{\mathfrak{C}'}(F(X), F(X')). These data satisfy

a) $F(\operatorname{id}_X) = \operatorname{id}_{F(X)}$, and

b) $F(f \circ g) = F(f) \circ F(g)$.

A contravariant functor $G : \mathfrak{C} \to \mathfrak{C}'$ is a functor $G : \mathfrak{C}^{\circ} \to \mathfrak{C}'$.

Example 1.1.6. (1) Forgetful factor $F : \text{Top} \to \text{Set.}$ (2) Fundamental group functor $\pi_1 : \text{Top}_* \to \text{Group}, (X, x) \mapsto \pi_1(X, x)$ (the fundamental group of X at x). (3) For a given $X \in \text{Ob}(\mathfrak{C})$, define $\operatorname{Hom}_{\mathfrak{C}}(X, \cdot) : \mathfrak{C} \longrightarrow \text{Set}, \quad Z \mapsto \operatorname{Hom}_{\mathfrak{C}}(X, Z),$ $\operatorname{Hom}_{\mathfrak{C}}(\cdot, X) : \mathfrak{C} \longrightarrow \text{Set}, \quad Z \mapsto \operatorname{Hom}_{\mathfrak{C}}(Z, X).$

Then

 $\operatorname{Hom}_{\mathfrak{C}}(X, \cdot)$ is covariant and $\operatorname{Hom}_{\mathfrak{C}}(\cdot, X)$ is contravariant.

Consider two functors $F_1, F_2 : \mathfrak{C} \to \mathfrak{C}'$. A **morphism** or **natural transformation** $\theta : F_1 \to F_2$ consists of

$$X \in \mathbf{Ob}(\mathfrak{C}) \Longrightarrow \theta(X) \in \operatorname{Hom}_{\mathfrak{C}'}(F_1(X), F_2(X)).$$

These data satisfy the following diagram

$$F_{1}(X) \xrightarrow{\theta(X)} F_{2}(X)$$

$$F_{1}(f) \downarrow \qquad \qquad \downarrow F_{2}(f) \qquad \qquad F_{2}(f) \circ \theta(X) = \theta(Y) \circ F_{1}(f),$$

$$F_{1}(Y) \xrightarrow{\theta(Y)} F_{2}(Y)$$

is commutative, i.e., $F_2(f) \circ \theta(X) = \theta(Y) \circ F_1(f)$, for any $X, Y \in \mathbf{Ob}(\mathfrak{C})$ and $f \in Hom_{\mathfrak{C}}(X, Y)$.

Definition 1.1.7. Given two categories \mathfrak{C} and \mathfrak{C}' , define a new category $Func(\mathfrak{C},\mathfrak{C}')$ with

Ob (**Func**(
$$\mathfrak{C}, \mathfrak{C}'$$
)) := {functors $F : \mathfrak{C} \to \mathfrak{C}'$ }

and

Hom_{Func($\mathfrak{C},\mathfrak{C}'$)}(F_1,F_2) := {morphisms $\theta: F_1 \to F_2$ }.

Definition 1.1.8. Let \mathfrak{C} be a category. We say that $F : \mathfrak{C} \to \mathbf{Set}$ is a **representable** functor if $\exists X \in \mathbf{Ob}(\mathfrak{C})$ such that *F* is isomorphic to $\operatorname{Hom}_{\mathfrak{C}}(X, \cdot)$ in the category $\operatorname{Func}(\mathfrak{C}, \mathbf{Set})$.

Remark 1.1.9. If $F : \mathfrak{C} \to \mathbf{Set}$ is representable, then *X* is unique up to isomorphism and is called a **representative of** *F*.

Definition 1.1.10. We say a functor $F : \mathfrak{C} \to \mathfrak{C}'$ is **fully faithful** if $\forall X, Y \in \mathbf{Ob}(\mathfrak{C})$, the map $\operatorname{Hom}_{\mathfrak{C}}(X, Y) \to \operatorname{Hom}_{\mathfrak{C}'}(F(X), F(Y))$ is bijective.

Theorem 1.1.11. (Yoneda's lemma) (1) For any $X \in \mathbf{Ob}(\mathfrak{C})$ and $F \in \mathbf{Ob}(\mathfrak{C}^{\vee})$, where $\mathfrak{C}^{\vee} := \mathbf{Func}(\mathfrak{C}^{\circ}, \mathbf{Set})$, we have

 $\operatorname{Hom}_{\mathfrak{C}^{\vee}}(\operatorname{Hom}_{\mathfrak{C}}(X), F) \simeq F(X)$

in **Set**, where $\operatorname{Hom}_{\mathfrak{C}} : \mathfrak{C} \to \mathfrak{C}^{\vee}$ *is a functor given by* $\operatorname{Hom}_{\mathfrak{C}}(X) := \operatorname{Hom}_{\mathfrak{C}}(\cdot, X)$. (2) $\operatorname{Hom}_{\mathfrak{C}}$ *is a fully faithful functor.* PROOF. (1) To $f \in \text{Hom}_{\mathfrak{C}^{\vee}}(\text{Hom}_{\mathfrak{C}}(X), F)$, we associate $\phi(f) \in F(X)$ as follows:

$$f(X) : \operatorname{Hom}_{\mathfrak{C}}(X, X) \longrightarrow F(X), \quad \operatorname{id}_X \longmapsto \phi(f) := f(X)(\operatorname{id}_X)$$

Conversely, to $s \in F(X)$, we can associate $\psi(s) \in \text{Hom}_{\mathfrak{C}^{\vee}}(\text{Hom}_{\mathfrak{C}}(X), F)$ as follows:

$$\operatorname{Hom}_{\mathfrak{C}}(Y,X) \xrightarrow{F} \operatorname{Hom}_{\operatorname{Set}}(F(X),F(Y)) \xrightarrow{s} F(Y)$$

with $\psi(s)(Y) := s \circ F$. Then ϕ and ψ are inverses to each other. (2) For any $X, Y \in \mathbf{Ob}(\mathfrak{C})$, one has

$$\operatorname{Hom}_{\mathfrak{C}^{\vee}}(\operatorname{Hom}_{\mathfrak{C}}(X),\operatorname{Hom}_{\mathfrak{C}}(Y)) \simeq \operatorname{Hom}_{\mathfrak{C}}(\cdot,Y)(X) = \operatorname{Hom}_{\mathfrak{C}}(X,Y)$$

which implies that Hom_¢ is fully faithful.

1.1.5. Relations. A **relation** on a set *A* is a subset *C* of $A \times A$. If *C* is a relation on *A*, then we write xCy to be $(x, y) \in C$.

An **equivalence relation** on a set *A* is a relation *C* on *A* having the following properties:

- a) (**Reflexivity**) $\forall x \in A \Longrightarrow xCx$,
- b) (**Symmetry**) $xCy \Longrightarrow yCx$,

c) (**Transitivity**) xCy and $yCz \implies xCz$.

Notion: $\sim :=$ equivalence relation.

(1) The **equivalence class** of $x \in A$:

$$[x] := \{ y \in A : y \sim x \} \ni x.$$

(2) Two equivalence classes are either disjoint or equal. Hence

$$A = \bigcup \{ [x] : x \in A \}.$$

- (3) A **partition** of a set *A* is a collection of disjoint nonempty subsets of *A* whose union is *A*.
- (4) Given a partition 𝒴 of A, there exists an equivalence relation ~ on A from which it is derived.

Indeed, define \sim on A by requiring $x \sim y$ if and only if x, y belong to the same element of \mathcal{D} . Then \sim is an equivalence relation on A. Assume that \sim and \sim' are two equivalence relations on A that give rise to the same collection of equivalence classes \mathcal{D} . Given $x \in A$, let

$$[x] := \{ y \in A : y \sim x \}, \quad [x]' := \{ y \in A : y \sim' x \}.$$

Because $[x] \cap [x]' \ni \{x\}$, we must have [x] = [x]'.

A relation *C* on a set *A* is called an **order relation** or **simple order** or **linear order**, if it has the following properties:

- a) (**Comparability**) $\forall x, y \in A$ with $x \neq y \Longrightarrow$ either *xCy* or *yCx*,
- b) (**Nonreflexivity**) there does not exist $x \in A$ such that xCx,
- c) (**Transitivity**) xCy and $yCz \Longrightarrow xCz$.

Notion: <:= order relation.

- (1) Equivalently:
 - a) $x \neq y \Longrightarrow$ either x < y or y < x,
 - b) $x < y \Longrightarrow x \neq y$,
 - c) x < y and $y < z \implies x < z$.

- (2) $x \le y$ means x < y or x = y.
- (3) Let (X, <) be an order relation. For a < b, define

$$(a,b) := \{x \in X : a < x < b\}$$

called an **open interval** in *X*. If (a, b) =, then *a* is the **immediate predecessor** of *b*, and *b* is the**immediate successor** of *a*.

(4) Consider two sets with order relations (*A*, <_A) and (*B*, <_B). We say *A* and *B* have the same **order type** if there exists a bijective correspondence between them that preserves orders. That is, there exists a bijective function *f* : *A* → *B* such that

$$a_1 <_A a_2 \Longrightarrow f(a_1) <_B f(a_2).$$

For example, ((-1,1), <) and $(\mathbb{R}, <)$ have the same order type $(x \mapsto \frac{x}{1-x^2})$; $(\{0\} \cup (1,2), <)$ and ([0,2), <) have the same order type $(0 \mapsto 0$ and $x \mapsto x - 1$ for 1 < x < 2).

(5) Let (A, <_A) and (B, <_B) be two sets with order relations. Define an order relation < on A × B by</p>

$$(a_1, b_1) < (a_2, b_2)$$

if $a_1 <_A a_2$ or if $a_1 = a_2$ and $b_1 <_B b_2$.

Assume that (A, <) is a set with order relation, and A_0 is a subset of A.

- (1) *b* is the **largest number** of A_0 if $b \in A_0$ and if $x \le b$ for any $x \in A_0$. *a* is the **smallest number** of A_0 if $a \in A_0$ and if $a \le x$ for any $x \in A_0$.
- (2) A_0 is **bounded above** if there is a $b \in A$ such that $x \leq b$ for all $x \in A_0$. We call b is an **upper bound** for A_0 . Let

$$sup(A_0) :=$$
the smallest element among all upper bounds for A_0 ,

be the **least upper bound** or **supremum**.

 A_0 is **bounded below** if there is a $a \in A$ such that $a \le x$ for all $x \in A_0$. We call a is a **lower bound** for A_0 . Let

$$\inf(A_0) := \begin{array}{l} \text{the largest element among} \\ \text{all lower bounds for } A_0, \end{array}$$

be the **greatest lower bound** or **infimum**.

(3) (A, <) is said to have the **least upper bound property** (or shortly LUBP) if any nonempty subset A₀ of A that is bounded above has a least upper bound. Similarly, it is said to have the **greatest lower bound property** (or shortly **GLBP**) if any nonempty subset A₀ of A that is bounded below has a greatest lower bound. Observe that LUBP ⇔ **GLBP**.

The set $B := (-1, 0) \cup (0, 1)$ does not have the least upper bound property (check it!).

Given a set *A*, a relation \prec on *A* is called a **strict partial order** on *A* if it has the following properties:

1) (**Non-reflexivity**) $a \prec a$ never hold,

2) (**Transitivity**) $a \prec b$ and $b \prec c \Rightarrow a \prec c$.

On \mathbb{R}^2 , there is a natural strict partial order \prec defined by

$$(x_0, y_0) \prec (x_1, y_1) \iff y_0 = y_1 \text{ and } x_0 < x_1.$$

Let *A* be a set with a strict partial order \prec .

- (1) If $B \subseteq A$, an **upper bound** on *B* is an element *c* of *A* such that for any $b \in B$, either b = c of $b \prec c$.
- (2) A **maximal element** of *A* is an element *m* of *A* such that for no element *a* of *A* does the relation $m \prec a$ hold.
- (3) **Zorn's lemma** (1935):
 - Let *A* be a set that is strictly partially ordered. If any simply ordered subset of *A* has an upper bound in *A*, then *A* has a maximal element.

One of applications of Zorn's lemma is as follows: Let $A = \{a_n\}_{n \ge 1}$ with $a_i \in \mathbb{R}$ and $|a_i| \le M$ for some positive number M. Then (A, <) is a set with the strict partial order <. By Zorn's lemma, A has a maximal element.

In general, consider a sequence of functions f(x, t) such that $|f(x, t)| \le M$ for all $x \in [0, 1]$ and $t \in \mathbb{R}$. For each $x \in [0, 1]$, define

$$A_x := \{f(x,t)\}_{t \in \mathbb{R}}.$$

Then A_x has a maximal element f(x). Then we get a map

$$f: [0,1] \longrightarrow A := \bigcup_{x \in [0,1]} A_x, \quad x \longmapsto f(x).$$

What's behavior of this function f(x)?

1.1.6. Cartesian products II. Let \mathscr{A} be a nonempty collection of sets. An indexing function for \mathscr{A} is a surjective function f from some set J, called the index set, to \mathscr{A} .

- (1) We say (\mathscr{A}, f) an indexed family of sets.
- (2) Given α ∈ J, denote the set f(α) ∈ A by A_α, and the indexed family of sets by {A_α}_{α∈J}.
- (3) Define

$$\bigcup_{\alpha \in J} A_{\alpha} := \{ x : \exists \alpha \in J \text{ such that } x \in A_{\alpha} \},$$
$$\bigcap_{\alpha \in J} A_{\alpha} := \{ x : \forall \alpha \in J, x \in A_{\alpha} \}.$$

(4) When $J = \{1, \dots, n\}$, we denote (3) to be

$$\bigcup_{\alpha \in J} A_{\alpha} = \bigcup_{1 \leq i \leq n} A_i, \quad \bigcap_{\alpha \in J} A_{\alpha} = \bigcap_{1 \leq i \leq n} A_i.$$

(5) When $J = \mathbb{Z}_{>1}$, we denote (3) to be

$$\bigcup_{\alpha \in J} A_{\alpha} = \bigcap_{i \ge 1} A_i, \quad \bigcap_{\alpha \in J} A_{\alpha} = \bigcap_{i \ge 1} A_i.$$

Let $m \in \mathbb{N}$. Given a set *X*, we define an *m*-tuple of elements of *X* to be a function

 $x: \{1, \cdots, m\} \longrightarrow X$

For each i{1, · · · , m}, write

$$\mathbf{x}(i) := x_i,$$

i-th coordinate of x, and $x = (x_1, \dots, x_m)$.

(1) Let $\{A_1, \dots, A_m\}$ be a family of sets indexed with the set $\{1, \dots, m\}$. Let

$$X:=A_1\cup\cdots\cup A_m$$

We define the Cartesian product of this indexed family, denoted by

$$\prod_{1\leq i\leq m}A_i$$

to be the set of all *m*-tuples (x_1, \dots, x_m) of elements of *X* such that $x_i \in A_i, 1 \le i \le m$.

Remark 1.1.12. (1) Recall two definitions of $A \times B$:

$$A \times_1 B := \{(a,b) : a \in A \text{ and } b \in B\},$$

$$A \times_2 B := \{x : \{1,2\} \rightarrow A \cup B \text{ such that } x(1) \in A \text{ and } x(2) \in B\}.$$

Define

$$f: A \times_1 B \longrightarrow A \times_2 B, (a, b) \longmapsto f((a, b))$$

with f((a, b))(1) = a and f((a, b))(2) = b. Science f is bijective, $A \times_1 B \cong A \times_2 B$. (2) For A, B, C, we have three Cartesian products

$$A \times (B \times C)$$
, $(A \times B) \times C$, $A \times B \times C$

that are bijective. In particular, we can define A^m for $m \ge 1$.

Given a set *X*, define ω -tuple of elements of *X* to be the function

$$\mathbf{x}: \mathbb{Z}_{>1} \longrightarrow X, n \longmapsto x_n := \mathbf{x}(n),$$

and write $x = (x_n)_{n \ge 1}$. Let $\{A_i\}_{i \in \mathbb{Z}_{\ge 1}}$ be a family of sets indexed with the positive integers. Let

$$X:=\bigcup_{i\in\mathbb{Z}_{\geq 1}}A_i$$

The **Cartesian product** of $\{A_i\}_{i \in \mathbb{Z}_{>1}}$, denoted by

$$\prod_{i\in\mathbb{Z}_{\geq 1}}A_i,$$

is defined to be the set of ω -tuples $(x_i)_{i \in \mathbb{Z}_{>1}}$ of X such that $x_i \in A_i$.

In general, let *J* be an index set and *X* a set.

(1) An *J*-tuple of *X* is a function

$$\boldsymbol{x}: J \longrightarrow X, \quad \boldsymbol{\alpha} \longmapsto \boldsymbol{x}_{\boldsymbol{\alpha}} := \boldsymbol{x}(\boldsymbol{\alpha}),$$

where x_{α} is said to be the α -coordinate of x. Write $x = (x_{\alpha})_{\alpha \in J}$.

(2) Let

 $X^J := \{J$ -tuples of elements of $X\}$.

(3) Let $\{A_{\alpha}\}_{\alpha \in J}$ be an index family of sets, and $X := \bigcup_{\alpha \in J} A_{\alpha}$. The **Cartesian product** of $\{A_{\alpha}\}_{\alpha \in J}$, denoted by

$$\prod_{\alpha\in J}A_{\alpha},$$

is defined to be the set of all *J*-tuples $(x_{\alpha})_{\alpha \in J}$ of *X* such that $x_{\alpha} \in A_{\alpha}$.

When X_n are all \mathbb{R} , we obtain

$$\mathbb{R}^{\omega} := \prod_{n \ge 1} X_n.$$

1.1.7. Finite, countable and uncountable sets. In this subsection we study the set

$$\{0,1\}^{\omega}:=\prod_{n\geq 1}X_n$$

where $X_n := \{0, 1\}$.

Definition 1.1.13. A set *A* is **finite**, if it is empty or there is a bijective correspondence of *A* with some $\{1, \dots, n\}$. When $A = \emptyset$ we say that *A* has **cardinality** 0, otherwise we say that *A* has **cardinality** *n*.

Lemma 1.1.14. Suppose that $n \in \mathbb{Z}_{\geq 1}$, A is a nonempty set, and $a_0 \in A$. There is a bijective correspondence f of A with $\{1, \dots, n+1\}$ if and only if there is a bijective correspondence g of $A \setminus \{a_0\}$ with $\{1, \dots, n\}$.

PROOF. \Leftarrow : Define $f : A \rightarrow \{1, \dots, n+1\}$ to be $f(a_0) := n+1, \quad f(x) := g(x) \ (x \neq a_0).$

⇒: If $f(a_0) = n + 1$, then we define $g := f|_{A \setminus \{a_0\}}$. Suppose now that $f(a_0) = m \in \{1, \dots, n\}$, and let $a_1 \in A$ be such that $f(a_1) = n + 1$. Then $a_1 \neq a_0$. Define $h : A \setminus \{a_0\} \rightarrow \{1, \dots, n\}$ to be $h(a_1) = m$ and h(x) := f(x) for $x \neq a_1$. \Box

Theorem 1.1.15. Let A be a set and assume there is a bijection $f : A \to \{1, \dots, n\}$ for some $n \in \mathbb{Z}_{\geq 1}$. If B is a proper subset of A, then there is no bijection $g : B \to \{1, \dots, n\}$, but (provided $B \neq \emptyset$) there is a bijection $h : B \to \{1, \dots, m\}$ for some m < n.

PROOF. WLOG, we may assume that $B \neq \emptyset$. We prove it by induction. When $n = 1, A = \{a\}$, and $B = \emptyset$. Suppose that the theorem is true for n. Let $f : A \rightarrow \{1, \dots, n+1\}$ be a bijection and B a nonempty proper subset of A. Take $a_0 \in B$ and $a_1 \in A \setminus B$. By Lemma 1.1.14, there is a bijection $g : A \setminus \{a_0\} \rightarrow \{1, \dots, n\}$. Since $B \setminus \{a_0\}$ is a proper subset of $A \setminus \{a_0\}$, the inductive hypothesis implies that there is no bijection $h : B \setminus \{a_0\} \rightarrow \{1, \dots, n\}$, and either $B \setminus \{a_0\} = \emptyset$ or there is a bijection $k : B \setminus \{a_0\} \rightarrow \{1, \dots, m\}$ (for some m < n). Applying again Lemma 1.1.14, the theorem holds for n + 1.

Corollary 1.1.16. (1) If A is finite, then there is no bijection of A with a proper subset of *itself*.

(2) $\mathbb{Z}_{>1}$ is not finite.

(3) The cardinality of a finite set A is uniquely determined by A.

(4) Any subset of a finite set is finite. If B is a proper subset of a given finite set A, then the cardinality of B is strictly less than the cardinality of A.

(5) $B \neq \emptyset \Rightarrow TFAF$:

(i) *B* is finite,

(ii) there is a surjective function from some $\{1, \dots, n\}$ onto B,

(iii) there is an injective function from B into some $\{1, \dots, n\}$.

(6) Finite union and finite Cartesian products of finite sets are finite.

PROOF. (1) Assume that *B* is a proper subset of *A* and there is a bijection f: $A \rightarrow B$. Because *A* is finite, there is a bijection $g : A \rightarrow \{1, \dots, n\}$. Then $g \circ f^{-1} : B \rightarrow \{1, \dots, n\}$ is a bijection, which is impossible!

(2) Define the map $f : \mathbb{Z}_{\geq 1} \to \mathbb{Z}_{\geq 1} \setminus \{1\}$ by f(n) := n + 1. Since $\mathbb{Z}_{\geq 1} \setminus \{1\}$ is proper and f is bijective, it follows from (1) that $\mathbb{Z}_{>1}$ can not be finite.

(3) Suppose that $f : A \to \{1, \dots, n\}$ and $g : A \to \{1, \dots, m\}$ are bijective, for some $m, n \in \mathbb{Z}_{\geq 1}$. Then $g \circ f^{-1} : \{1, \dots, n\} \to \{1, \dots, m\}$ is bijective, so that m = n.

(4) Clearly.

(5) $(i) \Rightarrow (ii)$: clearly. $(ii) \Rightarrow (iii)$: Suppose that $f : \{1, \dots, n\} \rightarrow B$ is surjective. Define $g : B \rightarrow \{1, \dots, n\}$ to be

g(b) := the smallest element of $f^{-1}(\{b\})$.

For $b \neq b'$, $f^{-1}(\{b\}) \cap f^{-1}(\{b'\}) = \emptyset$, so that *g* is injective. (*iii*) \Rightarrow (*i*) : Suppose that $g : B \rightarrow \{1, \dots, n\}$ is injective. Then there is some $m \leq n$ such that $g : B \rightarrow \{1, \dots, m\}$ is bijective. Then *B* is finite.

(6) If *A* and *B* are finite and both are not empty. There are bijections f: $\{1, \dots, m\} \rightarrow A$ and $g: \{1, \dots, n\} \rightarrow B$ for some choice of *m* and *n*. Define

$$h: \{1, \cdots, m+n\} \longrightarrow A \cup B, \quad i \longmapsto \begin{cases} f(i), & 1 \le i \le m, \\ g(i-m), & m+1 \le i \le m+n \end{cases}$$

Since *h* is surjective, according to (5) we see that $A \cup B$ is finite. By induction, we can prove that finite unions of finite sets is finite.

From the relation

$$A \times B := \bigcup_{a \in A} \{a\} \times B$$

which is the finite union of finite sets, we conclude that $A \times B$ and therefore finite Cartesian products of finite sets are finite.

Unfortunately, the situation of infinite Cartesian products of finite sets is more complicated. We need the following definitions.

Definition 1.1.17. (1) A set *A* is said to be **infinite** if it is not finite. It is said to be **countably infinite** if there is a bijective correspondence $f : A \to \mathbb{Z}_{\geq 1}$.

(2) A set is said to be **countable** if it is either finite or countably infinite. A set that is not countable is said to be **uncountable**.

Theorem 1.1.18. $B \neq \emptyset \implies TFAE$:

- (a) *B* is countable,
- (b) there is surjective function $f : \mathbb{Z}_{\geq 1} \to B$,
- (c) there is injective function $g: B \to \mathbb{Z}_{\geq 1}$.

PROOF. $(a) \Rightarrow (b)$: obvious.

 $(b) \Rightarrow (c)$: Let $f : \mathbb{Z}_{\geq 1} \to B$ be surjective. Define $g : B \to \mathbb{Z}_{\geq 1}$ by g(b) := the smallest element of $f^{-1}(\{b\})$.

 $(c) \Rightarrow (a)$: Let $g : B \to \mathbb{Z}_{\geq 1}$ be an injective function. Then there is a bijection of *B* with subset of $\mathbb{Z}_{\geq 1}$. Hence we suffice to prove that every subset of $\mathbb{Z}_{\geq 1}$ is countable (see Lemma 1.1.19).

Lemma 1.1.19. *If C is an infinite subset of* $\mathbb{Z}_{>1}$ *, then C is countable infinite.*

PROOF. Define $h : \mathbb{Z}_{\geq 1} \to C$ a bijection as follows. Denote by h(1) the smallest element of *C*. Then assuming that $h(1), \dots, h(n-1)$ are defined. Let

$$h(n) :=$$
 the smallest element of $C \setminus \bigcup_{1 \le i \le n-1} h(i)$.

Claim 1: *h* is injective. If m < n, then $h(m) \in h(\{1, \dots, n-1\})$ so that $h(m) \neq h(n)$.

Claim 2: *h* is surjective. Let $c \in C$. The injectivity of *h* implies $h(\mathbb{Z}_{\geq 1})$ is infinite and therefore h(n) > c for some $c \in \mathbb{Z}_{>1}$. Let

m := the smallest element of $\mathbb{Z}_{>1}$ such that $h(m) \ge c$.

For each $i = 1, \dots, m-1$, we have h(i) < c so that $c \in C \setminus \bigcup_{1 \le i \le m-1} h(i)$. From the definition of h(m), we must have $h(m) \le c$. Hence h(m) = c.

Corollary 1.1.20. (1) A subset of a countable set is countable. (2) $\mathbb{Z}_{>1} \times \mathbb{Z}_{>1}$ is countably infinite.

PROOF. (1) Let $A \subseteq B$ and B be countable. By Theorem 1.1.18, there is an injection $f : B \to \mathbb{Z}_{\geq 1}$. Then $f|_A : A \to \mathbb{Z}_{\geq 1}$ is also injective, so that A is countable. (2) Since $\mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1}$ is infinite, we now construct an injection $f : \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1}$.

(2) Since $\mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1}$ is infinite, we now construct an injection $f : \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1} \to \mathbb{Z}_{\geq 1}$. Define

$$f(n,m) := 2^n 3^m.$$

If f(n,m) = f(p,q), then $2^n 3^m = 2^p 3^q$. If n < p, then $3^m = 2^{p-n} 3^q$, contradicting! Therefore n = p and then m = q.

Theorem 1.1.21. (1) A countable union of countable sets is countable. (2) A finite Cartesian product of countable sets is countable. (3) $\{0,1\}^{\omega}$ is uncountable. (4) Given a set A. Then there are no injection $f: 2^A \to A$ and surjection $g: A \to 2^A$. (5) $2^{\mathbb{Z}_{\geq 1}}$ is uncountable.

PROOF. Observe that (5) follows from (4) and Theorem 1.1.18.

(1) Let $\{A_n\}_{n \in J}$ be an indexed family of countable sets, where the index set J is either $\{1, \dots, N\}$ or $\mathbb{Z}_{\geq 1}$. Assume each $A_n \neq \emptyset$. By Theorem 1.1.18, there are surjections $f_n : \mathbb{Z}_{\geq 1} \to A_n$ and $g : \mathbb{Z}_{\geq 1} \to J$. Define

$$h: \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1} \longrightarrow \bigcup_{n \in J} A_n, \quad (k, m) \longmapsto f_{g(k)}(m).$$

Then *h* is a surjective function.

(2)WLOG, we may assume that the Cartesian product of two countable sets *A* and *B* is countable. As in (1), there are surjections $f : \mathbb{Z}_{\geq 1} \to A$ and $g : \mathbb{Z}_{\geq 1} \to B$. Define $h : \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1} \to A \times B$ to be h(m, n) := (f(m), g(n)).

(3) Let $X = \{0, \overline{1}\}$. For any given function $g : \mathbb{Z}_{\geq 1} \to X^{\omega}$, we claim that g is not surjective. Denote

$$g(n) := (x_{n1}, x_{n2}, x_{n3}, \cdots, x_{nn}, \cdots), \ x_{ij} \in \{0, 1\}.$$

Define $\boldsymbol{y} := (y_i)_{i \in \mathbb{Z}_{>1}}$ by

$$y_n := \begin{cases} 0, & x_{nn} = 1, \\ 1 & x_{nn} = 0. \end{cases}$$

Then $y \in X^{\omega}$ but $y \notin g(\mathbb{Z}_{>1})$.

(4) It suffices to prove that given a map $g : A \to 2^A$, the map g is not surjective (because the existence of an injection implies the existence of a surjection). Define

$$B := \{a \in A : a \in A \setminus g(a)\} \in 2^A$$

Assume that $g(a_0) = B$. Then

$$a_0 \in B \iff a_0 \in A \setminus g(a_0) \iff a_0 \in A \setminus B.$$

Hence *g* is not surjective.

Exercise 1.1.22. (1) A real number *x* is said to be **algebraic** if it satisfies some polynomial equation of positive degree

$$0 = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}, \quad a_{i} \in \mathbb{Q}.$$

Assuming that each polynomial equation has only finitely many roots, show that the set of algebraic numbers is countable.

(2) A real number is said to be **transcendental** if it is not algebraic. Assuming that \mathbb{R} is uncountable, show that the transcendental numbers are uncountable (e.g., *e*, π are transcendental).

Exercise 1.1.23. We say that two sets *A* and *B* have the same cardinality if there exists bijection of *A* and *B*.

(1) Show that if $B \subseteq A$ and if there is bijection $f : A \to B$, then A and B have the same cardinality. [Hint: define $A_1 := A$, $B_1 := B$, and for any $n \ge 2$, $A_n := f(A_{n-1})$, $B_n := f(B_{n-1})$. Then $A_1 \supseteq B_1 \supseteq A_2 \supseteq B_2 \supseteq A_3 \supseteq \cdots$. Define

$$h: A \longrightarrow B, x \longmapsto \begin{cases} f(x), & \text{if } x \in A_n \setminus B_n \text{ for some } n, \\ x, & \text{otherwise.} \end{cases}$$

(2) (Schroeder-Berstein theorem) If there exist injections $A \rightarrow B$ and $B \rightarrow A$, then A and B have the same cardinality.

1.2. One variable functions

We have learned **elementary functions** in high schools:

- (1) **Constant functions**: y = c,
- (2) **Power functions**: $y = x^a$, $a \neq 0$,
- (3) **Exponential functions**: $y = a^x$, a > 0, $a \neq 1$, $x \in \mathbb{R}$,
- (4) Logarithmic functions: $y = \log_a x$, a > 0, $a \neq 1$, x > 0,
- (5) **Trigonometric functions**: $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$,
- (6) **Inverse trigonometric functions**: $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$, $\cot^{-1} x$, $\sec^{-1} x$, $\csc^{-1} x$.

1.2.1. Some special type functions. We also know, for example, periodic functions, bounded functions, even/odd functions, monotone functions, inverse functions, \cdots .

Example 1.2.1. (a) Dirichlet function

$$D(x) := \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

(b) sign function

$$\operatorname{sgn}(x) := \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0. \end{cases}$$

(c) Define

$$\lfloor x \rfloor := n \text{ if } n \leq x < n+1,$$

and

 $\langle x \rangle := x - \lfloor x \rfloor.$

(d) Define

$$\pi(x) := #$$
 (prime numbers $\leq x$).

(e) Möbius function

$$\mu(n) := \begin{cases} (-1)^r, & n = p_1 \cdots p_r \text{ with } p_1, \cdots, p_r \text{ distinct,} \\ 0, & \text{otherwise.} \end{cases}$$

1.2. ONE VARIABLE FUNCTIONS

Figure: Johann Peter Gustav Lejeune Dirichlet (1805/2/13 - 1859/5/5)

Observe that $y = \sin x$ (resp. $y = \sinh x$) is a solution of ODE y'' + y = 0 (resp. y'' - y = 0).

1.2.2. Prime numbers and prime number theorem. Let $p_1 < p_2 < \cdots$ be the sequence of all prime numbers.

Theorem 1.2.2. (Euclid's theorem) There are infinitely many prime numbers.

PROOF. Otherwise, there are finite many prime numbers $p_1 < \cdots < p_N$. Consider

$$a := p_1 \cdots p_N + 1.$$

Then there is some p_i that divides *a*; consequently, $p_i | 1$, which is a contradiction.

Basic Questions:

(A) **Are there formulas giving the** *n***th prime number?** The answer is yes, and there are many! But they are useless! For example,

$$p_n = 1 + \sum_{1 \le m \le 2^n} \left\lfloor \left\lfloor \frac{n}{1 + \pi(m)} \right\rfloor^{1/n} \right\rfloor.$$

When n = 2, this formula yields

$$p_2 = 1 + \sum_{1 \le m \le 4} \left[\left\lfloor \frac{2}{1 + \pi(m)} \right\rfloor^{1/2} \right] = 1 + 1 + 1 + 0 + 0 = 3.$$

(B) **Behavior or distribution of primes**. The answer is the **Prime number** theorem.

From Theorem 1.2.2, we see that

$$p_{k+1} \le p_1 + \cdots + p_k + 1, \ k \ge 1.$$

Because $p_1 = 2$, we have

(1.2.1)
$$p_k \le 2^{2^{k-1}}, k \ge 1.$$

Indeed, by the induction hypothesis, one has

$$p_{k+1} \leq \prod_{1 \leq i \leq k} p_i + 1 \leq \prod_{1 \leq i \leq k} 2^{2^{i-1}} + 1 = 2^{2^k} - 1 + 1 = 2^{2^k}.$$

Corollary 1.2.3. *For any* $x \ge 2$ *, we get* (1.2.2) $\pi(x) > \ln \ln x$.

PROOF. There is an integer $\ell \in \mathbb{Z}_{\geq 1}$ such that $2^{2^{\ell-1}} \leq x < 2^{2^{\ell}}$. Hence $\pi(x) \geq \ell$ because $p_{\ell} \leq 2^{2^{\ell-1}} \leq x$. From $2^{\ell} > \ln x / \ln 2$ we can conclude that

$$\pi(x) > \ell > \frac{\ln(\ln x / \ln 2)}{\ln 2} > \frac{\ln \ln x}{\ln 2} > \ln \ln x$$

since $0 < \ln 2 < 1$.

By the Taylor series (we shall learn later), $(1-z)^{-1} = \sum_{n \ge 0} z^n$ (|z| < 1), we see

$$2 \ge \frac{p}{p-1} = \left(1 - \frac{1}{p}\right)^{-1} = 1 + \frac{1}{p} + \frac{1}{p^2} + \cdots$$

and

$$2^{\pi(x)} \geq \prod_{p \leq x} \left(1 - \frac{1}{p} \right)^{-1} = \prod_{p \leq x} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots \right)$$
$$\geq \sum_{n \leq x} \frac{1}{n} \geq \int_{1}^{\lfloor x \rfloor + 1} \frac{dt}{t} = \ln(\lfloor x \rfloor + 1) > \ln x.$$

Here the definite integral will be given later.

Theorem 1.2.4. For any $x \ge 2$, we have(1.2.3) $\pi(x) \ge \frac{1}{2 \ln 2} \ln \lfloor x \rfloor$ and then $p_n \le 4^n, n \ge 1.$

1.2. ONE VARIABLE FUNCTIONS

Figure: Leonhard Euler (1707/4/15 - 1783/9/18)

PROOF. Let $2 = p_1 < p_2 < \dots < p_j \le x$ be all primes $\le x$. Write any $n \le x$ as $n = \ell^2 \cdot m$

where ℓ is a positive integer and *m* is square-free (i.e., $m = p_1^{\epsilon_1} \cdots p_j^{\epsilon_j}, \epsilon_1, \cdots, \epsilon_j \in \{0,1\}$). Then $\ell \leq \sqrt{x}$. There are at most \sqrt{x} possibilities for ℓ at most 2^j possibilities for *m*. Hence

$$x \le \sqrt{x}2^j \implies j \ge \frac{\ln\sqrt{x}}{\ln 2} = \frac{\ln x}{2\ln 2}.$$

> $\ln|x|/2\ln 2$.

Thus $\pi(x) = \pi(\lfloor x \rfloor) \ge \ln\lfloor x \rfloor/2 \ln 2$

Chebyshev estimates:

(1) Leonhard Euler (1762) and Carl Friedrich Gauss (1792) conjectured:

(1.2.5)
$$\pi(x) \sim \frac{x}{\ln x}$$

(2) Adrien-Marie Legendre (1798) conjectured:

(1.2.6)
$$\pi(x) \sim \frac{x}{A\ln x + B}$$

with (1808) A = 1 and B = -1.08366.

(3) Charles-Jean de la Vallée Poussin and Jacques Hadamard (1896) proved the prime number theorem:

(1.2.7)
$$\pi(x) \sim \frac{x}{\ln x}.$$

(4) Logarithmic integral (Gauss):

(1.2.8)
$$\mathbf{li}(x) := \mathbf{p.v.} \int_0^x \frac{dt}{\ln t} = \lim_{\epsilon \to 0} \left(\int_0^{1-\epsilon} + \int_{1+\epsilon}^x \right) \frac{dt}{\ln t}, \quad x \ge 2,$$

is a good approximation for $\pi(x)$. Define

(1.2.9)
$$\mathbf{Li}(x) := \int_2^x \frac{dt}{\ln t} \quad (\text{definite integral}).$$

1. INTRODUCTION

Figure: Johann Carl Friedrich Gauss (1777/4/30 - 1855/2/23)

Figure: Adrien-Marie Legendre (1752/9/18 - 1833/1/10)

Then

(1.2.10)
$$\mathbf{Li}(x) = \underbrace{\lim_{\epsilon \to 0} \left(\int_0^{1-\epsilon} + \int_{1+\epsilon}^2 \right) \frac{dt}{\ln t}}_{\mathbf{Li}(x)} + \mathbf{Li}(x).$$

well-defined improper integral

1.2. ONE VARIABLE FUNCTIONS

Figure: Jacques Solomon Hadamard (1865/12/8 - 1963/10/17)

Figure: Pafnuty Chebyshev (1821/5/26 - 1894/12/8)

Figure: Paul Erdös (1913/3/26 - 1996/9/20)

Because

$$\lim_{\epsilon \to 0} \left(\int_0^{1-\epsilon} + \int_{1+\epsilon}^2 \right) \frac{dt}{\ln t} = \lim_{\epsilon \to 0} \left(\int_0^{1-\epsilon} \frac{dt}{\ln t} + \int_0^{1-\epsilon} \frac{ds}{\ln(2-s)} \right)$$
$$= \lim_{\epsilon \to 0} \left[\int_{\epsilon}^1 \frac{du}{\ln(1-u)} + \int_{\epsilon}^1 \frac{du}{\ln(1+u)} \right] = \int_0^1 \left[\frac{1}{\ln(1-u)} + \frac{1}{\ln(1+u)} \right] du$$
and
$$\lim_{\epsilon \to 0} u^{1/2} \left[\frac{1}{\ln(1-u)} + \frac{1}{\ln(1-u)} \right] = \lim_{\epsilon \to 0} \frac{u^{-1/2}}{\ln(1-u)} \left[-(1-u) + (1+u) \right] = 0$$

 $\lim_{u \to 0} u^{1/2} \left[\frac{1}{\ln(1-u)} + \frac{1}{\ln(1+u)} \right] = \lim_{u \to 0} \frac{u}{2} \left[-(1-u) + (1+u) \right] = 0.$

(5) Prime number theorem implies

$$\mathbf{li}(x) \sim \mathbf{Li}(x) \sim \frac{x}{\ln x} \sim \pi(x).$$

Since

$$\mathbf{Li}(x) = \frac{x}{\ln x} + \frac{x}{\ln^2 x} - \frac{2}{\ln 2} - \frac{2}{\ln^2 2} - 2\int_2^x \frac{dt}{\ln^3 t} = \frac{x}{\ln x} \left[1 + \frac{1}{\ln x} + O\left(\frac{1}{\ln^2 x}\right) \right],$$

we get

$$\pi(x) \sim \frac{x}{\ln x} \frac{1}{1 - \frac{1}{\ln x}} = \frac{x}{\ln x - 1}.$$

(6) **Chebyshev's estimate** (1850):

– for any $x \ge 2$,

(1.2.11)
$$c_1 \frac{x}{\ln x} \le \pi(x) \le C_1 \frac{x}{\ln x},$$

where
$$c_1 := \ln(2^{1/2}3^{1/3}5^{1/5}/30^{1/30}) \approx 0.921292$$
 and $C_1 = 6c_1/5 \approx 1.1055$.

- if $\pi(x)/(x/\ln x)$ has the limit as $x \to \infty$, then this limit must be 1.

Theorem 1.2.5. (Erdös) For any
$$x \ge 2$$
, we have
(1.2.12) $\frac{3 \ln 2}{8} \frac{x}{\ln x} \le \pi(x) \le 6 \ln 2 \frac{x}{\ln x}$

PROOF. **Step 1:** Let $e_p(n!)$ be the exponent of which p appears in the factorization of n!. Then

$$e_p(n!) = \sum_{k \ge 1} \left\lfloor \frac{n}{p^k} \right\rfloor$$

For example,

$$e_2(4) = e_2(2^3 \times 3) = 3 = 2 + 1 = \lfloor 4/2 \rfloor + \lfloor 4/2^2 \rfloor.$$

Assume it holds for *n* and write $n + 1 = p^u m$ where $p \nmid m$. Then

$$e_p((n+1)!) = e_p(n!) + u = \sum_{1 \le k \le u} \underbrace{\left(\left\lfloor \frac{n}{p^k} \right\rfloor + 1 \right)}_{\lfloor (n+1)/p^k \rfloor} + \sum_{k > u} \left\lfloor \frac{n}{p^k} \right\rfloor.$$

Step 2: For any $n \ge 2$, one has

$$\prod_{n$$

where r_p is the unique integer satisfying $p^{r_p} \le 2n < p^{r_p+1}$. Indeed, the first divisibility relation is obvious. For p < 2n,

$$e_p\left(\binom{2n}{n}\right) = e_p((2n)!) - 2e_p(n!) = \sum_{k \ge 1} \left(\left\lfloor \frac{2n}{p^k} \right\rfloor - 2\left\lfloor \frac{n}{p^k} \right\rfloor \right).$$

If $k > r_p$, then $p^k \ge p^{r_p+1} > 2n$ so that $\lfloor 2n/p^k \rfloor = 0 = \lfloor n/p^k \rfloor$. Therefore

$$e_p\left(\binom{2n}{n}\right) = \sum_{1 \le k \le r_p} \left(\left\lfloor \frac{2n}{p^k} \right\rfloor - 2\left\lfloor \frac{n}{p^k} \right\rfloor\right) = \sum_{1 \le k \le r_p} 1 = r_p$$

since $\lfloor 2y \rfloor - 2 \lfloor y \rfloor = 1$ if $\frac{m}{2} \le y \le \frac{m+1}{2}$ for some $m \ge 0$.

Step 3: For any $x \ge 2$,

$$\pi(x) \ge \frac{3\ln 2}{8} \frac{x}{\ln x}.$$

By **Step 2**, $\binom{2n}{n} \le (2n)^{\pi(2n)}$. Because

$$(1+1)^{2n} = \sum_{0 \le k \le 2n} {\binom{2n}{k}}$$
 and ${\binom{2n}{n}} \ge {\binom{2n}{k}} (0 \le k \le 2n)$,

we get

$$\binom{2n}{n} > \frac{2^{2n}}{2n+1} > 2^n, \ n \ge 3.$$

Consequently,

$$2^{n} < \frac{2^{2n}}{2n+1} < \binom{2n}{n} \le (2n)^{\pi(2n)} \implies \pi(2n) > \frac{\ln 2}{2} \frac{2n}{\ln(2n)} \quad (n \ge 3).$$

Assume that $x \ge 8$ and let *n* be the unique integer satisfying $2n \le x < 2n + 2$ (so $n \ge 3$). Moreover, $2n > x - 2 \ge \frac{3}{4}x$. Since the function $y \mapsto y/\ln y$ is increasing for any $y \ge e$ (i.e., $(y/\ln y)' = (\ln y - 1)/(\ln y)^2 \ge 0$ for $y \ge e$), we conclude that

$$\pi(x) \ge \pi(2n) \ge \frac{\ln 2}{2} \frac{2n}{\ln(2n)} \ge \frac{\ln 2}{2} \frac{3x/4}{\ln(3x/4)} = \frac{3\ln 2}{8} \frac{x}{\ln x + \ln \frac{3}{4}} > \frac{3\ln 2}{8} \frac{x}{\ln x}$$

for $x \ge 8$.

Step 4: For $x \ge 2$, one has

$$\pi(x) \le 6\ln 2\frac{x}{\ln x}$$

By **Step 2**, $\pi_{n and$

$$2n\ln 2 > \sum_{n$$

Using $\pi(n) \leq n$ yields

$$\pi(2n)\ln n - \pi(n)\ln\frac{n}{2} < 2n\ln 2 + \pi(n)\ln 2 < (3\ln 2)n$$

Write

$$f(x) := \pi(2n) \ln 2;$$

then

$$f(n) - f(n/2) < (3\ln 2)n$$

Take $n = 2^i$ ($2 \le i \le k$) and obtain

$$f(2^i) - f(2^{i-1}) < (3\ln 2)2^i.$$

Hence

$$\pi(2^{k+1})\ln(2^k) < 3\ln 2\sum_{2 \le i \le k} 2^i + \pi(4)\ln 2 < 3\ln 2\sum_{1 \le i \le k} 2^i < (3\ln 2)2^{k+1}$$

so that

$$\pi(2^{k+1}) < (6\ln 2)\frac{2^k}{\ln(2^k)}.$$

Given $x \ge 2$, choose $k \ge 1$ in such a way that $2^k \le x < 2^{k+1}$. If $x \ge 4$, then $k \ge 2$ and $2^k \ge 4 > e$. Thus $2^k / \ln(2^k) \le x / \ln x$ when $x \ge 4$. Therefore

$$\pi(x) \le \pi(2^{k+1}) < 6\ln 2\frac{2^k}{\ln(2^k)} < (6\ln 2)\frac{x}{\ln x}.$$

Step 3 and Step 4 give the desired result.

(1) In 1845, Joseph Bertrand proved that for any $n \le 6 \cdot 10^6$, there is a prime number in [n, 2n].

- (2) Bertrand conjectured that (1) was true for any $n \in \mathbb{Z}_{\geq 1}$.
- (3) In 1850, Chebyshev proved (2)

Theorem 1.2.6. For each $n \in \mathbb{N}$, there exists a prime number p such that n .

PROOF. The following proof is due to Erdös.

Step 1: For each $n \in \mathbb{N}$,

$$\prod_{p\leq n}p<4^n$$

WLOG, we may assume that $n \ge 3$ and the result holds for each $k - 1, \dots, n - 1$. If *n* is even, then

$$\prod_{p\leq n}p=\prod_{p\leq n-1}p.$$

Hence one can assume that *n* is odd. Write n = 2m + 1 and observe

$$\prod_{m+1$$

So

$$\prod_{p \le 2m+1} p = \left(\prod_{p \le m+1} p\right) \left(\prod_{m+1$$

Step 2: If $n \ge 3$, *p* is prime, and $\frac{2}{3}n , then$

$$p \nmid \binom{2n}{n}$$
.

Indeed, $p > \frac{2}{3}n \ge 2$. Because 3p > 2n, we see that p and 2p are the only multiplies of p which are $\le 2n$. Therefore $p^2 \parallel (2n)!$. Since

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$$

we conclude that $\binom{2n}{n}$ is not a multiple of *p*.

Step 3: Assume that $n \ge 4$, and the result is false for some *n* (so that there are no primes in the interval [n, 2n]). In this step, we shall show that n < 512. By **Step 2**, each prime number *p* which divides $\binom{2n}{n}$ is $\le \frac{2}{3}n$. Let $p^{\alpha} \parallel \binom{2n}{n}$. Then

$$lpha \leq r_p$$
 and $p^{r_p} \leq 2n < p^{r_p+1}.$

If $\alpha \geq 2$, then $p^2 \leq p^{\alpha} \leq 2n$ and $p \leq \sqrt{2n}$, so that

$$\begin{pmatrix} 2n \\ n \end{pmatrix} = \prod_{p \mid \binom{2n}{n}} p = \left(\prod_{p \mid \binom{2n}{n}, \alpha = 1} p^{\alpha}\right) \left(\prod_{p \mid \binom{2n}{n}, \alpha \ge 2} p^{\alpha}\right) \\ \leq \prod_{p \le 2n/3} p \cdot \prod_{p \le \sqrt{2n}} p^{r_p} \le 4^{2n/3} \cdot (2n)^{\sqrt{2n}}.$$

Using $\binom{2n}{n} \ge 2^{2n}/(2n+1)$ yields

$$4^{2n/3}(2n)^{\sqrt{2n}} \ge \frac{4^n}{2n+1} \Rightarrow 4^{n/3} \le (2n)^{\sqrt{2n}+2} \Rightarrow \frac{\ln 2}{3}(2n) < (\sqrt{2n}+2)\ln(2n).$$

Setting $y := \sqrt{2n}$, we get

$$\frac{\ln 2}{3}y^2 - 2(y+2)\ln y < 0.$$

Consider the function $f(y) := \frac{\ln 2}{3}y^2 - 2(y+2)\ln y$ with $y \ge 0$. From

$$f'(y) = \frac{2\ln 2}{3}y - 2\ln y - 2\frac{y+2}{y}, \quad f''(y) = \frac{2}{3}\ln 2 - \frac{2}{y} + \frac{4}{y^2} > \frac{2}{3}\ln 2 - \frac{2}{y},$$

we see that when y > 32, f''(y) > 0. Since $f'(32) = \frac{64}{3} \ln 2 - 2 \ln(32) - 2.2 > 0$, we obtain that f'(y) > 0 for $y \ge 32$. In particular, $f(y) \ge f(32)$ for $y \ge 32$. But

$$f(32) = 2^{10} \frac{\ln 2}{3} - 340 \times \ln 2 = \frac{1024 - 1020}{3} \ln 2 = \frac{4}{3} \ln 2 > 0,$$

we conclude that f(y) > 0 for any $y \ge 32$. This contradiction shows y < 32 or n < 512.

For each $n = 1, \dots, 511$, the interval [n, 2n] always contains a prime number. Therefore in **Step 4** the assumption is wrong. Thus the result holds.

Twin prime conjecture:

(1) Theorem 1.2.6 implies

$$(1.2.13) p_{n+1} - p_n \le p_n.$$

1. INTRODUCTION

Figure: Yitang Zhang (1955 -)

Conjecture 1.2.7. (Gramer, 1936) One has (1.2.14) $\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{(\ln p_n)^2} \le 1.$ *The sup/inf limit will be defined later.*

(2) Baker-Haman-Pintz (2001) proved

(1.2.15)
$$p_{n+1} - p_n < p_n^{0.525}, n \gg 1.$$

(4) If *p* and p + 2 are both prime numbers, we say (p, p + 2) is **twin prime**.

Conjecture 1.2.8. (Twin prime conjecture) *There exist infinitely many integers n such that* $p_{n+1} - p_n = 2$. *Equivalently* (1.2.16) $\liminf_{n \to \infty} (p_{n+1} - p_n) = 2.$

(4) Goldston-Pintz-Yildrim (2009-2010) proved

(1.2.17) $\liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\ln p_n} = 0, \quad \liminf_{n \to \infty} \frac{p_{n+1} - p_n}{\sqrt{\ln p_n} (\ln \ln p_n)^2} < \infty.$

 Theorem 1.2.9. (Y.-T. Zhang, 2013) One has

 (1.2.18)
 $\liminf_{n \to \infty} (p_{n+1} - p_n) \le 7 \times 10^7.$

Let $b_1 < \cdots < b_k$ be positive integers. For each prime number p, set (1.2.19) $v_{b_1,\cdots,b_l}(p) := \# \{b_i \pmod{p} : 1 \le i \le k\}.$ **1.2. ONE VARIABLE FUNCTIONS**

Figure: Godfrey Harold Hardy (1877/2/7 - 1947/12/1)

When k = 2, $(b_1, b_2) = (0, 2)$, we have

$$\nu_{0,2}(p) = \#\{0 \pmod{p}, 2 \pmod{p}\} = \begin{cases} 1, & p = 2, \\ 2, & p \ge 3. \end{cases} \implies \nu_{0,2}(p) < p.$$

Conjecture 1.2.10. (Dickson, 1904) If $v_{b_1,\dots,b_k}(p) < p$ for all prime numbers p, then there exist infinitely many positive integers n such that $n + b_1, \dots, n + b_k$ are all prime numbers.

It is clear that Conjecture 1.2.10 implies Conjecture 1.2.8.

Conjecture 1.2.11. (Hardy-Littlewood, 1923) *For any* $x, y \ge 1$, we have (1.2.20) $\pi(x+y) \le \pi(x) + \pi(y)$.

Hensley-Richards (1972) proved that Conjecture 1.2.10 and Conjecture 1.2.11 are incompatible. People believe that Conjecture 1.2.10 is true, while Conjecture 1.2.11 would be false.

1.2.3. π and *e*. As we will prove later that

(1.2.21)
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \sum_{k \ge 0} \frac{1}{k!},$$

(1.2.22)
$$\frac{\pi^2}{6} = \sum_{n \ge 1} \frac{1}{n^2},$$

(1.2.23) $n! \sim n^n e^{-n} \sqrt{2\pi n}, n \to \infty.$ (Stirling's formula)

1.2.4. Metric spaces. Consider the *n* dimensional Euclidean space \mathbb{R}^n with the usual distance function $d_{\mathbb{R}^n}$ given by

$$d_{\mathbb{R}^n}(x,y) := \left(\sum_{1 \le i \le n} (x^i - y^i)^2\right)^{1/2}, \ x = (x^1, \cdots, x^n), \ y = (y^1, \cdots, y^n).$$

In high school it is well known that

- $d_{\mathbb{R}^n}(x, y) \ge 0$ and $d_{\mathbb{R}^n}(x, y) = 0$ if and only if x = y,
- $d_{\mathbb{R}^n}(x,y) = d_{\mathbb{R}^n}(y,x),$
- $d_{\mathbb{R}^n}(\boldsymbol{x}, \boldsymbol{z}) \leq d_{\mathbb{R}^n}(\boldsymbol{x}, \boldsymbol{y}) + d_{\mathbb{R}^n}(\boldsymbol{y}, \boldsymbol{z}).$

Definition 1.2.12. A **metric space** is a pair (X, d), where X is nonempty and *d* is a **metric** on X. That is, $d : X \times X \to \overline{\mathbb{R}} := \overline{\mathbb{R}} \cup \{\infty\}$ satisfying

- 1) (**Positiveness**) $d(x, y) \ge 0$ and d(x, y) = d(y, x),
- 2) (**Symmetry**) d(x, y) = d(y, x),
- 3) (Triangle inequality) $d(x,z) \le d(x,y) + d(y,z)$.

We say that *d* is **finite** if the image of *d* is contained in \mathbb{R} .

Any metric space induces a finite metric on some set. Indeed, let (X, d) be a metric space, and pick a point $x \in X$. Define

$$[x]_d := \{ y \in X : d(x, y) \neq \infty \}.$$

Then $y \sim_d x \Leftrightarrow y \in [x]_d$ is an equivalence relation. Then *d* is a finite metric on $[x]_d$.

Definition 1.2.13. A map $f : (X, d_X) \to (Y, d_Y)$ between two metric spaces is called **distance-preserving** if

$$(1.2.24) d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2), \quad x_1, x_2 \in X.$$

A bijective distance-preserving map is called an **isometry**, Two metric spaces are **isometric** if there is an isometry between them.

Example 1.2.14. (1) For any given nonempty set *X*, we can define the **trivial metric**

(1.2.25)
$$d_{\mathbb{R}}(x,y) := \begin{cases} 0, & x = y, \\ 1 & x \neq y \end{cases}$$

(2) Let $X = \mathbb{R}$. There are two useful metrics:

(1.2.26)
$$d(x,y) := |x-y|, \ d_{\ln}(x,y) := \ln(1+|x-y|).$$

The second one appears in the complex algebraic geometry and differential geometry.

(3) Given two metric spaces (X, d_X) and (Y, d_Y) , define the **product metric** on $X \times Y$ by

(1.2.27) $d_{X\times Y}((x_1,y_1),(x_2,y_2)) := (d_X(x_1,x_2) + d_Y(y_1,y_2))^{1/2}.$

1.2. ONE VARIABLE FUNCTIONS

Figure: Felix Hausdorff (1868/11/8 - 1942/1/26)

(4) $X = \mathbb{R}^{n}$:

$$d_{\mathbb{R}^n}(\boldsymbol{x}, \boldsymbol{y}) := \left(\sum_{1 \le i \le n} (x^i - y^i)^2\right)^{1/2}.$$

(5) For a metric space (X, d) and $\lambda > 0$, define

(1.2.28)
$$d_{\lambda}(x,y) := \lambda d(x,y).$$

(6) If (X, d) is a metric space and $Y \subseteq X$, we see that $(Y, d_Y := d|_X)$ is itself a metric space.

Assume that (X, d) is a metric space.

- (1) We say that $(x_n)_{n \in \mathbb{N}}$ is a **Cauchy sequence** if $d(x_n, x_m) \to 0$ as $n, m \to \infty$. That is, for any $\epsilon > 0$, there exists a positive integer $n_0 \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ whenever $n, m \ge n_0$.
- (2) (*X*, *d*) is said to be **complete** if any Cauchy sequence has a limit in *X*. It is clear that this limit is unique.
- (3) $(\mathbb{R} \setminus 0, d_{\mathbb{R}}|_{\mathbb{R} \setminus 0})$ is non-complete.
- (4) For $\delta > 0$, define the δ -neighborhood of $A \subseteq X$ to be

$$A_{\delta} := \{ x \in X : d(x, A) < \delta \}$$

where $d(x, A) := \inf\{d(x, a) : a \in A\}.$

(5) The **Hausdorff distance** between two given subsets $A, B \subseteq X$ is

(1.2.29)
$$d_{\mathbf{H}}^{X}(A,B) := \inf\{\delta > 0 : A \subseteq B_{\delta} \text{ and } B \subseteq A_{\delta}\}$$

Given metric spaces (X, d_X) and (Y, d_Y) , define the **Gromov-Hausdoff distance**

$$d_{\mathbf{GH}}((X, d_X), (Y, d_Y)) := \inf \left\{ \begin{aligned} & (Z, d_Z) \text{ metric space and} \\ & d_{\mathbf{H}}^Z(f(X), g(Y)) : & f: X \hookrightarrow Z, \ g: Y \hookrightarrow Z \\ & \text{isometric embeddings} \end{aligned} \right\},$$

1. INTRODUCTION

Figure: Mikhail Gromov (1943/12/23 -)

where isometric embeddings mean that $(X, d_X) \rightarrow (f(X), d_Z|_{f(X)})$ and $(Y, d_Y) \rightarrow (g(Y), d_Z|_{g(Y)})$ are isometries.

We say a sequence of metric spaces $\{(X_n, d_n)\}_{n \ge 1}$ converges in the Gromov-Hausdorff sense to a metric space (X, d), written as $(X_n, d_n) \rightarrow_{\mathbf{GH}} (X, d)$, if

(1.2.31)
$$\lim_{n\to\infty} d_{\mathbf{GH}}((x_n,d_n),(X,d)) = 0.$$

For example, a sequence of cylinders with decreasing to zero radius converges in the Gromov-Hausdorff sense to a line.

This concept is an important tool to study the behavior of "singular space", particularly the study of the Ricci flow (introduced by Hamilton) which leads to a proof (Perelman) of **Poincaré's conjecture** (that is, any closed, simply-connected, three dimensional manifold is diffeomorphic to S³).

1.2.5. Functionals. Consider the function

$$f(x) := x^2, \quad x \in \mathbb{R}.$$

It is easy to check that f is continuous, $\min_{x \in \mathbb{R}} f(x) = f(0) = 0$, and f'(0) = 0. Let X denote the set of all functions defined on \mathbb{R} and consider

$$\mathscr{F}: X \longrightarrow \mathbb{R}, \quad f \longmapsto f(0)^2.$$

Clearly that $\min_{f \in X} \mathscr{F}(f) = \mathscr{F}(0) = 0$. Question: How can we define the "derivative" of \mathscr{F} ?

Definition 1.2.15. A **vector space** (over \mathbb{R}) is a set *X*, of elements *x*, *y*, *z*, · · · (**vectors**), together with two operations of addition (+) and multiplication (·), satisfying

(1) $x + y \in X, \forall x, y \in X,$ (2) $a \in \mathbb{R}, x \in X \Longrightarrow a \cdot x \in X,$ (3) $x, y \in X \Longrightarrow x + y = y + x,$ (4) $x, y, z \in X \Longrightarrow (x + y) + z = x + (y + z),$

(5) $\exists 0 \in X$ (**zero vector**) such that $x + 0 = x, \forall x \in X$,

(6) $\forall x \in X, \exists -x \in X \text{ such that } x + (-x) = 0,$ (7) $\forall a, b \in \mathbb{R}, \forall x \in X \Longrightarrow a \cdot (b \cdot x) = (ab) \cdot x,$ (8) $\forall a \in \mathbb{R}, \forall x, y \in X \Longrightarrow a \cdot (x + y) = a \cdot x + a \cdot y,$ (9) $\forall a, b \in \mathbb{R}, \forall x \in X \Longrightarrow (a + b) \cdot x = a \cdot x + b \cdot x,$ (10) $\forall x \in X, 1 \cdot x = x.$

Equivalently, $(X, +, \cdot)$ is a vector space if (X, +) is an Abelian group and $(X, +, \cdot)$ is a left \mathbb{R} -module.

Example 1.2.16. (1) \mathbb{R}^n is a vector space. (2) Fix an interval $I \subset \mathbb{R}$, define

 $X := \{$ real-valued functions defined on $I \}.$

Let

$$(\phi + \psi)(x) := \phi(x) + \psi(x), \quad (a \cdot \phi)(x) := a \cdot \phi(x).$$

Then $(X, +, \cdot)$ is a vector space. (3) Let

 $X' := \{ f \in X : f(0) - f(1) = 1 \}$

where *X* is the vector space given in (2) with I = [0,1]. Then $(X', +, \cdot)$ is not a vector space (**Hint:** consider functions f(x) = 1 - x and $g(x) = 1 - x^2$).

Definition 1.2.17. A **functional** is a map \mathscr{F} from a vector space *X* to \mathbb{R} .

Example 1.2.18. (Examples of functionals) (1) $\mathscr{F}(x) := (x^2)^2 - (x^1)^2$ for $x = (x^1, x^2) \in \mathbb{R}^2$. (2) $X = C[0, \pi/2]$ the space of all continuous functions over $[0, \pi/2]$, and $\mathscr{F}(\phi) := \int_0^{\pi/2} \left[2\phi(x)^3 + 9(\sin x)\phi(x)^2 + 12(\sin^2 x)\phi(x) - \cos x \right] dx$. (3) $X = \mathbb{R}^2$, and $\mathscr{F}(x) := \begin{cases} \frac{xy^2}{x^2 + y^4}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

Definition 1.2.19. Consider a functional $\mathscr{F} : X \to \mathbb{R}$. The **Gâteaux variation of** \mathscr{F} **at** $x \in D \subseteq X$ is

(1.2.32)
$$\Im \mathscr{F}(x;h) := \lim_{\epsilon \to 0} \frac{\mathscr{F}(x+\epsilon h) - \mathscr{F}(x)}{\epsilon}.$$

Example 1.2.20. (1) $\mathscr{F}(x) := (x^2)^2 - (x^1)^2$ for $x = (x^1, x^2)$, $\partial \mathscr{F}(x; h) = \lim_{\epsilon \to 0} \frac{[(x^2 + \epsilon h^2)^2 - (x^1 + \epsilon h^1)^2] - (x^2)^2 - (x^1)^2}{\epsilon} = 2(x^2 h^2 - x^1 h^1)$. (2) For \mathscr{F} defined in Example 1.2.18 (2), $\partial \mathscr{F}(\phi; \phi) = \int_0^{\pi/2} \left[6\phi(x)^2 \psi(x) + 18 \sin x \phi(x) \psi(x) + 12 \sin^2 x \psi(x) \right] dx$. (3) For \mathscr{F} defined in Example 1.2.18 (3), $\partial \mathscr{F}(0; h) = \begin{cases} (h^2)^2 / (h^1)^2, & h^1 \neq 0, \\ 0, & h^1 = 0. \end{cases}$

1.3. References

- Munkres, James R. *Topology*, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. xvi+537 pp. ISBN: 0-13-181629-2 MR3728284
- (2) Zhang, Fubao; Xue, Xingmei; Chao, Xiaoli. *Lectures on Mathematical Analysis* (Chinese), Science Press, 2019.
- (3) Kashiwara, Masaki; Schapira, Pierre. *Categories and sheaves*, Grundlehren der Mathematischen Wissenschaften, 332, Springer-Verlag, Berlin, 2006. x+497 pp. ISBN: 978-3-504-27949-5; 3-540-27949-0 MR21822076 (2006k:18001)
- (4) Kashiwara, Masaki; Schapira, Pierre. *Sheaves on manifolds*, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, Berlin, 1990. x+512 pp. ISBN: 3-540-51861-4 MR1074006 (92a:58132)
- (5) Iwaniec, Henryk; Kowalski, Emmanuel. Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. xii+615 pp. ISBN: 0-8218-3633-1 MR2061214 (2005h: 11005)

CHAPTER 2

Sequences

2.1. Convergent sequences

2.1.1. Definition. Let $X = \mathbb{R}$, d(x, y) := |x - y|. Then (X, d) is a metric space. Actually (X, d) is a complete metric space, i.e., any Cauchy sequence has a limit in *X*. Recall that

 $(x_n)_{n\in\mathbb{N}}$ is Cauchy $\iff \forall \epsilon > 0, \ \exists N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon, \ \forall n, m \ge N$, $\lim_{n\to\infty} x_n = x \in X \iff \forall \epsilon > 0, \ \exists N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon, \ \forall n \ge N$.

Definition 2.1.1. Given a sequence $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$. (1) $a \in \mathbb{R}$ is called a **limit** of $(a_n)_{n \in \mathbb{N}}$ if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $|a_n - a| < \epsilon$, whenever n > N. We write $a_n \to a$ or $\lim_{n \to \infty} a_n = a$. We shall prove that a limit of $(a_n)_{n \in \mathbb{N}}$, if exists, is unique. Hence we can say that a is the limit of $(a_n)_{n \in \mathbb{N}}$.

(2) $(a_n)_{n \in \mathbb{N}}$ is convergent if $\exists a \in \mathbb{R}$ such that $a_n \to a$. Otherwise, we say that $(a_n)_{n \in \mathbb{N}}$ is divergent.

2.1.2. Examples. We give some examples to practice " ϵ -N".

Example 2.1.2. (1) $|q| < 1 \Longrightarrow \lim_{n \to \infty} q^n = 0.$ (2) $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0.$ (3) $a \ge 1 \Longrightarrow \lim_{n \to \infty} \sqrt[n]{a} = 1.$ (4) $\lim_{n \to \infty} \sqrt[n]{n} = 1.$

PROOF. (1) When q = 0, each q^n is zero. Assume now that 0 < |q| < 1.

$$|q^n - 0| < \epsilon \iff |q|^n < \epsilon \iff n > \frac{\ln \epsilon}{\ln |q|}.$$

Hence $\forall \epsilon > 0, \exists N = \lfloor \ln \epsilon / \lfloor \ln |q| \rfloor$ such that

$$|q^n - 0| < \epsilon$$
 whenever $n > N$.

(2) Write

$$\sqrt{n+1} - \sqrt{n} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}$$

Then we can take $N = \lfloor 1/4\epsilon^2 \rfloor$.

(3) WLOG, we may assume that a > 1. Hence $\sqrt[n]{a} > 1$ and write it as $\sqrt[n]{a} = 1 + y_n$. Because $y_n > 0$ and

$$a = (1 + y_n)^n = 1 + ny_n + \frac{n(n-1)}{2}y_n^2 + \dots + y_n^n > 1 + ny_n,$$

we see that

$$\left|\sqrt[n]{a}-1\right|=|y_n|<\frac{a-1}{n}\longrightarrow 0.$$

(4) As in (3), write $\sqrt[n]{n} = 1 + y_n$ with $y_n > 0$. Then

$$n = (1 + y_n)^n = 1 + ny_n + \frac{n(n-1)}{2}y_n^2 + \dots + y_n^n > 1 + \frac{n(n-1)}{2}y_n^2$$

and

$$\left|\sqrt[n]{n-1}\right| = |y_n| < \sqrt{\frac{2}{n-1}} \longrightarrow 0.$$

Let $(a_n)_{n>1}$ be a divergent sequence. Then $\forall a \in \mathbb{R}, a_n \not\rightarrow a$. Thus

 $a_n \not\rightarrow a \iff \exists \epsilon_0 > 0, \ \forall N \in \mathbb{N}, \ \exists n_0 > N \text{ such that } |a_{n_0} - a| \ge \epsilon_0.$

Example 2.1.3. (1) $\{(-1)^{n-1}\}_{n\geq 1}$ is divergent. (2) $\{\sin n\}_{n\geq 1}$ is divergent.

PROOF. (1) We first prove that $(-1)^{n-1} \nleftrightarrow 1$. $\exists \epsilon_0 = 1, \forall N \in \mathbb{N}, \exists n_0 = 2N > N$ such that

$$|a_{n_0} - a| = \left| (-1)^{2n-1} - 1 \right| = |-2| = 2 > 1 = \epsilon_0.$$

Next, for any $a \neq 1$, we show that $(-1)^{n-1} \nleftrightarrow a$. $\exists \epsilon_0 = |a-1|/2, \forall N \in \mathbb{N}$, $\exists n_0 = 2N + 1$ such that $|a_{n_0} - a| = |1 - a| > \epsilon_0$.

(2) Because $|\sin n| \leq 1$, we suffice to show that $\forall A \in [-1,1]$, $\sin n \neq A$. WLOG, we may assume that $0 \leq A \leq 1$. $\exists \epsilon_0 = \sqrt{2}/2$, $\forall N \in \mathbb{N}$, $\exists n_0 = \lfloor (2N\pi - \frac{\pi}{2}) + \frac{\pi}{4} \rfloor$ such that $\sin n_0 < -\sqrt{2}/2$ and $|\sin n_0 - A| \geq \sqrt{2}/2 = \epsilon_0$.

Remark 2.1.4. (1) Example 2.1.2 (2) implies that $\lim_{n \to \infty} (a_n - a_{n-1}) = 0 \implies \lim_{n \to \infty} a_n \text{ convergent.}$ (2) Example 2.1.3 implies that $\{a_n\}_{n \ge 1} \text{ bounded } \implies \lim_{n \to \infty} a_n \text{ exists.}$

Example 2.1.5. If $\lim_{n\to\infty} a_n = a$, then $\lim_{n\to\infty} \frac{a_1 + \dots + a_n}{n} = a.$

PROOF.
$$\forall \epsilon > 0, \exists N_0 \in \mathbb{N}$$
 such that $|a_n - a| < \epsilon/2$ whenever $n > N_0$. Write

$$\begin{vmatrix} \frac{a_1 + \dots + a_n}{n} - a \end{vmatrix} = \begin{vmatrix} \frac{a_1 + \dots + a_n - na}{n} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{a_1 + \dots + a_{N_0} - N_0 a}{n} + \frac{(a_{N_0+1} - a) + \dots + (a_N - a)}{n} \end{vmatrix}$$

$$\leq \frac{|a_1 + \dots + a_{N_0} - N_0 a|}{n} + \frac{|a_{N_0+1} - a| + \dots + |a_n - a|}{n}$$

$$\leq \frac{n - N_0}{n} \frac{\epsilon}{2} + \frac{|a_1 + \dots + a_{N_0} - N_0 a|}{n}.$$
e
 $N > \max\left\{N_0, \frac{|a_1 + \dots + a_{N_0} - N_0 a|}{\epsilon/2}\right\}.$
then get

$$\begin{vmatrix} \frac{a_1 + \dots + a_n}{n} - a \end{vmatrix} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Take

We

PROOF. Given a real number $a \in \mathbb{R}$. Define $a_n := \lfloor na \rfloor / n$. Because

$$na - 1 < |na|na$$
,

1 |na|

we have

or

$$\begin{aligned} a - \frac{1}{n} < \frac{\lfloor na \rfloor}{n} < a \\ a_n - a \rfloor = \left| \frac{\lfloor na \rfloor}{n} - a \right| < \frac{1}{n} \longrightarrow 0. \end{aligned}$$

2.2. Properties of convergent sequences

2.2.1. Basic properties. We left a question in Definition 2.1.1 that a limit, if exists, is unique. In this subsection we shall prove this fact.

Theorem 2.2.1. (1) $a_n \to a, a_n \to b \Longrightarrow a = b$. (2) $\{a_n\}_{n\geq 1}$ is convergent $\Longrightarrow \{a_n\}_{n\geq 1}$ is bounded. (3) $a_n \to a, b_n \to b, a < b \Longrightarrow \exists N \in \mathbb{N}$ such that $a_n < b_n, \forall n \geq N$. (4) $a_n \to a$ and $b < a < c \Longrightarrow \exists N \in \mathbb{N}$ such that $b < a_n < c, \forall n > N$. (5) $a_n \to a, b_n \to b, a_n \leq b_n (\forall n > N) \Longrightarrow a \leq b$. (6) $a_n \to a \Longrightarrow |a_n| \to |a|$. PROOF. (1) Given $\epsilon > 0$, $\exists N_1, N_2 \in \mathbb{N}$ such that

$$|a_n-a| < \epsilon \quad (\forall n > N_1) \quad \text{and} \quad |b_n-b| < \epsilon \quad (\forall n > N_2).$$

Then

$$|a-b| \le |a_n - b + |a_n - a| < 2\epsilon \quad (\forall n > \max(N_1, N_2))$$

By the arbitrary of ϵ we must have a = b.

(2) Take $\epsilon = 1, \exists N_1 \in \mathbb{N}$ such that $a - 1 < a_n < a + 1, \forall n > N_1$. Hence $\forall n \ge 1$,

 $\min\{a_1, \cdots, a_N, a-1\} \le a_n \le \max\{a_1, \cdots, a_N, a+1\}.$

(3) Take $\epsilon = \frac{b-a}{2} > 0$, $\exists N_1, N_2 \in \mathbb{N}$ such that

$$|a_n-a| < \frac{b-a}{2}$$
 $(n > N_1)$ and $|b_n-b| < \frac{b-a}{2}$ $(n > N_2)$.

Hence

$$a_n < \frac{b-a}{2} + a = \frac{b+a}{2} < b_n \quad (n > \max(N_1, N_2)).$$

(4) Letting $b_n \ge b$ in (3), we can find $N \in \mathbb{N}$ such that $b = b_n < a_n (n > N)$. (5) If $\lim_{n\to\infty} b_n = b < a = \lim_{n\to\infty} a_n$, then by (3), we have $b_n < a_n$ for al n > N.

(6) $a_n \to a$ implies that $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $|a_n - a| < \epsilon$. Hence $||a_n|-|a||\leq |a_n-a|<\epsilon.$

Remark 2.2.2. (1) $\{a_n\}_{n\geq 1}$ is bounded $\Rightarrow \{a_n\}_{n\geq 1}$ is convergent. (2) $a_n \rightarrow a, b_n \rightarrow b, a_n < b_n \Rightarrow a < b$. For example, $a_n = 1/n, b_n = 2/n$, but a = b = 0.

(3) $\{|a_n|\}_{n\geq 1}$ is convergent $\neq \{a_n\}_{n\geq 1}$ is convergent.

Theorem 2.2.3. If $x_n \le y_n \le z_n$ holds for any $n \ge N_0$ and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n =$ *a*, then $\lim_{n\to\infty} y_n = a$.

PROOF. $\forall \epsilon > 0, \exists N_1, N_2 \in \mathbb{N}$ such that

$$|x_n-a|<\epsilon, |z_n-a|<\epsilon.$$

Then

$$-\epsilon < x_n \leq y_n \leq z_n < a + \epsilon$$

for all $n > \max(N_0, N_1, N_2)$. Hence $x_n \to a$.

Example 2.2.4. (1) $a_1, \cdots, a_k > 0 \Longrightarrow$ $\lim_{n\to\infty}\sqrt[n]{a_1^n+\cdots+a_k^n}=\max\{a_1,\cdots,a_k\}.$ (2.2.1)WLOG, we may assume that $\max\{a_1, \dots, a_k\} = a_1$. Then $a_1 < \sqrt[n]{a_1^n + \dots + a_k^n} \le \sqrt[n]{ka_1^n} = (\sqrt[n]{k})a_1 \to a_1.$

2.2.2. Algebraic operations. Suppose we have two sequences $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$, we can ask the behaviors of $a_n \pm b_n$, a_nb_n , and a_n/b_n ($b_n \neq 0$ for larger n).

Theorem 2.2.5. Assume that
$$a_n \to a$$
, $b_n \to b$, and α , $\beta \in \mathbb{R}$. Then
(2.2.3) $\alpha a_n \pm \beta b_n \to \alpha a \pm \beta b$, $a_n b_n \to ab$, $\frac{a_n}{b_n} \to \frac{a}{b}$ $(b \neq 0)$.

PROOF. (1) $b_b \to b$ implies $-b_n \to -b$. We may prove $\alpha a_n + \beta b_n \to \alpha a + \beta b$. $0 \le |(\alpha a_n + \beta b_n) - (\alpha a + \beta b)| \le |\alpha| |a_n - a| + |\beta| |b_n - b| \to 0$. (2) $\{a_n\}, \{b_n\}$ are convergent $\Longrightarrow |a_n| \le M_1$ and $|b_n| \le M_2$. $0 \le |a_n b_n - ab| = |a_n (b_n - b) + (a_n - a)b| \le M_1 |b_n - b| + M_2 |a_n - a| \to 0$. (3) $b_n \to b \Longrightarrow |b_n| \to |b|$. Since |b| > 0, it follows that $|b_n| > |b|/2$ for $n \gg 1$. $0 \le \left|\frac{a_n}{b_n} - \frac{a}{b}\right| = \left|\frac{b(a_n - a) - a(b_n - b)}{b_n b}\right|$ $\le \frac{|b||a_n - a| + |a||b_n - b|}{|b_n||b|} \le \frac{2}{|b|^2} (|b||a_n - a| + |a||b_n - b|) \to 0$.

Remark 2.2.6. (1) $\lim_{n\to\infty} (a_n + b_n)$ exists $\Rightarrow \lim_{n\to\infty} a_n$ exists or $\lim_{n\to\infty} b_n$ exists. For example, $a_n = (-1)^{n-1}$, $b_n = (-1)^n$.

(2) $\lim_{n\to\infty} a_n b_n$ exists $\Rightarrow \lim_{n\to\infty} a_n$ exists or $\lim_{n\to\infty} b_n$ exists. For example, $a_n = b_n = (-1)^{n-1}$.

(3) $\lim_{n\to\infty} a_n/b_n$ exists $\Rightarrow \lim_{n\to\infty} a_n$ exists or $\lim_{n\to\infty} b_n$ exists. For example, $a_n = (-1)^n$, $b_n = n$.

Example 2.2.7. (1) For all a > 0, (2.2.4) $\lim_{n \to \infty} \sqrt[n]{a} = 1.$

Example 2.1.2 implies (2.2.4) holds for
$$a \ge 1$$
. When $0 < a < 1$,

$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\frac{1}{a}}} = \frac{1}{1} = 1.$$
(2) For $q > 1$,
(2.2.5) $\lim_{n \to \infty} \frac{\log_q n}{n} = 0.$
In fact,

$$\lim_{n \to \infty} \sqrt[n]{n} < q^{\epsilon} \implies \sqrt[n]{n} < q^{\epsilon} \quad (\forall n > N).$$
So $\frac{\log_q n}{n} < \epsilon \ (\forall n \ge N) \implies \frac{\log_q n}{n} \Rightarrow 0$

2.2.3. Infinitely small and infinitely large sequences. A sequence $\{a_n\}_{n\geq 1}$ is said to be an infinitely small sequence, if $\lim_{n\to\infty} a_n = 0$ or $a_n \to 0$.

п

(1)
$$a_n \to a \iff a_n - a \to 0 \iff a_n = a + \alpha_n$$
 with $\alpha_n \to 0$.
(2) $a_n \to 0 \iff |a_n| \to 0$.
(3) $a_n \to 0, b_n \to 0 \implies a_n + b_n, a_n - b_n, a_n b_n \to 0$.
(4) $a_n \to 0, b_n \to 0 \implies a_n/b_n \to 0$. For example,

$$\begin{cases} a_n = \frac{1}{n}, & a_n = 1, \\ b_n = \frac{1}{n}, & b_n = 1, \end{cases} \begin{cases} a_n = \frac{1}{n}, & a_n = n, \\ b_n = \frac{1}{n}, & b_n = \frac{1}{n}, \end{cases} \begin{cases} a_n = \frac{1}{n}, & a_n = 1, \\ b_n = \frac{1}{n}, & b_n = 1, \end{cases} \begin{cases} a_n = \frac{1}{n}, & a_n = 1, \\ b_n = \frac{1}{n}, & b_n = 1, \end{cases}$$

A sequence $\{a_n\}_{n\geq 1}$ is said to be an **infinitely large sequence**, if $\forall C > 0$, $\exists N \in \mathbb{N}$ such that

$$|a_n| \ge C$$
 whenever $n > N$.

Notation: $\lim_{n\to\infty} a_n = \infty$ or $a_n \to \infty$.

п

(1) Write

$$\lim_{n \to \infty} a_n = +\infty \quad \Longleftrightarrow \quad \{a_n\}_{n \ge 1} \text{ is an infinitely large sequence} \\ \text{or } a_n \to +\infty \quad \iff \quad \text{and } a_n > 0 \; (\forall n \ge N_0).$$

(2) Write

- (3) $a_n \to +\infty$ or $a_n \to -\infty \Longrightarrow a_n \to \infty$. But the convergence is not true, for example $a_n = (-1)^n n$.
- (4) $a_n, b_n \to \pm \infty \Longrightarrow a_n + b_n \to \pm \infty$.
- (5) $a_n \to \pm \infty, b_n \to \mp \infty \Longrightarrow a_n b_n \to \pm \infty.$
- (6) $a_n \to \infty$, $|b_n| \le M \Longrightarrow a_n b_n \to \infty$.
- (7) $a_n, b_n \to \pm \infty \Longrightarrow a_n b_n \to \pm \infty$.
- (8) $a_n \to \pm \infty, b_n \to \mp \infty \Longrightarrow a_n b_n \to -\infty.$
- (9) $a_n \to 0, a_n \neq 0 \Longrightarrow 1/a_n \to \infty$.

Example 2.2.8. (1) $|q| > 1 \Longrightarrow q^n \to \infty$. Indeed,

$$|q^n| = |q|^n \ge |q|^{\frac{\ln C}{\ln |q|}} = C$$

for $n \ge N = \lfloor \ln C / \ln |q| \rfloor$. (2) $a_n := \sum_{1 \le k \le n} 1 / (\sqrt{n} + \sqrt{k}) \to +\infty$. Indeed,

$$a_n > rac{n}{2\sqrt{n}} = rac{\sqrt{n}}{2} o +\infty.$$

(3) Set

$$a_n := \frac{x_0 n^k + x_1 n^{k-1} + \dots + x_{k-1} n + x_k}{y_0 n^\ell + y_1 n^{\ell-1} + \dots + y_{\ell-1} n + y_\ell}, \quad (k, \ell \in \mathbb{N}, \ x_0 y_0 \neq 0).$$

Since

$$a_n = n^{k-\ell} rac{x_0 + rac{x_1}{n} + \dots + rac{x_{k-1}}{n^{k-1}} + rac{x_k}{n^k}}{y_0 + rac{y_1}{n} + \dots + rac{y_{\ell-1}}{n^{\ell-1}} + rac{y_\ell}{n^\ell}},$$

we get

$$\lim_{n \to \infty} a_n = \begin{cases} 0, & k < \ell, \\ x_0/y_0, & k = \ell, \\ \infty, & k > \ell. \end{cases}$$

(4)
$$a_n = \sqrt[n]{n!} \to +\infty$$
. Observe that
 $(n!)^2 = (1 \cdot n)[2 \cdot (n-1)] \cdots [k(n-k)] \cdot (n \cdot 1) = \prod_{1 \le k \le n} [k(n-k+1)] \ge n^2$

since $k(n - k + 1) \ge n$ which can be deduced from the inequality $(k - 1)(n - k) \ge 0$ ($1 \le k \le n$).

2.2.4. Stolz's theorems. These theorems are used to deal with " ∞/∞ or "0/0" limits.

Theorem 2.2.9. (Stolz's theorem I: " ∞/∞ " type) Given two sequence $\{x_n\}_{n\geq 1}$ and $\{y_n\}_{n\geq 1}$. If

$$y_n < y_{n+1}, y_n \to +\infty, \text{ and } \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a \text{ (a real number or } \pm \infty),$$

then

(2.2.6)
$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = a$$

PROOF. **Case 1:** a = 0. $\forall \epsilon > 0$, $\exists N_1 \in \mathbb{N}$ such that

$$|x_n-x_{n-1}| < \epsilon(y_n-y_{n-1}), \quad \forall n > N_1.$$

In particular,

$$|x_n - x_{N_1}| \le \sum_{N_1 + 1 \le i \le n} |x_i - x_{i-1}| \le \sum_{N_1 + 1 \le i \le n} \epsilon(y_i - y_{i-1}) = \epsilon(y_n - y_{N_1});$$

thus

$$\left|\frac{x_n}{y_n}-\frac{x_{N_1}}{y_n}\right|\leq \epsilon\left(1-\frac{y_{N_1}}{y_n}\right)<\epsilon.$$

But $y_n \to +\infty$, $\exists N_2 \in \mathbb{N}$ such that $|x_{N_1}/y_n| < \epsilon$ whenever $n > N_2$. Finally,

$$\left|\frac{x_n}{y_n}\right| \le \epsilon + \epsilon = 2\epsilon$$

whenever $n > N = \max\{N_1, N_2\}.$

Case 2: $a \neq 0$. The basic idea is to construct new sequences and then apply **Case 1**. Let

$$\widetilde{x}_n := x_n - a y_n$$

Then

$$\frac{\widetilde{x}_n - \widetilde{x}_{n-1}}{y_n - y_{n-1}} = \frac{(x_n - ay_n) - (x_{n-1} - ay_{n-1})}{y_n - y_{n-1}} = \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - a \to 0$$

From **Case 1**, we have $\tilde{x}_n/y_n \to 0$ or $x_n/y_0 \to a$.

Case 3: $a = +\infty$. $\exists N_1 \in \mathbb{N}$ such that $x_n - x_{n-1} > y_n - y_{n-1} > 0$ ($\forall n > N_1$). Moreover

$$x_n - x_{N_1} = \sum_{N_1 + i \le i \le n} (x_i - x_{i-1}) > \sum_{N_1 + 1 \le i \le n} (y_i - y_{i-1}) = y_n - y_{N_1}.$$

Letting $n \to +\infty$ yields $x_n \to +\infty$. According to **Case 1**,

$$\lim_{n \to \infty} \frac{y_n}{x_n} = \lim_{n \to \infty} \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = \frac{1}{+\infty} = 0.$$

Case 4: $a = -\infty$. Observe that

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to -\infty \iff \frac{(-x_n) - (-x_{n-1})}{y_n - y_{n-1}} \to +\infty.$$

Now the last case follows from **Case 3**.

Theorem 2.2.10. (Stolz's theorem II: "0/0" type) *Given two sequences* $\{x_n\}_{n\geq 1}$ *and* $\{y_n\}_{n\geq 1}$. If

$$x_n \to 0, \quad y_n > y_{n+1}, \quad y_n \to 0, \quad and \quad \lim_{n \to \infty} \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a \ (a \ real \ number \ or \ \pm \infty)$$

$$then$$

$$(2.2.7) \qquad \qquad \lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a.$$

PROOF. **Case 1:** $a \in \mathbb{R}$. $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that

$$a-\epsilon < rac{x_n-x_{n+1}}{y_n-y_{n+1}} < a+\epsilon, \quad \forall n > N,$$

or

$$(a - \epsilon)(y_n - y_{n+1}) < x_n - x_{n+1} < (a + \epsilon)(y_n - y_{n+1}), \quad \forall n > N.$$

In particular,

$$(a-\epsilon)(y_n-y_{n+p}) < x_n-x_{n+p} < (a+\epsilon)(y_n-y_{n+p}), \quad \forall n > N \text{ and } p \ge 1.$$

Letting $p \to +\infty$ yields

$$(a-\epsilon)y_n \leq x_n \leq (a+\epsilon)y_n \Longrightarrow \left|\frac{x_n}{y_n}-a\right| \leq \epsilon.$$

Case 2: $a = +\infty$. Given C > 0, $\exists N \in \mathbb{N}$ such that $x_n - x_{n+1} > C(y_n - y_{n+1})$ $\implies x_n - x_{n+p} > C(y_n - y_{n+p}), \forall n > N \text{ and } p \ge 1$. Letting $p \to +\infty$ yields $x_n/y_n \ge C$.

Case 3: $a = -\infty$. The proof is similar to that given in Theorem 2.2.9 **Case** 4.

Example 2.2.11. (1) $a_n \rightarrow a \Longrightarrow$

$$\lim_{n\to\infty}\frac{a_1+2a_2+\cdots+na_n}{n^2}=\frac{a}{2}.$$

(2) $\lim_{n\to\infty} a_n = a \text{ or } \pm \infty \Longrightarrow \lim_{n\to\infty} \frac{1}{n}(a_1 + \dots + a_n) = a.$

(3) $\lim_{n\to\infty} (a_{n+1} - a_n) = \ell \Longrightarrow$ Find $\lim_{n\to\infty} a_n/n$ and $\lim_{n\to\infty} \frac{1}{n^2} \sum_{1\le i\le n} a_i$. (4) $a_n \le a_{n+1}$, $\lim_{n\to\infty} \frac{1}{n} (a_1 + \dots + a_n) = a \Longrightarrow \lim_{n\to\infty} a_n = a$.

(5) $a_n = s_n - s_{n-1}, \sigma_n \stackrel{n}{=} \frac{1}{n+1}(s_0 + \dots + s_n), na_n \to 0, \sigma_n \text{ is convergent} \Longrightarrow s_n$ is also convergent and

$$\lim_{n\to\infty}s_n=\lim_{n\to\infty}\sigma_n.$$

PROOF. (1) Let $y_n := a_1 + 2a_2 + \dots + na_n$, and $y_n := n^2$. By Theorem 2.2.9,

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{na_n}{n^2 - (n-1)^2} = \lim_{n \to \infty} \frac{na_n}{2n-1} = \frac{a_n}{2}$$

(2) Let $x_n = a_1 + \cdots + a_n$ and y_n . Then

$$\lim_{n\to\infty}\frac{a_1+\cdots+a_n}{n}=\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=\lim_{n\to\infty}a_n=a.$$

(3) Let $x_n := a_{n+1} - a_n$ and

$$y_n := \frac{1}{n+1} \sum_{1 \le i \le n} x_i = \frac{a_{n+1} - a_0}{n+1}$$

Because $x_n \to \ell$, we obtain $y_n \to \ell$ (by (2)) and then $a_n/n \to \ell$. Similarly set

$$\widetilde{y}_n := \frac{1}{n^2} \sum_{1 \le i \le n} i(a_{i+1} - a_i) = \frac{1}{n^2} \left(na_{n+1} - \sum_{1 \le i \le n} a_i \right).$$

By (1), $\widetilde{y}_n \to \ell/2$ so that $\sum_{1 \le i \le n} a_i/n^2 = \frac{a_{n+1}}{n} - \widetilde{y}_n \to \ell - \frac{\ell}{2} = \frac{\ell}{2}$.

(4) Since $a_n \leq a_{n+1}$, it follows that $\sigma_n := \frac{1}{n}(a_1 + \dots + a_n) \leq \frac{na_n}{n} = a_n$. On the other hand, for all m > n,

$$\sigma_m = \frac{1}{m} \left(\sum_{1 \le i \le n} a_i + \sum_{n+1 \le i \le m} a_i \right) \ge \frac{1}{m} \sum_{1 \le i \le n} a_i + \frac{m-n}{m} a_n \to a$$

as $m \to \infty$. Therefore $\sigma_n \to a$.

(5) Observe that

$$S_n - \sigma_n = \frac{1}{n+1} \sum_{1 \le i \le n} ia_i.$$

Then

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{1 \le i \le n} ia_i = \lim_{n \to \infty} \frac{\sum_{1 \le i \le n} ia_i - \sum_{1 \le i \le n-1} ia_i}{(n+1) - n} = \lim_{n \to \infty} na_n = 0.$$

(6) According to (3), we know that $a_n \to a \Longrightarrow \frac{1}{n}(a_1 + \dots + a_n) \to a$. However, the converse is not true. For example, consider the sequence $\{(-1)^n\}_{n\geq 1}$.

Example 2.2.12. (1) $k \in \mathbb{Z}_+ \Longrightarrow$ $\lim_{n \to \infty} n \left(\frac{1^k + 2^k + \dots + n^k}{n^{k+1}} - \frac{1}{k+1} \right) = \frac{1}{2}.$ (2) $\lim_{n\to\infty} n(a_n - a) = b, k \in \mathbb{Z}_+ \Longrightarrow$ $\lim_{n \to \infty} n\left(\frac{a_1 + 2^k a_2 + \dots + n^k a_n}{n^{k+1}} - \frac{a}{k+1}\right) = \frac{b}{k} + \frac{a}{2}.$ PROOF. (1) Using Theorem 2.2.9 we have $\lim_{n \to \infty} n \left(\frac{1^k + \dots + n^k}{n^{k+1}} - \frac{1}{k+1} \right) = \lim_{n \to \infty} \frac{(k+1)(1^k + \dots + n^k) - n^{k+1}}{(k+1)n^k}$ $= \lim_{n \to \infty} \frac{[(k+1)(1^k + \dots + n^k) - n^{k+1}] - [(k+1)(1^k + \dots + (n-1)^k) - (n-1)^{k+1}]}{(k+1)n^k - (k+1)(n-1)^k}$ $= \lim_{n \to \infty} \frac{(k+1)n^k - [n^{k+1} - (n-1)^{k+1}]}{(k+1)[n^k - (n-1)^k]} = \lim_{n \to +\infty} \frac{\frac{1}{2}k(k+1)n^k + \cdots}{k(k+1)n^k + \cdots} = \frac{1}{2}.$ (2) Observe that $\lim_{n\to\infty} n\left(\frac{a_1+2^ka_2+\cdots+n^ka_n}{n^{k+1}}-\frac{a}{k+1}\right)$ $= \lim_{n \to \infty} \frac{(k+1)\sum_{1 \le i \le n} i^k a_i - a n^{k+1}}{(k+1)n^k} = \lim_{n \to \infty} \frac{(k+1)n^k a_n - a(n^{k+1} - (n-1)^{k+1})}{(k+1)[n^k - (n-1)^k]}$ $n^{k+1} - (n-1)^{k+1} = (n-1+1)^{k+1} - (n-1)^{k+1} = (k+1)(n-1)^k + \frac{k(k+1)}{2}(n-1)^{k-1} + \cdots$ Hence $\lim_{n \to \infty} n \left(\frac{a_1 + 2^k a_2 + \dots + n^k a_n}{n^{k+1}} - \frac{a}{k+1} \right)$ $= \lim_{n \to \infty} \frac{(k+1)a_n n^k - (k+1)a(n-1)^k - \frac{ak(k+1)}{2}(n-1)^{k-1} + \cdots}{(k+1)[k(n-1)^{k-1} + \cdots]}$

$$= \lim_{n \to \infty} \frac{(k+1)n^k(a_n-a) + (k+1)a[n^k - (n-1)^k] - \frac{k(k+1)a}{2}(n-1)^{k-1} + \cdots}{(k+1)[k(n-1)^k + \cdots]} \\ = \frac{b}{k} + a - \frac{a}{2} = \frac{b}{k} + \frac{a}{2}.$$

Theorem 2.2.13. (Toeplitz's theorem) Assume that $p_{n0} + p_{n1} + \cdots + p_{nn} = 1$ for all $n \in \mathbb{N}$, and each $p_{ij} \ge 0$. Let

$$y_n := \sum_{0 \le i \le n} p_{ni} x_i, \quad n \in \mathbb{N}$$

Then TFAE:

(i) $x_n \to a \Longrightarrow y_n \to a$, (ii) $p_{nm} \to 0$ for each $m \in \mathbb{N}$.

PROOF. \implies : Take $x_n = \delta_{nm}$. Then $x_n \to 0$ and $y_n = p_{nm}$ $(n \ge m)$. Hence

$$\lim_{n\to\infty}p_{nm}=\lim_{n\to\infty}y_n=\lim_{n\to\infty}x_n=0.$$

 \Leftarrow : Suppose $x_n \to a$. Then $\exists M > 0$ such that $|x_n - a| \leq M$ for all $n \in \mathbb{Z}_+$. $\forall \epsilon > 0, \exists N^* \in \mathbb{N}$ such that $|x_n - a| < \epsilon/2$ for all $n > N^*$. But from $\lim_{n\to\infty} p_{ni} = 0$, we get that $\exists N_i > N^*$ such that

$$0 \leq p_{ni} \leq \frac{\epsilon}{2N^*M}, \quad n > N_i.$$

Let $N := \max_{0 \le i \le N^*} N_i$. Then

$$\begin{aligned} |y_n - a| &= \left| \sum_{0 \le i \le n} p_{ni} x_i - \sum_{0 \le i \le n} p_{ni} a \right| \\ &\le \sum_{0 \le i \le N^*} p_{ni} |x_i - a| + \sum_{N^* + 1 \le i \le n} p_{ni} |x_i - a| \\ &< MN^* \frac{\epsilon}{2N^*M} + \frac{\epsilon}{2} \sum_{N^* + 1 \le i \le n} p_{ni} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Example 2.2.14. (1)
$$b_n > 0$$
, $b_0 + b_1 + \dots + b_n \to \infty$, $a_n/b_n \to s \Longrightarrow$

$$\lim_{n \to \infty} \frac{a_0 + a_1 + \dots + a_n}{b_0 + b_1 + \dots + b_n} = s.$$
(2) $p_k > 0$, $\frac{p_n}{p_0 + p_1 + \dots + p_n} \to 0$, $s_n \to s \Longrightarrow$

$$\lim_{n \to \infty} \frac{\sum_{0 \le i \le n} s_i p_{n-i}}{\sum_{0 \le i \le n} p_i} = s.$$

3)
$$p_k, q_k > 0, \frac{p_n}{p_0 + \dots + p_n} \to 0, \frac{q_n}{q_0 + \dots + q_n} \to 0 \Longrightarrow$$
$$\lim_{n \to \infty} \frac{r_n}{\sum_{0 \le i \le n} r_i} = 0.$$

Here $r_n := \sum_{0 \le i \le n} p_i q_{n-i}$.

PROOF. (1) Let $x_n := a_n/b_n$, $p_{nm} := b_m/\sum_{0 \le i \le n} b_i$, and $y_n := \sum_{0 \le i \le n} p_{ni}x_i$. Then

$$\lim_{n\to\infty}p_{nm}=0, \quad \sum_{0\leq i\leq n}p_{ni}=1, \quad p_{nm}\geq 0.$$

By Theorem 2.2.13,

$$\lim_{n\to\infty}\frac{\sum_{0\leq i\leq n}a_i}{\sum_{0\leq i< n}b_i}=\lim_{n\to\infty}y_n=\lim_{n\to\infty}x_n=s.$$

(2) Let $p_{nm} := p_{n-m} / \sum_{0 \le i \le n} p_i$, where $0 \le m \le n$ and $n = 1, 2, \cdots$, and

$$x_n := s_n, \quad y_n := \sum_{0 \le i \le n} p_{ni} x_i = \frac{\sum_{0 \le i \le n} s_i p_{n-i}}{\sum_{0 \le i \le n} p_i}.$$

(3) Let

$$P_n := \sum_{0 \le i \le n} p_i, \quad Q_n := \sum_{0 \le i \le n} q_n, \quad R_n := \sum_{0 \le i \le n} r_i,$$

and

$$p_{nm}:=rac{p_{n-m}Q_m}{\sum_{0\leq i\leq n}p_iQ_{n-i}}, \ x_n:=rac{q_n}{Q_n}, \ y_n:=\sum_{0\leq i\leq n}p_{ni}x_i.$$

Example 2.2.15. (1) Show that

(2.2.8)
$$\left(\frac{n}{3}\right)^n < n! < \left(\frac{n+2}{\sqrt{6}}\right)$$

(2) Show that

$$(2.2.9) n < \left(1 + \frac{2}{\sqrt{n}}\right)^n.$$

PROOF. (1) Recall that

$$(n!)^2 = \prod_{1 \le k \le n} [k(n-k+1)] \ge n^n$$

so that

$$n! > n^{n/2} = (\sqrt{n})^n$$

The inequality (2.2.8) gives a better lower bound for n! than $(\sqrt{n})^n$. Suppose that $k! > (k/3)^k$ holds. Since

$$(k+1)! = (k+1)k! > (k+1)\left(\frac{k}{3}\right)^k$$
,

it follows that in order to prove $(k + 1)! > ((k + 1)/3)^{k+1}$ we shall prove

$$(k+1)\left(\frac{k}{3}\right)^k > \left(\frac{k+1}{3}\right)^k$$

+1

or

$$Bk^k > (k+1)^k \iff \left(1+\frac{1}{k}\right)^k < 3$$

But

$$\begin{pmatrix} 1+\frac{1}{k} \end{pmatrix}^k = 1+1+\sum_{2 \le i \le k} \frac{k(k-1)\cdots(k-i+1)}{i!} \frac{1}{k^i} \\ < 2+\sum_{2 \le i \le k} \frac{1}{i!} < 2+\sum_{2 \le i \le k} \frac{1}{i(i-1)} < 3.$$

Assume that $k! < ((k+2)/\sqrt{6})^k$. From $(k+1)! = (k+1)k! < (k+1)((k+2)/\sqrt{6})^k$, we shall prove that

$$(k+1)\left(\frac{k+2}{\sqrt{6}}\right)^k < \left(\frac{k+3}{\sqrt{6}}\right)^{k+1}.$$

Indeed,

$$\begin{split} \left(\frac{k+3}{\sqrt{6}}\right)^{k+1} &= \left(\frac{k+2}{\sqrt{6}} + \frac{1}{\sqrt{6}}\right)^{k+1} > \left(\frac{k+2}{\sqrt{6}}\right)^{k+1} + (k+1)\left(\frac{k+2}{\sqrt{6}}\right)^k \frac{1}{\sqrt{6}} \\ &+ \frac{(k+1)k}{2}\left(\frac{k+2}{\sqrt{6}}\right)^{k-1} \frac{1}{(\sqrt{6})^2} + \frac{(k+1)k(k-1)}{6}\left(\frac{k+2}{\sqrt{6}}\right)^{k-2} \frac{1}{(\sqrt{6})^3} \\ &= \left(\frac{k+2}{\sqrt{6}}\right)^k \left[\frac{k+2}{\sqrt{6}} + \frac{k+1}{\sqrt{6}} + \frac{k(k+1)}{2\sqrt{6}(k+2)} + \frac{(k+1)k(k-1)}{6\sqrt{6}(k+2)^2}\right] \\ &= \left(\frac{k+2}{\sqrt{6}}\right)^k \frac{16k^3 + 75k^2 + 125k + 72}{6\sqrt{6}(k+2)^2}. \end{split}$$

We now claim that

 $\frac{16k^3 + 75k^2 + 125k + 72}{6\sqrt{6}(k+2)^2} > k+1 \Leftrightarrow 16k^3 + 75k^2 + 125k + 72 > 6\sqrt{6}(k^3 + 5k^2 + 8k + 4).$

But this follows from the following observation: $16>6\sqrt{6},\,75>30\sqrt{6},\,125>48\sqrt{6},\,and\,72>24\sqrt{6}.$

(2) it follows from

$$\left(1 + \frac{2}{\sqrt{n}}\right) = 1 + n \cdot \frac{2}{\sqrt{n}} + \frac{n(n-1)}{2} \left(\frac{2}{\sqrt{n}}\right)^2 + \dots > \frac{n(n-1)}{2} \frac{4}{n} = 2(n-1).$$

When $n \ge 2$, we get $2(n-1) \ge n$.

Example 2.2.16. Let $x_1 = a$, $x_2 = b$, and $x_n = (x_{n-1} + x_{n-2})/2$. Find $\lim_{n \to \infty} x_n$.

 $x_{n+1} - x_n = \frac{x_n + x_{n-1}}{2} - x_n = \frac{x_{n-1} - x_n}{2} = \dots = \frac{x_2 - x_1}{(-2)^{n-1}} = \frac{b - a}{(-2)^{n-1}}$

$$\begin{aligned} x_{n+1} &= \sum_{1 \le m \le n} (x_{m+1} - x_m) + x_1 &= (b-a) \sum_{1 \le m \le n} \frac{1}{(-2)^{m-1}} + a \\ &= (b-a) \frac{1 - (-1/2)^{n-1}}{1 - (-1/2)} + a \quad \rightarrow \quad \frac{2}{3}(b-a) + a \quad = \quad \frac{2b+a}{3}. \end{aligned}$$

Example 2.2.17. (1) Suppose that
$$\lambda \in \mathbb{R}$$
 and $|\lambda| < 1$. Then

$$\lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} (a_{n+1} - \lambda a_n) = (1 - \lambda)a_n$$

(2) We have

$$\lim_{n\to\infty}a_n=a\quad\Longleftrightarrow\quad\lim_{n\to\infty}(4a_{n+2}-4a_{n+1}+a_n)=a.$$

PROOF. (1) The " \Rightarrow " is clear. Now we assume that $a_{n+1} - \lambda a_n \rightarrow (1 - \lambda)a$. Let

$$x_n := a_{n+1} - \lambda a_n.$$

Then

$$\frac{a_{n+1}}{\lambda^{n+1}} = \frac{a_n}{\lambda^n} + \frac{x_n}{\lambda^{n+1}}$$

and

$$a_n = \lambda^n \left(a_0 + \sum_{1 \le k \le n} \frac{x_{k-1}}{\lambda^k} \right), \quad n \in \mathbb{Z}_+$$

When $0 < \lambda < 1$, we have $\lambda^n \rightarrow 0$ and by Theorem 2.2.9

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{a_0 + \sum_{1 \le k \le n} \frac{x_{k-1}}{\lambda^k}}{(\frac{1}{\lambda})^n} = \lim_{n \to \infty} \frac{\frac{x_n}{\lambda^{n+1}}}{(\frac{1}{\lambda})^{n+1} - (\frac{1}{\lambda})^n}$$
$$= \lim_{n \to \infty} \frac{x_n}{1 - \lambda} = \frac{(1 - \lambda)a}{1 - \lambda} = a.$$

When $\lambda = 0$, the conclusion is trivial. When $-1 < \lambda < 0$, we consider the term

$$a_{2n} = \lambda^{2n} \left(a_0 + \sum_{1 \le k \le 2n} \frac{x_{k-1}}{\lambda^k} \right).$$

Hence

$$\lim_{n \to \infty} a_{2n} = \frac{1}{1 - \lambda^2} \lim_{n \to \infty} (x_{2n+1} + \lambda x_{2n}) = a.$$

Similarly,

$$-a_{2n+1} = (-\lambda)^{2n+1} \left(a_0 + \sum_{1 \le k \le 2n+1} \frac{x_{k-1}}{\lambda^k} \right)$$

and

$$\lim_{n \to \infty} a_{2n+1} = -\frac{1}{\lambda^2 - 1} \lim_{n \to \infty} (x_{2n+2} + \lambda x_{2n+1}) = a.$$

According to Theorem 2.3.9, $\lim_{n\to\infty} a_n$

(2) Assume that $4a_{n+2} - 4a_{n+1} + a_n \rightarrow a$. Observe that

$$4a_{n+2} - 4a_{n+1} + a_n = 4\left(a_{n+2} - a_{n+1} + \frac{1}{4}a_n\right)$$

= $4\left[\left(a_{n+2} - \frac{1}{2}a_{n+1}\right) - \frac{1}{2}\left(a_{n+1} - \frac{1}{2}a_n\right)\right] := 4\left(y_{n+1} - \frac{1}{2}y_n\right)$

Hence

$$y_{n+1} - \frac{1}{2}y_n \to \frac{1}{4}a = \left(1 - \frac{1}{2}\right)\frac{a}{2}$$

By (1), we must have

$$\lim_{n\to\infty} y_n = \frac{a}{2} \quad \text{or} \quad a_{n+1} - \frac{1}{2}a_n \to \left(1 - \frac{1}{2}\right)a.$$

Using (1) again yields $a_n \rightarrow a$.

Example 2.2.18. Define

$$a_{n+1} := \sin a_n, \quad n \in \mathbb{N} \text{ and } 0 < a_0 < \pi.$$

Show that

$$a_n$$
 is decreasing and $\lim_{n\to\infty} a_n = 0$.

Moreover

and s

$$\lim_{n\to\infty}\frac{a_n}{\sqrt{3/n}}=1.$$

PROOF. $a_1 = \sin a_0 \in (0, \pi)$. In general, we have $0 < a_n < \pi$. Since $\sin x < x$ for all $x \in (0, \pi)$, it follows that $a_{n+1} < a_n$. By Theorem 2.3.1, the limit lim) $n \to \infty a_n$ exists, says $\alpha \in [0, \pi)$. Hence $\alpha = \sin \alpha$ which implies $\alpha = 0$.

By Theorem 2.2.9,

$$\lim_{n \to \infty} \frac{1}{na_n^2} = \lim_{n \to \infty} \frac{\frac{1}{a_n^2}}{n} = \lim_{n \to \infty} \frac{\frac{1}{a_{n+1}^2} - \frac{1}{a_n^2}}{(n+1) - n}$$
$$= \lim_{n \to \infty} \left(\frac{1}{a_{n+1}^2} - \frac{1}{a_n^2}\right) = \lim_{n \to \infty} \left(\frac{1}{\sin^2 a_n} - \frac{1}{a_n^2}\right) = \frac{1}{3}$$

Here we used the fact that

$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = \lim_{x \to 0} \frac{\frac{x^4}{3}}{x^4} = \frac{1}{3}$$
$$\sin^2 x \sim (x - \frac{x^3}{6} + o(x^4))^2 \sim x^2 - \frac{x^4}{3} + \cdots$$

2. SEQUENCES

2.3. Convergence tests

The most important test is the so-called Cauchy criterion which gives a necessary and sufficient condition on the convergence of a given sequence.

2.3.1. Monotone sequences. A sequence $\{a_n\}_{n\geq 1}$ is said to be (monotonically) increasing (resp. decreasing) if $a_n \leq a_{n+1}$ (resp. $a_n \geq a_{n+1}$) for all $n = 1, 2, \cdots$.

Theorem 2.3.1. Suppose that $\{a_n\}_{n\geq 1}$ is monotonic (i.e., monotonically increasing or decreasing). Then

(2.3.1) $\{a_n\}_{n\geq 1}$ is convergent $\iff \{a_n\}_{n\geq 1}$ is bounded.

PROOF. \implies : clearly.

 \Leftarrow : WLOG, we may assume that $a_n \leq a_{n+1}$. Let $E := \{a_n : n = 1, 2, \dots\}$. If $\{a_n\}_{n>1}$ is bounded, then by Zorn's lemma $a := \sup E$ exists and hence $a_n \leq a$.

 $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $a - \epsilon < a_N \leq a$, for otherwise, $a - \epsilon$ would be an upper bound of *E*. Since a_n is increasing, we get that $a - \epsilon < a_n \leq a$ for all n > N.

Example 2.3.2. (1) $a_1 := \sqrt{2}$, $a_{n+1} := \sqrt{2 + a_n}$ $(n \ge 1) \Longrightarrow$ Find $\lim_{n \to \infty} a_n$. (2) $a_1 > 0$, $a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})$ $(n \ge 1) \Longrightarrow$ Find $\lim_{n \to \infty} a_n$.

PROOF. (1) Observe that

- If $\lim_{n\to\infty} a_n = a$, then " $a = \sqrt{2+a}$ " $\Longrightarrow (a-2)(a+1) = 0 \Longrightarrow a = 2$.
- $a_2 = \sqrt{2+a_1} = \sqrt{2+\sqrt{2}} > a_1, a_2 < \sqrt{2+2} = 2; a_3 = \sqrt{2+a_2} > \sqrt{2a_2} > a_2.$

In general, we claim that

$$\sqrt{2} \leq a_n < 2$$
 and $a_{n+1} > a_n$.

In fact, $\sqrt{2} \leq a_n < 2 \Longrightarrow a_{n+1} = \sqrt{2+a_n} < \sqrt{2+2} = 2$, and $a_{n+1} > a_n \Longrightarrow a_{n+2} = \sqrt{2+a_{n+1}} > \sqrt{2a_{n+1}} > a_{n+1}$. Hence $\{a_n\}_{n\geq 1}$ is monotonically increasing and bounded $\Longrightarrow \lim_{n\to\infty} a_n = 2$.

(2) $\forall n \geq 1$, we have $a_n > 0$ and

$$a_{n+1} - 1 = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) - 1 = \frac{1}{2} \left(\sqrt{a_n} - \frac{1}{\sqrt{a_n}} \right)^2 \ge 0.$$

On the other hand,

$$a_{n+1} \leq \frac{1}{2}(a_n + a_n) = a_n.$$

Hence $a_n \ge a_{n+1} \ge \cdots \ge 1 \Longrightarrow \lim_{n \to \infty} a_n = a$ exists and $a \ge 1$. Solving the equation $a = \frac{1}{2}(a + \frac{1}{a})$ yields a = 1.

Example 2.3.3. $a_1 = 1$, $a_{n+1} = \frac{1}{1+a_n}$ $(n \ge 1) \Longrightarrow$ Find $\lim_{n\to\infty} a_n$.

PROOF. Observe

$$a_2 = \frac{1}{2}, a_3 = \frac{2}{3}, a_4 = \frac{3}{5}, a_5 = \frac{5}{8}, \cdots$$

We claim that $\{a_{2n}\}_{n\geq 1}$ is increasing but $\{s_{2n-1}\}_{n\geq 1}$ is decreasing, and $\frac{1}{2} \leq a_n \leq 1$. Indeed, $\frac{1}{2} \leq a_n \leq 1 \Longrightarrow a_{n+1} \geq \frac{1}{1+1} = \frac{1}{2}$ and $a_{n+1} \leq \frac{1}{1+0} = 1$. Moreover $a_{2n+2} = \frac{1}{1+a_{2n+1}} \geq \frac{1}{1+a_{2n-1}} = a_{2n}, \quad a_{2n+1} = \frac{1}{1+a_{2n}} \leq \frac{1}{1+a_{2n-2}} = a_{2n-1}.$ Let $\lim_{n\to\infty} a_{2n} = A$ and $\lim_{n\to\infty} a_{2n-1} = B \Longrightarrow B = 1/(1+A)$ and A = 1/(1+B) $\Longrightarrow A = B = (\sqrt{5}-1)/2$. Thus $a_n \to (\sqrt{5}-1)/2$.

2.3.2. Three important constants π , e, and γ . Recall that $\pi = 3.1415926 \cdots$ and $e = 2.7182818284590 \cdots$.

A. Constant π . The following theorem is will-known.

Theorem 2.3.4. (Euler, 1734) We have
(2.3.2)
$$\sum_{n \ge 1} \frac{1}{n^2} := \lim_{N \to \infty} \sum_{1 \le n \le N} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

PROOF. (1) The first proof is due to John Scholes.

Claim 1: For any $m \in \mathbb{N}$,

$$\cot^2\left(\frac{\pi}{2m+1}\right)+\cdots+\cot^2\left(\frac{m\pi}{2m+1}\right)=\frac{2m(2m-1)}{6}.$$

Consider

$$\cos(nx) + \mathbf{i}\sin(nx) = e^{\mathbf{i}nx} = (e^{\mathbf{i}x})^n = (\cos x + \mathbf{i}\sin x)^n.$$

The imaginary part yields

$$\sin(nx) = \binom{n}{1} \sin x \cos^{n-1} x - \binom{n}{3} \sin^3 x \cos^{n-3} x \pm \cdots$$

Let n := 2m + 1 and $x = \frac{r\pi}{2m+1}$ $(1 \le r \le m) \Longrightarrow$ $0 = \sin(nx) = \binom{n}{1} \sin x \cos^{n-1} x - \binom{n}{3} \sin^3 x \cos^{n-3} x \pm \cdots$

Divided by $\sin^n x$ ($0 < x < \frac{\pi}{2}$) we get

$$0 = \binom{n}{1} \cot^{n-1} x - \binom{n}{3} \cot^{n-3} x \pm \cdots$$
$$= \binom{2m+1}{1} \cot^{2m} x - \binom{2m+1}{3} \cot^{2m-2} x \pm \cdots$$

Let

$$P(t) := \binom{2m+1}{1} t^m - \binom{2m+1}{3} t^{m-1} \pm \dots + (-1)^m \binom{2m+1}{2m+1} t^{m-1} + \dots + (-1)^m \binom{2m+1}{2m+1} t^m + \dots + (-1)^m + \dots + (-1)^m + \dots + (-1)^m + \dots$$

This polynomial has m different roots

$$a_r := \cot^2\left(\frac{r\pi}{2m+1}\right), \quad 1 \le r \le m.$$

Therefore

$$P(t) = \binom{2m+1}{1} \prod_{1 \le r \le m} \left[t - \cot^2 \left(\frac{r\pi}{2m+1} \right) \right].$$

In particular

$$\sum_{1 \le r \le m} a_r = \frac{\binom{2m+1}{3}}{\binom{2m+1}{1}} = \frac{2m(2m-1)}{6}.$$

Claim 2: One has

$$\sum_{1 \le r \le m} \csc^2\left(\frac{r\pi}{2m+1}\right) = \frac{2m(2m+2)}{6}.$$

Indeed,

$$\sum_{1 \le r \le m} \csc^2 \left(\frac{r\pi}{2m+1} \right) = \sum_{1 \le r \le m} \frac{1}{\sin^2(\frac{r\pi}{2m+1})}$$
$$= \sum_{1 \le r \le m} \left[1 + \cot^2 \left(\frac{r\pi}{2m+1} \right) \right] = m + \frac{2m(2m-1)}{6}.$$

In the interval $(0, \pi/2)$, the following relations hold:

$$0 < \sin y < y < \tan y, \quad 0 < \cot y < \frac{1}{y} < \csc y, \quad 0 < \cot^2 y < \frac{1}{y^2} < \csc^2 y.$$

Consequently,

$$\frac{2m(2m-1)}{6} < \sum_{1 \le r \le m} \left(\frac{2m+1}{r\pi}\right)^2 < \frac{2m(2m+2)}{6}.$$

Equivalently

$$\frac{\pi^2}{6} \frac{2m}{2m+1} \frac{2m-1}{2m+1} < \sum_{1 \le r \le m} \frac{1}{r^2} < \frac{\pi^2}{6} \frac{2m}{2m+1} \frac{2m+2}{2m+1}.$$

Finally letting $m \to \infty$ yields $\sum_{n \ge 1} \frac{1}{n^2} = \pi^2/6$.

(2) The second proof is due to Beukers-Calabi-Kolk. Observe

$$\sum_{n \ge 1} \frac{1}{n^2} = \sum_{n \ge 0} \frac{1}{(2n-1)^2} + \sum_{n \ge 1} \frac{1}{(2n)^2}.$$

Hence

$$\sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6} \Longleftrightarrow \sum_{k \ge 0} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

Define

$$J := \iint_{[0,1]\times[0,1]} \frac{dxdy}{1-x^2-y^2} = \sum_{k\geq 0} \frac{1}{(2k+1)^2}.$$

If

$$u = \cos^{-1} \sqrt{\frac{1 - x^2}{1 - x^2 y^2}}, \quad v := \cos^{-1} \sqrt{\frac{1 - y^2}{1 - x^2 y^2}},$$

then $x = \sin u / \cos v$, $y = \sin v / \cos u$, and

$$J = \int_0^{\pi/2} \int_0^{\pi/2-u} du dv = \frac{\pi^2}{8}.$$

B. Constant e. Define

$$a_n := \left(1 + \frac{1}{n}\right)^n$$
, $b_n := \left(1 + \frac{1}{n}\right)^{n+1}$, $e_n := 1 + \sum_{1 \le k \le n} \frac{1}{k!} = \sum_{0 \le k \le n} \frac{1}{k!}$.

Claim 1: For each *n*,

$$a_n < a_{n+1}, \ b_n > b_{n+1}.$$

PROOF. For each *n*,

$$a_n = \left(1 + \frac{1}{n}\right)^n = \sum_{0 \le k \le n} {n \choose k} \frac{1}{n^k} = 1 + \sum_{1 \le k \le n} \frac{n(n-1)\cdots(n-k)}{k!} \frac{1}{n^k}$$
$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right)$$
$$< 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{n-1}{n+1}\right)$$
$$+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{n}{n+1}\right) = a_{n+1}.$$

For b_n ,

$$\frac{b_{n-1}}{b_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{1 + \frac{1}{n-1}}{1 + \frac{1}{n}}\right)^n \frac{1}{1 + \frac{1}{n}}$$
$$= \left(1 + \frac{1}{n^2 - 1}\right)^n \frac{1}{1 + \frac{1}{n}} > \left(1 + \frac{n}{n^2 - 1}\right) \frac{1}{1 + \frac{1}{n}} > \left(1 + \frac{1}{n}\right) \frac{1}{1 + \frac{1}{n}} = 1.$$

Claim 2: We have

(2.3.3)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n := e$$

exists.

PROOF. Because

$$a_n < 1 + 1 + \sum_{2 \le k \le n} \frac{1}{k!} \le 2 + \sum_{2 \le k \le n} \frac{1}{k(k-1)} = 3 - \frac{1}{n} < 3,$$

the claim follows from Theorem 2.3.1 and Claim 1.

Claim 3: For any $n \in \mathbb{Z}_+$,

(2.3.4)
$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1} < e < \left(1+\frac{1}{n+1}\right)^{n+2} < \left(1+\frac{1}{n}\right)^{n+1}$$

Claim 4: We have

$$\lim_{n \to \infty} e_n = e.$$

PROOF. Observe that $e_n < e_{n+1}$ and

$$a_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{n-1}{n} \right)$$

> $1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{k!} \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{k-1}{n} \right).$

Letting $n \to \infty$ yields

$$e \ge 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{k!} = e_k.$$

On the other hand, $a_n < e_n$. So $\lim_{n\to\infty} e_n = e$.

Example 2.3.5. (1)
$$\forall n \ge 1 \Longrightarrow$$

(2.3.6) $\left(\frac{n+1}{e}\right)^n < n! < e\left(\frac{n+1}{e}\right)^{n+1}$.
(2) We have
(2.3.7) $\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}$.

Proof. (1) $\forall k \geq 1$,

$$\left(\frac{k+1}{k}\right)^k < e < \left(\frac{k+1}{k}\right)^{k+1}.$$

So

$$\frac{(n+1)^n}{n!} = \prod_{1 \le k \le n} \left(\frac{k+1}{k}\right)^k < e^n < \prod_{1 \le k \le n} \left(\frac{k+1}{k}\right)^{k+1} = \frac{(n+1)^{n+1}}{n!}.$$

(2) By (1), one has

$$\frac{n+1}{e} < \sqrt[n]{n!} < \frac{n+1}{e} \sqrt[n]{n+1}$$

and

$$\frac{n+1}{n}\cdot\frac{1}{e}<\frac{\sqrt[n]{n!}}{n}<\frac{n+1}{n}\cdot\sqrt[n]{n+1}\cdot\frac{1}{e}.$$

Letting $n \rightarrow \infty$ yields (2.3.7).

C. Euler constant γ . Given p > 0 and let

$$S_n := \sum_{1 \le k \le n} \frac{1}{k^p}, \quad n \in \mathbb{Z}_+.$$

Then $S_n < S_{n+1}$, and

$$\begin{split} S_n &\leq S_{2^n-1} \\ &= 1 + \underbrace{\left(\frac{1}{2^p} + \frac{1}{3^p}\right)}_{<2^{-(p-1)}} + \underbrace{\left(\frac{1}{4^p} + \dots + \frac{1}{7^p}\right)}_{<4^{-(p-1)}=2^{-2(p-1)}} + \dots + \underbrace{\left(\frac{1}{2^{(n-1)p}} + \dots + \frac{1}{(2^n-1)^p}\right)}_{<2^{-(n-1)(p-1)}} \\ &< \frac{1}{1 - \frac{1}{2^{p-1}}} = \frac{2^{p-1}}{2^{p-1} - 1}. \end{split}$$

Hence

$$\lim_{n\to\infty} S_n \text{ exists for all } p > 1.$$

When p = 1, by Theorem 2.2.9,

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{\ln n} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln n - \ln(n-1)} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln(1 + \frac{1}{n-1})}$$
$$= \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln(1 + \frac{1}{n})} \cdot \lim_{n \to \infty} \frac{\ln(1 + \frac{1}{n})}{\ln(1 + \frac{1}{n-1})} = 1,$$

because

$$\frac{1}{n+1} < \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}.$$

Consequently

$$S_n \ge 1 + \frac{1}{2} + \dots + \frac{1}{n} \to +\infty$$
, if $0 .$

In particular

$$1 + \frac{1}{2} + \dots + \frac{1}{n} \sim \ln n$$
 as $n \to \infty$.

Define

(2.3.8)
$$a_n := \sum_{1 \le k \le n} \frac{1}{k} - \ln n.$$

Then

$$a_n > a_{n+1} > 0$$
, $\lim_{n \to \infty} a_n$ exists.

Indeed,

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > \ln \frac{2}{1} + \ln \frac{3}{2} + \dots + \ln \frac{n+1}{n} - \ln n = \ln \frac{n+1}{n} > 0$$

and

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0.$$

Figure: Joseph Liouville (1809/3/24 - 1882/9/8)

Conjecture 2.3.7. γ *is irrational, i.e.,* $\gamma \in \mathbb{R} \setminus \mathbb{Q}$ *.*

Theorem 2.3.8. (1) **(Liouville, 1840)** *e* is irrational. (2) π is irrational.

PROOF. (1) Recall that

$$e = \sum_{k \ge 0} \frac{1}{k!} = \lim_{n \to \infty} \sum_{0 \le k \le n} \frac{1}{k!}.$$

Assume that e = a/b is rational, with a, b > 0. Then

$$n!be = n!a, \forall n \in \mathbb{N}.$$

On the other hand,

$$bn!e = bn! \left[\left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) + \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots \right) \right]$$

= $bn! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right)$
+ $b \underbrace{\left(\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)(n+3)} + \dots \right)}_{\frac{1}{n+1} < ? < \frac{1}{n+1} + \frac{1}{(n+1)^2} + \dots = \frac{1}{n}}$

When n is large enough, the second term is not an integer. This contradiction shows that e is not rational.

2.3. CONVERGENCE TESTS

(2) We give a proof due to Niven (1946). Let $\pi = a/b$. Define

$$f(x) := \frac{x^n (a - bx)^n}{n!}, \quad F(x) := f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x).$$

But
$$\mathbb{Z} \ni F(\pi) + F(0) = \int_0^\pi f(x) \sin x \, dx$$

with $0 < f(x) \sin x < \frac{\pi^n a^n}{r!} \ll 1$ (as $n \gg 1$).

with $0 < f(x) \sin x < \frac{\pi^n a^n}{n!} \ll 1$ (as $n \gg 1$).

2.3.3. Subsequences. Let $\{a_n\}_{n\geq 1}$ be a sequence and $\varphi : \mathbb{N} \to \mathbb{N}$ s strictly increasing function. Then $\{a_{\varphi(k)}\}_{k\geq 1}$ is called a **subsequence** and write $\{a_{n_k}\}_{k\geq 1}$.

Theorem 2.3.9. (1) If $\lim_{n\to\infty} a_n = a$, then for any subsequence $\{a_{n_k}\}_{k\geq 1}$ one has

$$\lim_{k\to\infty}a_{n_k}=a.$$

(2) $\{a_n\}_{n\geq 1}$ is convergent \Longrightarrow each subsequence is convergent.

(3) ∃ divergent subsequence of {a_n}_{n≥1} ⇒ {a_n}_{n≥1} is divergent.
(4) ∃ two convergent subsequences with distinct limits ⇒ {a_n}_{n≥1} is divergent.

(5) $\{a_n\}_{n\geq 1}$ is convergent $\iff \{a_{2n-1}\}_{n\geq 1}$ and $\{a_{2n}\}_{n\geq 1}$ are convergent and have the same limits.

PROOF. (1) - (4) can be proved by directly definition. For (5), assume that $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = a$. Then $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that

 $|b_n - a| < \epsilon$, $|c_n - a| < \epsilon$, $b_n := a_{2n}$, $c_n := a_{2n-1}$.

For a_n , if n = 2k, then $|a_n - a| < \epsilon$ (n > 2N); if n = 2k - 1, then $|a_n - a| < \epsilon$ (n > 2N - 1). \square

Example 2.3.10. (Fibonacci sequence) Let

$$a_1 = a_2 = 1$$
, $a_{n+1} = a_n + a_{n-1}$ $(n \ge 2) \implies \text{find } \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

Let

$$b_n:=\frac{a_{n+1}}{a_n}.$$

Then

$$b_n = \frac{a_n + a_{n-1}}{a_n} = 1 + \frac{a_{n-1}}{a_n} = 1 + \frac{1}{b_{n-1}}.$$

We have proved as in Example 2.3.3 that

$$b_{2n-1} < b_{2n+1}, \ b_{2n} > b_{2n+2}, \ 1 \le b_n \le 2.$$

Then

$$\lim_{n \to \infty} b_n = \frac{\sqrt{5} + 1}{2}, \quad \lim_{n \to \infty} (b_n - 1) = \lim_{n \to \infty} \frac{1}{b_{n-1}} = \frac{\sqrt{5} - 1}{2} \approx 0.618.$$

The explicit expression for a_n is

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

2. SEQUENCES

Figure: Fibonacci sequence

Suppose

$$a_n - \alpha a_{n-1} = \beta(a_{n-1} - \alpha a_{n-2}).$$

Then

 $\alpha + \beta = 1, \quad \alpha\beta = -1$ so that $(\alpha, \beta) = ((1 + \sqrt{5})/2, (1 - \sqrt{5})/2)$ or $((1 - \sqrt{5})/2, (1 + \sqrt{5})/2)$. From $a_n - \frac{1 + \sqrt{5}}{2}a_{n-1} = \frac{1 - \sqrt{5}}{2}\left(a_{n-1} - \frac{1 + \sqrt{5}}{2}a_{n-2}\right),$ $a_n - \frac{1 - \sqrt{5}}{2}a_{n-1} = \frac{1 + \sqrt{5}}{2}\left(a_{n-1} - \frac{1 - \sqrt{5}}{2}a_{n-2}\right)$

we obtain

$$a_n - \frac{1 - \sqrt{5}}{2} a_{n-1} = \left(\frac{1 + \sqrt{5}}{2}\right)^{n-2} \left(a_2 - \frac{1 - \sqrt{5}}{2} a_1\right),$$

$$a_n - \frac{1 + \sqrt{5}}{2} a_{n-1} = \left(\frac{1 - \sqrt{5}}{2}\right)^{n-2} \left(a_2 - \frac{1 + \sqrt{5}}{2} a_1\right).$$

Eliminating a_{n-1} yields the formula for a_n .

Theorem 2.3.11. (Bolzano-Weierstrass theorem) *Every bounded sequence has a convergent subsequence.*

2.3. CONVERGENCE TESTS

Karl Weierstraß 1815-1897

Figure: Karl Theodor Wihelm Weierstrass (1815/10/31 - 1897/2/19)

PROOF. Assume $\{a_n\}_{n\geq 1}$ is bounded, i.e., $a_n \in [a, b]$ for some interval [a, b] and all $n \geq 1$. Then one of $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$ contains infinitely many a_n 's, say $[a_1, b_1]$. Take $x_{n_1} \in [a_1, b_1]$. In this process, we can find a sequence of closed intervals

$$[a_1, b_1] \supset [a_2, b_2] \supset \cdots \supset [a_k, b_k] \supset \cdots$$

with

$$b_k - a_k = \frac{b-a}{2^k} \to 0$$
 and $\exists x_{n_k} \in [a_k, b_k].$

But a_n is increasing and b_n is decreasing, we conclude that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ both exist. Moreover

$$0\leq b-a\leq b_n-a_n\to 0.$$

Hence

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$$

and $c \in [a_k, b_k]$ for each k. From $|x_{n_k} - 1| \leq b_k - a_k$, we see that $\lim_{n \to \infty} x_{n_k} = c$.

Theorem 2.3.12. $\{a_n\}_{n\geq 1}$ is unbounded $\implies \exists$ subsequence $\{a_{n_k}\}_{k\geq 1}$ such that $\{a_{n_k}\}_{k\geq 1}$ is unbounded.

PROOF. $\exists n_1$ such that $|a_{n_1}| > 1$. Then $\exists n_2 > n_1$ such that $|a_{n_2}| > 2$. Hence \exists subsequence $\{n_k\}_{k \ge 1}$ such that $|a_{n_k}| \ge k$.

2. SEQUENCES

Figure: Augustin Louis Cauchy (1789/8/21 - 1857/5/23)

2.3.4. Cauchy sequences. We say that a sequence $\{a_n\}_{n\geq 1}$ is a Cauchy sequence if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $|a_n - a_m| < \epsilon$ whenever $n, m \geq N$.

Example 2.3.13. (1)
$$\{a_n\}_{n\geq 1}$$
 is not Cauchy, where $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.
(2) $\{a_n\}_{n\geq 1}$ is Cauchy, where $a_n = 1 + \frac{1}{2\sqrt{2}} + \dots + \frac{1}{n\sqrt{n}}$.
PROOF. (1) $\forall n \geq 1$,
 $a_{2n} - a_n = \frac{1}{n+1} + \dots + \frac{1}{2n} \geq \frac{n}{2n} = \frac{1}{2}$.
(2) $\forall n \geq 1$,
 $\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}} = \frac{1}{\sqrt{n(n+1)}} \cdot \frac{1}{\sqrt{n+1} + \sqrt{n}} > \frac{1}{2} \frac{1}{(n+1)\sqrt{n+1}}$.
Hence $\forall m > n$,
 $a_m - a_n = \frac{1}{(n+1)\sqrt{n+1}} + \dots + \frac{1}{m\sqrt{m}} < \frac{2}{\sqrt{n}} - \frac{2}{\sqrt{m}} < \frac{2}{\sqrt{n}}$.

Remark 2.3.14. Cauchy sequence is bounded.

PROOF.
$$\exists N \in \mathbb{N}$$
 such that $|a_m - a_n| < 1$ whenever $m, n \ge N$.

Theorem 2.3.15. (Cauchy criterion) $\{a_n\}_{n\geq 1}$ is convergent $\iff \{a_n\}_{n\geq 1}$ is Cauchy.

PROOF.
$$\implies$$
: Let $\lim_{n\to\infty} a_n = a$. Then $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that

 $|a_n-a|<\epsilon, \quad \forall n>N.$

Hence

$$|a_m - a_n| \le |a_m - a| + |a_n - a| < 2\epsilon$$

for all n, m > N.

⇐=: $\exists N_0 \in \mathbb{N}$ such that $|a_n - a_{N_0+1}| < 1$, $\forall n > N_0$. In particular, $|a_n| \le M$. By Theorem 2.3.11, \exists subsequence $\{a_{n_k}\}_{k \ge 1}$ such that $\lim_{k \to \infty} a_{n_k} = a$. Furthermore

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \epsilon + |a_{n_k} - a|$$

whenever $n, n_k > N$.

Remark 2.3.16. The above theorem may not be true for any metric spaces. For example,

$$x_0 = 2, \quad x_{n+1} := \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) \in \mathbb{Q}.$$

Then $\{x_n\}_{n\geq 1}$ is a Cauchy sequence in \mathbb{Q} , but $x_n \to \sqrt{2} \notin \mathbb{Q}$.

Remark 2.3.17. We have defined that a metric space is complete if \forall Cauchy sequence is convergent. Hence \mathbb{R} is complete, but \mathbb{Q} is not.

Remark 2.3.18. "Completeness" can be specialized on Riemannian manifolds so that the completeness is, in this case, equivalent to the fact that every geodesic can be extended for any time.

CHAPTER 3

Continuous functions

3.1. Limits of functions

We begin with an example. Find a function $f : \mathbb{R} \to \mathbb{R}_+$ satisfying

$$f(x+y) = f(x)f(y)$$

for any $x, y \in \mathbb{R}$? Letting x = y yields

$$f(2) = f(1+1) = [f(1)]^2.$$

In general, one has

$$f(n) = [f(1)]^n$$

for any $n \in \mathbb{Z}_+$. Moreover

$$f(1) = f\left(\underbrace{\frac{1}{n} + \dots + \frac{1}{n}}_{n}\right) = \left[f\left(\frac{1}{n}\right)\right]^{n} \text{ and } f(1) = f(1)f(0)$$

so that

$$f(0) = 1, \ f\left(\frac{1}{n}\right) = [f(1)]^{\frac{1}{n}}.$$

For any $p/q \in \mathbb{Q}$ one has

$$f\left(\frac{p}{q}\right) = f\left(\underbrace{\frac{1}{q} + \dots + \frac{1}{q}}_{p}\right) = \left[f\left(\frac{1}{q}\right)\right]^{p} = \left[f(1)\right]^{\frac{p}{q}}$$

For any $x \in \mathbb{R}$, we have proved that there is a sequence $\{a_n\}_{n \ge 1}$ in \mathbb{Q} such that

$$\lim_{n\to\infty}a_n=x$$

In summary,

$$f(x) \xleftarrow{we expect} f(a_n) = [f(1)]^{a_n} \xrightarrow{n \to \infty} [f(1)]^x$$

If one can prove

$$f\left(\lim_{n\to\infty}a_n\right) = f(x) = \lim_{n\to\infty}f(a_n),$$

we have

$$f(x) = [f(1)]^x, \quad x \in \mathbb{R}.$$

We can conclude that when f and lim can be changed, $f(x) = [f(1)]^x$ for all $x \in \mathbb{R}$. As we shall see later by Heine's theorem, $f(x) = [f(1)]^x$ for all $x \in \mathbb{R}$ when f is continuous. **3.1.1. Definitions.** We start with the definition of limits of functions.

Definition 3.1.1. (1) If $f : (a, +\infty) \to \mathbb{R}$ and $A \in \mathbb{R}$, we define (3.1.1) $\lim_{x \to +\infty} f(x) = A \iff \begin{array}{l} \forall \epsilon > 0 \exists M > a \text{ such that} \\ |f(x) - A| < \epsilon \\ \text{whenever } x > M \end{array}$ (2) If $f : (-\infty, b) \to \mathbb{R}$ and $A \in \mathbb{R}$, we define (3.1.2) $\lim_{x \to -\infty} f(x) = A \iff \begin{array}{l} \forall \epsilon > 0 \exists M < b \text{ such that} \\ |f(x) - A| < \epsilon \\ \text{whenever } x < M \end{array}$ (3) If $f : \mathbb{R} \to \mathbb{R}$ and $A \in \mathbb{R}$, we define

(3.1.3)
$$\lim_{x \to \infty} f(x) = A \iff \begin{array}{c} \forall \ \epsilon > 0 \ \exists \ M > 0 \ \text{such that} \\ |f(x) - A| < \epsilon \\ \text{whenever } |x| > M \end{array}$$

Theorem 3.1.2. If $f : \mathbb{R} \to \mathbb{R}$ and $A \in \mathbb{R}$, then (3.1.4) $\lim_{x \to \infty} f(x) = A \iff \lim_{x \to +\infty} f(x) = A = \lim_{x \to -\infty} f(x).$

Example 3.1.3. Compute

$$\lim_{x\to\infty}\frac{e^x}{1+e^x}, \quad \lim_{x\to\infty}\frac{\sin x}{x}.$$

Since

$$\lim_{x \to -\infty} \frac{e^x}{1 + e^x} = 1 \text{ and } \lim_{x \to -\infty} \frac{e^x}{1 + e^x} = 0,$$

it follows that the limit $\lim_{x\to\infty} \frac{e^x}{1+e^x}$ does not exist. For the second one,

$$\left|\frac{\sin x}{x}\right| \le \frac{1}{|x|},$$

we see that $\lim_{x\to\infty} \frac{\sin x}{x} = 0$.

Definition 3.1.4. Consider a deleted neighborhood $\mathring{U}(a, \rho) := (a - \rho, a) \cup (a, a + \rho)$. Let $f : \mathring{U}(a, \rho) \to \mathbb{R}$, $A \in \mathbb{R}$, define

(3.1.5)
$$\lim_{x \to a} f(x) = A \iff \begin{array}{l} \forall \ \epsilon > 0 \ \exists \ \delta > 0 \ (\delta \le \rho) \text{ such tha} \\ |f(x) - A| < \epsilon \\ \text{whenever } 0 < |x - a| < \delta. \end{array}$$

If *f* is defined at *a*, then $\lim_{x\to a} f(x) = f(a)$ is the definition of the **continuity** of *f* at *a*.

 $\begin{array}{ll} \textbf{Definition 3.1.5. (One-sided limits) (1) } f:(a-\rho,a) \to \mathbb{R} \ (\rho > 0), A \in \mathbb{R}, \text{ define} \\ (3.1.6) \qquad & \lim_{x \to a^{-}} f(x) \equiv f(a-) = A \iff & \forall \ \epsilon > 0 \ \exists \ \delta > 0 \text{ such that} \\ & |f(x) - A| < \epsilon \\ \text{whenever} - \delta < x - a < 0 \\ (2) \ f:(a,a+\rho) \to \mathbb{R} \ (\rho > 0), A \in \mathbb{R}, \text{ define} \\ (3.1.7) \qquad & \lim_{x \to a^{+}} f(x) \equiv f(a+) = A \iff & \forall \ \epsilon > 0 \ \exists \ \delta > 0 \text{ such that} \\ & |f(x) - A| < \epsilon \\ \text{whenever} \ 0 < x - a < \delta \end{array}$

Theorem 3.1.6. We have (3.1.8) $\lim_{x \to a} f(x) = A \iff f(a+) = A = f(a-).$

Example 3.1.7. (1) If

$$f(x) = \begin{cases}
-1, & x < 0, \\
0, & x = 0, \\
1, & x > 0,
\end{cases}$$
then $f(0+) = -1$ and $f(0+) = 1$.
(2) If

$$f(x) = \begin{cases}
0, & x \le 0, \\
\frac{1}{x}, & x > 0,
\end{cases}$$

then f(0-) = 0, but f(0+) does not exist.

3.1.2. Properties of the limits of a function. The following properties can be proved as for the limits of sequences.

Theorem 3.1.8. (1) (Uniqueness) $\lim_{x\to a} f(x)$ is unique, if it exists. (2) (Local boundedness) $\lim_{x\to a} f(x)$ exists $\implies f$ is bounded in some delated neighborhood of a. (3) $\lim_{x\to a} f(x) = A > B = \lim_{x\to a} g(x) \Longrightarrow f(x) > g(x)$ in some $\mathring{U}(a,\rho)$. (4) $\lim_{x\to a} f(x) = A \Longrightarrow \lim_{x\to a} |f(x)| = |A|$. (5) $g(x) \le f(x) \le h(x)$ for any $x \in \mathring{U}(a,\rho) \Longrightarrow$ if $\lim_{x\to a} g(x) = \lim_{x\to a} h(x) = A$, then $\lim_{x\to a} f(x) = A$. (6) If $\lim_{x\to a} f(x) = A$, $\lim_{x\to a} g(x) = B$, $\alpha, \beta \in \mathbb{R}$, then $\lim_{x\to a} (\alpha f(x) + \beta g(x)) = \alpha A + \beta B$, $\lim_{x\to a} f(x)g(x) = AB$, $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}$ (if $B \ne 0$). (7) $\lim_{x\to x_0} g(x) = u_0$, $\lim_{u\to u_0} f(u) = A$, $g \ne u_0$ in $\mathring{U}(x_0, \rho) \Longrightarrow$ $\lim_{x\to x_0} f(g(x)) = A$. **Example 3.1.9.** (1) $\lim_{x\to 0} x \lfloor 1/x \rfloor = 1$. Indeed, $1/x - 1 < \lfloor 1/x \rfloor \le 1/x$. (2) $\lim_{x\to\infty} x^k/a^x = 0$ (a > 0 and $k \in \mathbb{N}$). Because $0 < x^k/a^x \le (\lfloor x \rfloor + 1)^k/a^{\lfloor x \rfloor + 1}a$.

3.1.3. Two important limits. When $0 < x < \pi$, we know that $0 < \sin x < x$. The following property shows that when *x* is very small, we can use *x* to substitute $\sin x$.

Proposition 3.1.10. *One has* (3.1.9) $\lim_{x \to 0} \frac{\sin x}{x} = 1.$

PROOF. When $0 < x < \pi/2$, we have

 $\sin x < x < \tan x$

so that

$$\cos x < \frac{\sin x}{x} < 1.$$

Hence $\lim_{x\to 0^+} \sin x/x = 1$. Similarly, we can prove that $\lim_{x\to 0^-} \sin x/x = 1$. \Box

Remark 3.1.11. (1) We have proved that

$$0 \xleftarrow{x \to \infty} \frac{\sin x}{x} \xrightarrow{x \to 0} 1$$

What about the value of the integral

$$\int_0^\infty \frac{\sin x}{x} dx \ \left(=\frac{\pi}{2}\right)?$$

Proposition 3.1.12. One has

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

PROOF. For any $x \ge 1$ we have

$$\left(1+\frac{1}{\lfloor x\rfloor+1}\right)^{\lfloor x\rfloor} < \left(1+\frac{1}{x}\right)^x < \left(1+\frac{1}{\lfloor x\rfloor}\right)^{\lfloor x\rfloor+1}$$

Using $e = \lim_{n\to\infty} (1+1/n)^n$, we get $\lim_{x\to+\infty} (1+1/x)^x = e$. Similarly, when $x \to -\infty$, we set $y := -x \to +\infty$. Then

$$\left(1+\frac{1}{x}\right)^{x} = \left(1-\frac{1}{y}\right)^{-y} = \left(1+\frac{1}{y-1}\right)^{y} = \left(1+\frac{1}{y-1}\right)^{y-1} \frac{y}{y-1} \to e$$

as $x \to -\infty$.

Remark 3.1.13. (1) $\lim_{y\to 0} (1+y)^{1/y} = e$. (2) $\lim_{y\to\infty} (1-1/y)^y = 1/e$. (3) $\lim_{n\to\infty} [n\sin(2\pi n!e)] = 2\pi$.

PROOF. We give a proof of (3). From $e = \sum_{k\geq 0} \frac{1}{k!}$ we have

$$u!e = \underline{n!}\sum_{\substack{0 \le k \le n \\ \in \mathbb{Z}}} \frac{1}{k!} + \underline{n!}\sum_{\substack{k \ge n+1 \\ i=\epsilon_n \to 0}} \frac{1}{k!}.$$

Then

$$n\sin(2\pi n!e) = n\sin(2\pi\epsilon_n) = \frac{\sin(2\pi\epsilon_n)}{2\pi\epsilon_n} \frac{2\pi\epsilon_n}{1/n} \to 1 \times 2\pi = 2\pi.$$

Here

$$\frac{1}{n+1} < \epsilon_n := \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots < \frac{1}{n+1} + \frac{1}{(n+1)^2} + \dots = \frac{1}{n}.$$

3.1.4. Heine's theorem. This theorem builds a bridge between limits of functions and limits of sequences.

Theorem 3.1.14. (Heine) $f: \mathring{U}(a, \rho) \to \mathbb{R}, A \in \mathbb{R} \Longrightarrow$					
(3.1.11)	$\lim_{x \to a} f(x) = A$	\iff	$\forall \{a_n\}_{n\geq 1} \subset \mathring{U}(a,\rho) \text{ with } a_n \to a$ we have $\lim_{n\to\infty} f(a_n) = A$.		
(3.1.12)		\Leftrightarrow	$\forall \{a_n\}_{n\geq 1} \subset \mathring{U}(a,\rho) \text{ with } a_n \rightarrow a$ we have $\{f(a_n)\}_{n\geq 1}$ converges.		

PROOF. (1) \Leftarrow : If $\lim_{x\to a} f(x) \neq A$, then $\exists \epsilon_0 > 0, \forall \delta > 0, \exists x \in \mathring{U}(a, \delta)$ such that

$$|f(x) - A| \ge \epsilon_0 > 0.$$

Take $\delta_1 = \rho$, $\delta_2 = \rho/2$, \cdots , $\delta_n = \rho/n$, \cdots , and find $a_1, \cdots, a_n \in \mathring{U}(a, \rho/n)$ such that $|f(a_n) - A| \ge \epsilon_0$. Since $a_n \to a$, we have $f(a_n) \nrightarrow A$.

 \Rightarrow : Clearly.

(2) \Rightarrow : Clearly.

 \Leftarrow : We should prove that any sequence $(f(a_n))_{n\geq 1}$ has the same limit. Suppose that $a_n \to a$ and $b_n \to a$, but $f(a_n) \to A \neq B \leftarrow f(b_n)$. Consider the new

sequence $(x_n)_{n>1}$:

 $a_1, b_1, a_2, b_2, a_3, b_3, \cdots, a_n, b_n, \cdots$

Then $x_n \to a$ but $f(x_n)_{n \ge 1}$ diverges. Hence *A* must be equal to *B*.

Example 3.1.15. (1) $\sin \frac{1}{x}$ has no limit at x = 0. (2) Dirichlet function has no limit at every point $x \in \mathbb{R}$.

PR

ROOF. (1) For
$$x_n = 1/n\pi$$
 and $y_n = 1/(2n\pi + \frac{\pi}{2})$, we get

$$\sin\frac{1}{x_n} = 0, \quad \sin\frac{1}{y_n} = 1.$$

Hence $\sin \frac{1}{x}$ has no limit at x = 0.

(2) Recall that

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

For any $a \in \mathbb{R}$, we can find a sequence $\{a_n\}_{n \ge 1}$ such that $a_n \to a$. On the other hand, $\exists b_n \in \mathbb{R} \setminus \mathbb{Q}$ such that $b_n \to a$. But $D(a_n) = 1 \neq 0 = D(b_n)$.

(3) Topologist's sine curve:

$$\mathbf{X} = \left\{ \left(x, \sin \frac{1}{x} \right) : x \in (0, 1] \right\}$$

which can be obtained by the continuous map

$$(0,1] \longrightarrow X \subseteq \mathbb{R}^2, \quad x \longmapsto \left(x, \sin \frac{1}{x}\right)$$

By the continuity of f, X and hence \overline{X} are connected, but \overline{X} is not path-connected.

Theorem 3.1.16. We have $\forall \epsilon > 0 \exists M > 0$ such that $\lim_{x \to \infty} f(x) \text{ exists } \iff |f(x_1) - f(x_2)| < \epsilon$ whenever $|x_1|, |x_2| > N$ (3.1.13)*whenever* $|x_1|, |x_2| > M$. $\forall \epsilon > 0 \exists \delta > 0$ such that $\lim_{x \to \infty} f(x) \text{ exists } \iff$ $|f(x_1) - f(x_2)| < \epsilon$ (3.1.14)whenever $a - \delta < x_1, x_2 < a$.

PROOF. \implies : Clearly.

 \Leftarrow : Cauchy test for sequence $\Rightarrow \forall \{a_n\}_{n\geq 1} \rightarrow \infty, \{f(a_n)\}_{n\geq 1} \text{ converges } \Rightarrow$ $\lim_{x\to\infty} f(x)$ exists by Heine's theorem, Theorem 3.1.14.

3.2. Various comparison symbols

We have proved that $\lim_{x\to 0} \sin x / x = 1$, so that in principal, we can replace $\sin x$ by x. A natural question is in context when/how we can do it. This section answers this question.

68

3.2.1. Infinitesimals. Actually we have six limit types:

$$x \to a, x \to a+, x \to a-, x \to -\infty, x \to +\infty, x \to \infty.$$

We will focus on the first type.

Definition 3.2.1. We say that f(x) is an **infinitesimal** or f(x) = o(1) as $x \to a$ if $\lim_{x\to a} f(x) = 0$.

Remark 3.2.2. (1) $\lim_{x\to a} f(x) = A \iff f(x) - A = o(1)$ as $x \to a$. (2) f(x) = o(1) as $x \to a \iff |f(x)| = o(1)$ as $x \to a$. (3) f(x) = o(1), g(x) = o(1) as $x \to a \iff \forall \alpha, \beta \in \mathbb{R}, \alpha f(x) + \beta g(x) = o(1)$ as $x \to a$. (4) f(x) = o(1) as $x \to a$, and g(x) is bounded in $\mathring{U}(a, \delta)$ (for some $\delta > 0$) \implies f(x)g(x) = o(1) as $x \to a$.

Example 3.2.3. (1) $x \to 0$: $\sin x = o(1)$, $\tan x = o(1)$, $a^x - 1 = o(1)$ (a > 0). $x \rightarrow 0+:$ $x^{\alpha} = o(1) \ (\alpha > 0), \ 1 - \cos x = o(1).$ $x \to +\infty$: $\frac{1}{x^{\alpha}} = o(1) \ (\alpha > 0), \quad a^{x} = o(1) \ (0 < a < 1).$ $x \to \infty$: $\frac{1}{r^n} = o(1) \ (n \in \mathbb{Z}_+), \quad \frac{1}{r^{1/3}} = o(1).$ $x \to -\infty$: $a^{x} = o(1) \ (a > 1).$ (2) $x \rightarrow 0$: $xe^{x} + 3\ln(1+x) = o(1), e^{\sin x} \cos x - 1 = o(1).$ $x \to \infty$: $\frac{x + \sin x}{x^2 + 5x - 2} = \frac{3x}{e^x + \ln x} = \sqrt{x + 1} - \sqrt{x} = \ln\left(1 + \frac{1}{x}\right) + \frac{\sin x}{x} = o(1).$ (3) Find *A* and *B* so that $\lim_{x \to \infty} \left(\sqrt{x^2 + 2x + 5} + Ax + B \right) = 1.$ PROOF. Write $\sqrt{x^2 + 2x + 5} + Ax + B = 1 + \alpha(x), \ \alpha(x) = o(1) \ (x \to +\infty).$ Then $A = -\sqrt{1 + \frac{2}{r} + \frac{5}{r^2}} + \frac{1 - B}{r} + \frac{\alpha}{r}.$

Letting $x \to +\infty$ yields A = -1 and then

$$B = 1 + \alpha + x - \sqrt{x^2 + 2x + 5}.$$

But *B* is a constant, we must have

$$B = 1 + \lim_{x \to +\infty} \frac{-2x - 5}{\sqrt{x^2 + 2x + 5} + x} = 1 - \lim_{x \to +\infty} \frac{2 + \frac{5}{x}}{1 + \sqrt{1 + \frac{2}{x} + \frac{5}{x^2}}} = 0.$$

Thus $\sqrt{x^2 + 2x + 5} - x - 1 = o(1)$ as $x \to \infty$.

Definition 3.2.4. Assume that u(x) = o(1) and v(x) = o(1) as $x \to a$. (1) We say

(3.2.1)
$$u(x) = o(v(x)) \text{ as } x \to a \iff \lim_{x \to a} \frac{u(x)}{v(x)} = 0.$$

In particular, when $v(x) \equiv 1$, we get our old notion. (2) We say

(3.2.2)
$$u(x) = O(v(x)) \text{ as } x \to a \iff \left|\frac{u(x)}{v(x)}\right| \le M \text{ (in some } \mathring{U}(a, \delta)).$$

$$u(x) \approx v(x) \text{ as } x \to a \quad \Longleftrightarrow \quad u(x) = O(v(x)) \text{ and } v(x) = O(u(x)) \text{ as } x \to a$$

(3.2.3)
$$\iff \quad 0 < m \le \left| \frac{u(x)}{v(x)} \right| \le M \ (\exists \ 0 < m < M \text{ in } \mathring{U}(a, \delta)).$$

(4) We say

 \implies

(3.2.4)
$$u(x) \sim v(x) \text{ as } x \to a \iff \lim_{x \to a} \frac{u(x)}{v(x)} = 1.$$

Proposition 3.2.5. (1) u(x) = v(x) = o(1) as $x \to a$ and $\lim_{x\to a} u(x)/v(x)$ exists

$$u(x) = O(v(x)) \quad as \ x \to a.$$
(2) $u(x) = v(x) = o(1) \ as \ x \to a \ and \ \lim_{x \to a} u(x) / v(x) = c \neq 0 \Longrightarrow$
 $u(x) \approx v(x) \quad as \ x \to a.$

Definition 3.2.6. (1) We say that u(x) is an *k*-th infinitesimal as $x \to a$ if (3.2.5) $u(x) \approx (x-a)^k$ (k > 0). (2) We say that $c(x-a)^k$ is the **principal part of** u(x) as $x \to a$ if (3.2.6) $u(x) \sim c(x-a)^k$ as $x \to a$. Example 3.2.7. (1) $\sin x \approx (x-0)^1$, $1 - \cos x \approx (x-0)^2$, $1 - \cos x \approx \frac{1}{2}(x-0)^2$ as $x \to 0$. (2) $\ln x = o(1)$ as $x \to 0+$, but $x^{\alpha} \ln x = o(1)$ as $x \to 0+$ ($\alpha > 0, k \in \mathbb{Z}_+$) and $x^{\alpha} (\ln x)^k = o(1)$ as $x \to 0+$. (3) As $x \to 0$ (3.2.7) $\sin x \sim x \sim \tan x \sim \ln(1+x) \sim e^x - 1 \sim \frac{(1+x)^{\alpha} - 1}{\alpha}$. Because $\lim_{x \to 0} (1+x)^{1/x} = e \implies \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$. Letting $t = e^x - 1$ yields $\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(1+t)} = 1$. Writing $\frac{(1+x)^{\alpha} - 1}{x} = \frac{e^{\alpha} \ln(1+x) - 1}{x} = \frac{e^{\alpha} \ln(1+x) - 1}{\alpha \ln(1+x)} \frac{\alpha}{x} \ln(1+x)}{x}$

we obtain $(1 + x)^{\alpha} - 1 \sim \alpha x$.

Proposition 3.2.8. We have (1) u(x) = O(v(x)) and $v(x) = O(w(x)) \Longrightarrow u(x) = O(w(x))$. (2) u(x) = O(v(x)) and $v(x) = o(w(x)) \Longrightarrow u(x) = o(w(x))$. (3) O(u(x)) + O(v(x)) = O(u(x) + v(x)). (4) O(u(x))O(v(x)) = O(u(x)v(x)). In particular, $O(u(x)^k) = [O(u(x))]^k$. (5) o(1)O(u(x)) = o(u(x)). (6) O(1)o(u(x)) = o(u(x)). (7) O(u(x)) + o(u(x)) = O(u(x)). (8) o(u(x)) + o(v(x)) = o(|u(x)| + |v(x)|). (9) o(u(x))o(v(x)) = o(u(x)v(x)). In particular, $o(u(x)^k) = [o(u(x))]^k$. (10) $u(x) \sim v(x)$ and $v(x) \sim w(x) \Longrightarrow u(x) \sim w(x)$. (11) $u(x) \sim v(x)$ and $w(x) = o(u(x)) \Longrightarrow u(x) \sim v(x) \pm w(x)$.

3.2.2. Infinities. We say f(x) is an infinity if 1/f(x) is an infinitesimal.

Definition 3.2.9. Assume that *f* is defined in $\mathring{U}(a, \rho)$. Define

(3.2.8)	$\lim_{x \to a} f(x) = +\infty \Longleftrightarrow $	$\forall C > 0 \exists \delta > 0, \forall x \in \mathring{U}(a, \delta)$ with $\delta < \rho$, we have $f(x) \ge C$.
(3.2.9)	$\lim_{x \to a} f(x) = -\infty \Longleftrightarrow $	$\forall C > 0 \exists \delta > 0, \forall x \in \mathring{U}(a, \delta)$ with $\delta < \rho$, we have $f(x) \leq -C$.
(3.2.10)	$\lim_{x \to a} f(x) = \infty \Longleftrightarrow $	$\forall C > 0 \exists \delta > 0, \forall x \in \mathring{U}(a, \delta)$ with $\delta < \rho$, we have $ f(x) \ge C$.

Similarly we can consider

$$\lim_{x\to a+}, \quad \lim_{x\to a-}, \quad \lim_{x\to +\infty}, \quad \lim_{x\to -\infty}, \quad \lim_{x\to \infty}.$$

We give several remarks:

(1)
$$u(x) \to \infty, v(x) \to \infty \Longrightarrow$$

 $u(x) = o(v(x)) \iff \lim_{x \to a} \frac{u(x)}{v(x)} = 0 \text{ or } \lim_{x \to a} \frac{v(x)}{u(x)} = \infty.$
(2) $u(x) \to \infty, v(x) \to \infty \Longrightarrow$
 $u(x) = O(v(x)) \iff \left| \frac{u(x)}{v(x)} \right| \le M \text{ (in some } \mathring{U}(a, \delta)).$
(3) $u(x) \to \infty, v(x) \to \infty \Longrightarrow$
 $u(x) \approx v(x) \iff u(x) = O(v(x)) \text{ and } v(x) = O(u(x)).$
(4) $u(x) \to \infty, v(x) \to \infty \Longrightarrow$
 $u(x) \sim v(x) \iff \lim_{x \to a} \frac{u(x)}{v(x)} = 1.$

Proposition 3.2.10. Proposition 3.2.8 also holds.

3.2.3. Equivalent substitutions. When $x \to 0$, we proved that $\sin x \sim \tan x \sin x$, hence $\tan x - \sin x \to 0$ as $x \to 0$.

Example 3.2.11. Compute $\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.$ PROOF. Observe $\frac{\tan x - \sin x}{x^3} = \frac{\frac{\sin x}{\cos x} - \sin x}{x^3} = \frac{\sin x}{\cos x} \cdot \frac{1 - \cos x}{x^3} = \frac{\sin x}{x} \cdot \frac{1}{\cos x} \cdot \frac{1 - \cos x}{x^2}$ which tends to $1 \times 1 \times \frac{1}{2} = \frac{1}{2}.$ If we use $\tan x - \sin x = o(1)$, then the limit can not be calculated. The reason is that o(1) is much more coarser than x^3 . It leads to to find more precise expression for $\tan x - \sin x$. Actually, by Taylor's expression, we have

$$\sin x - x \sim -\frac{1}{3}x^3$$
, $\tan x - x \sim \frac{1}{6}x^3$ (as $x \to 0$).

By the remark in Example 3.2.13 (3), we have $\tan x - \sin x \sim \frac{1}{3}x^3 + \frac{1}{6}x^3 = \frac{1}{2}x^3$.

Theorem 3.2.12. $v(x) \sim w(x)$ as $x \to a$ are equivalent infinitesimal or infinity \Longrightarrow (3.2.11) $\lim_{x \to a} u(x)v(x) = A \iff \lim_{x \to a} u(x)w(x) = A,$ (3.2.12) $\lim_{x \to a} \frac{u(x)}{v(x)} = A \iff \lim_{x \to a} \frac{u(x)}{w(x)} = A.$

PROOF. Because
$$u(x)w(x) = u(x)v(x) \cdot \frac{w(x)}{v(x)}$$
 and $\frac{u(x)}{w(x)} = \frac{u(x)}{v(x)} \cdot \frac{v(x)}{w(x)}$.

Example 3.2.13. (1) $\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{\ln(1+2x)}$. PROOF. Because $\ln(1+2x) \sim 2x$ as $x \to 0$, we have $\frac{\sqrt{1+x} - \sqrt[3]{1+x}}{\ln(1+2x)} \sim \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{2x} = \frac{(\sqrt{1+x}-1) - (\sqrt[3]{1+x}-1)}{2x}$. Using (3.2.7) yields $(1+x)^{1/2} - 1 \sim \frac{1}{2}x, \quad (1+x)^{1/3} - 1 \sim \frac{1}{3}x \quad (x \to 0)$. Hence $\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{\ln(1+2x)} = \lim_{x\to 0} \frac{\frac{1}{2}x}{2x} - \lim_{x\to 0} \frac{\frac{1}{3}x}{2x} = \frac{1}{12}$. (2) $\lim_{x\to 0} \frac{\sqrt{1+2x} - \sqrt[3]{1+3x}}{x^2}$. PROOF. From (1), $\sqrt{1+2x} - 1 \sim \frac{1}{2} \times 2x = x \text{ as } x \to 0$.

We shall consider

$$\sqrt{1+2x} - \sqrt[3]{1+3x} = \left[\sqrt{1+2x} - (1+x)\right] - \left[\sqrt[3]{1+3x} - (1+x)\right].$$

Now

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - (1+x)}{x^2} = \lim_{x \to 0} \frac{-x^2}{x^2 [\sqrt{1+2x} + (1+x)]} = \lim_{x \to 0} \frac{-1}{1+x+\sqrt{1+2x}} = \frac{-1}{2}$$

$$\lim_{x \to 0} \frac{\sqrt[3]{1+3x} - (1+x)}{x^2} = \lim_{x \to 0} \frac{(1+3x) - (1+x)^3}{x^2 [(1+3x)^{2/3} + (1+3x)^{1/3}(1+x) + (1+x)^2]} \\ = \frac{-3}{3} = -1.$$

Finally,

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt[3]{1+3x}}{x^2} = -\frac{1}{2} + 1 = \frac{1}{2}.$$

(3) Actually,
$$\forall \alpha > 0$$
,
(3.2.13)
$$(1+x)^{\alpha} - \left[1 + \sum_{1 \le i \le k-1} \frac{\alpha(\alpha-1)\cdots(\alpha-i+1)}{i!} x^{i}\right] \sim \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k}$$

as $x \to 0$. For example,

$$(1+x)^{1/2} - \left[1 + \frac{1}{2}x\right] \sim -\frac{1}{4}x^2$$
$$(1+x)^{1/3} - \left[1 + \frac{1}{3}x\right] \sim -\frac{1}{9}x^2$$

and

$$(1+2x)^{1/2} - [1+x] \sim -\frac{1}{2}x^2,$$

$$(1+3x)^{1/3} - [1+x] \sim -x^2$$

as $x \to 0$.

In general, if

$$u(x) - [a_0 + a_1 x + \dots + a_{k-1} x^{k-1}] \sim a_k x^k, v(x) - [a_0 + a_1 x + \dots + a_{k-1} x^{k-1}] \sim b_k x^k,$$

with $a_k \neq b_k$, then

$$u(x) - v(x) \sim (a_k - b_k) x^k$$

as $x \to 0$.

V

PROOF. The proof is simple. By the assumptions,

$$\frac{u(x) - v(x)}{(a_k - b_k)x^k} = \frac{[u(x) - P(x)] - [v(x) - P(x)]}{(a_k - b_k)x^k}$$

$$\to \frac{a_k}{a_k - b_k} - \frac{b_k}{a_k - b_k} = 1$$

where $P(x) := a_0 + a_1x + \dots + a_{k-1}x^{k-1}$.

(4)
$$\lim_{x\to+\infty} \arccos(\sqrt{x^2 + x} - x)$$
.

PROOF. Let $u = \sqrt{x^2 + x} - x$ so that

$$\lim_{x \to +\infty} u = \lim_{x \to +\infty} \frac{x}{x + \sqrt{x^2 + x}} = \frac{1}{2}$$

Therefore

$$\lim_{x \to +\infty} \arccos(\sqrt{x^2 + x} - x) = \lim_{u \to \frac{1}{2}} \arccos u = \frac{\pi}{3}.$$

(5) Prove
$$\sqrt{x + \sqrt{x + \sqrt{x}}} \sim x^{1/2}$$
 as $x \to +\infty$

PROOF. We have

$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x} + \sqrt{x}}}{x^{1/2}} = \lim_{x \to +\infty} \left[1 + \left(\frac{x + x^{1/2}}{x}\right)^{1/2} \right]^{1/2}$$
$$= \lim_{u \to 0} (1 + u^{1/2})^{1/2} = 1, \text{ when } u := \frac{x + x^{1/2}}{x^2}.$$

(6) Find principal parts of

$$\sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{3}}{2}, \quad \pi-3\arccos\left(x+\frac{1}{2}\right) \quad (x\to 0).$$

PROOF. Indeed,

$$\sin\left(x+\frac{\pi}{3}\right) - \frac{\sqrt{3}}{2} = \sin\left(x+\frac{\pi}{3}\right) - \sin\frac{\pi}{3} = 2\cos\left(\frac{x}{2}+\frac{\pi}{3}\right)\sin\frac{x}{2} - \sin\frac{x}{2} - \frac{x}{2}$$

and
$$\pi - 3\arccos\left(x+\frac{1}{2}\right) \sim \left[\pi - 3\arccos\left(x+\frac{1}{2}\right)\right]$$
$$= \sin\left[3\arccos\left(x+\frac{1}{2}\right)\right] \qquad \left(\sin(3\theta) = 3\sin\theta - 4\sin^3\theta\right)$$
$$= 3\sqrt{1 - \left(x+\frac{1}{2}\right)^2} - 4\left(\sqrt{1 - \left(x+\frac{1}{2}\right)^2}\right)^3$$
$$= \sqrt{1 - \left(x+\frac{1}{2}\right)^2} \left\{3 - 4\left[1 - \left(x+\frac{1}{2}\right)^2\right]\right\} \sim \frac{\sqrt{3}}{2}(4x+4x^2) \sim 2\sqrt{3}x$$

as $x \to 0$.

3.3. Continuities and discontinuities

Bibliography

 Alarcon A., Ferrer L., Martin F., Density theorems for complete minimal surfaces in R³, Geom. Funct. Anal., 18(2008), no. 1, 1–49.