Basic analysis

Yi Li

School of Mathematics and Shing-Tung Yau Center, Southeast University, Nanjing, China

E-mail address: yilicms@seu.edu.cn; yilicms@163.com

Contents

Chapter 1. Introduction 5
1.1. Sets and mappings 5
1.2. One variable functions 18
1.3. References 34
Chapter 2. Sequences 35
2.1. Convergent sequences 35
2.2. Properties of convergent sequences 37
2.3. Convergence tests 50
Chapter 3. Continuous functions 63
3.1. Limits of functions 63
3.2. Various comparison symbols 68
3.3. Continuities and discontinuities 75
Bibliography 77

CHAPTER 1

Introduction

1.1. Sets and mappings

The power set of a given set A is defined to be

$$
2^{A}:=\{\text { all subsets of } A\} \supseteq A .
$$

Notions:

- $A:=B: A$ is defined by B,
- $\forall:$ any/for any,
- \exists : there exists/exist \cdots,
- !: unique,
- \exists !: there exists a unique \cdots,
- $\mathbb{N}:=\{0,1,2,3, \cdots\}$: the set of all national numbers,
- \mathbb{Z} : the set of all integers,
- $\mathbb{Z}_{<0}:=\mathbb{Z} \backslash \mathbb{N}$,
- Q: the set of all rational numbers,
- \mathbb{R} : the set of all real numbers,
- \mathbb{C} : the set of all complex numbers,
- i.e.: (Latin) id est = that is/in other words,
- e.g.: (Latin) exempli gratia = for example,
- WLOG: without loss of generality,
- TFAE: the following are equivalent,
- resp.: respectively,
1.1.1. Arbitrary unions and intersections. Let \mathscr{A} be a collection of sets.
(1) Union:

$$
\bigcup_{A \in \mathscr{A}} A:=\{x: x \in A \text { for at least one } A \in \mathscr{A}\} .
$$

(2) Intersection:

$$
\bigcap_{A \in \mathscr{A}} A:=\{x: x \in A \text { for every } A \in \mathscr{A}\} .
$$

When $\mathscr{A}=\varnothing$, we let $\cup_{A \in \mathscr{A}} A=\varnothing$.
1.1.2. Cartesian products I. Let A, B be two sets.
(1) Cartesian product:

$$
A \times B:=\{(a, b): a \in A \text { and } b \in B\}
$$

(2) Order pair:

$$
(a, b):=\{\{a\},\{a, b\}\}
$$

where a is called the first coordinate while b the second coordinate.
1.1.3. Maps. Let C, D be two sets.
(1) A rule of assignment is a subset R of $C \times D$ such that

$$
(c, d) \in R \text { and }\left(c, d^{\prime}\right) \in R \quad \Longrightarrow \quad d=d^{\prime}
$$

(2) Suppose that R is a rule of assignment. Define

```
\(\operatorname{Dom}(R) \equiv\) domain \((R):=\{c \in C: \exists d \in D\) such that \((c, d) \in R\}\),
\(\boldsymbol{\operatorname { I m }}(R) \equiv \operatorname{image}(R):=\{d \in D: \exists c \in C\) such that \((c, d) \in R\}\).
```

A map f is a pair (R, B), where R is a rule of assignment and B is a set (called the range of f), such that $\operatorname{Im}(R) \subset B$.
(1) domain of $f \equiv \operatorname{Dom}(f):=\operatorname{Dom}(R)$,
(2) image of $f \equiv \operatorname{Im}(f):=\operatorname{Im}(R)$,
(3) We write:

$$
f: A \longrightarrow B, \quad a \longmapsto f(a),
$$

where A is the domain of f, B is the range of f (so that $\operatorname{Im}(f) \subseteq B$), and $f(a)$ is the unique element of B satisfying $(a, f(a)) \in R$.

Example 1.1.1. Assume $C=D:=\mathbb{R}, f(x):=x^{2}, R:=\mathbb{R} \times \mathbb{R}_{\geq 0}$, and $B:=R$. In this case, $A=\mathbb{R}$ and $\operatorname{Im}(f)=\mathbb{R}_{\geq 0}$.

Consider two maps $f: A \rightarrow B$ and $g: B \rightarrow C$.
(1) For a given subset A_{0} of A, define the restriction of f to A_{0} as the map $\left.f\right|_{A_{0}}=f: A_{0} \rightarrow B$.
(2) Composite:

$$
g \circ f: A \longrightarrow C, \quad a \longmapsto c
$$

where $f(a)=b$ and $g(b)=c$ for some $b \in B$.
Suppose that $f: A \rightarrow B$ is a map.
(1) f is injective if

$$
f(a)=f\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}
$$

(2) f is surjective if

$$
\forall b \in B \exists a \in A \text { such that } f(a)=b
$$

(3) f is bijective if f is injective and surjective.
(4) If f is bijective, we define its inverse f^{-1} by

$$
f^{-1}(b)=a \Longleftrightarrow f(a)=b
$$

Lemma 1.1.2. Let $f: A \rightarrow B$ be a map. If there exist a left inverse $g: B \rightarrow A$ of f (i.e., $g(f(a))=a$ for all $a \in A$) and a right inverse $h: B \rightarrow A$ of f (i.e., $f(h(b))=b$ for all $b \in B)$, then f is bijective and $g=h=f^{-1}$.

Exercise 1.1.3. (1) Show that if f has a left (resp., right) inverse, then f is injective (resp., surjective).
(2) Given examples of maps that have a left (resp., right) inverse but no right (resp., left) inverse.
(3) Can a map have more than one left (or right) inverse?
(4) Prove Lemma 1.1.2

Let $f: A \rightarrow B$ be a map, $A_{0} \subseteq A$ and $B_{0} \subseteq B$.
(1) Image of A_{0} under $f \equiv f\left(A_{0}\right):=\left\{f(a): a \in A_{0}\right\}$,
(2) Preimage of B_{0} under $f \equiv f^{-1}\left(B_{0}\right):=\left\{a: f(a) \in B_{0}\right\}$.
(3) It is clear that

$$
A_{0} \subseteq f^{-1}\left(f\left(A_{0}\right)\right), \quad B_{0} \supseteq f\left(f^{-1}\left(B_{0}\right)\right)
$$

There are examples such that both equalities in (3) may not be true (Find such examples!).

When B is a number field, we will say functions instead of maps.
1.1.4. Categories. A category \mathfrak{C} consists of

1) a family $\mathbf{O b}(\mathfrak{C})$ of objects of \mathfrak{C},
2) \forall pair (X, Y) of $\mathbf{O b}(\mathfrak{C}), \exists$ set $\operatorname{Hom}_{\mathfrak{C}}(X, Y)$ of morphisms from X to Y, and
3) \forall triple (X, Y, Z) of $\mathbf{O b}(\mathfrak{C}), \exists$ map
$\operatorname{Hom}_{\mathfrak{C}}(X, Y) \times \operatorname{Hom}_{\mathfrak{C}}(Y, Z) \longrightarrow \operatorname{Hom}_{\mathfrak{C}}(X, Z), \quad(f, g) \longmapsto g \circ f$
called the composition map.
These data satisfy
a) composition is associative, i.e., $(f \circ g) \circ h=f \circ(g \circ h)$,
b) $\forall X \in \mathbf{O b}(\mathfrak{C}) \exists \mathrm{id}_{X} \in \operatorname{Hom}_{\mathfrak{C}}(X, X)$ such that

$$
f \circ \operatorname{id}_{X}=f, \quad \operatorname{id}_{X} \circ g=g
$$

for any $f \in \operatorname{Hom}_{\mathfrak{C}}(X, Y)$ and $g \in \operatorname{Hom}_{\mathfrak{C}}(Y, X)$.

Example 1.1.4. There are some classical categories:
(1) Set: sets and functions,
(2) Group: groups and group homomorphisms (in abstract algebra),
(3) Vect $\mathbb{R}_{\mathbb{R}}$: real vector spaces and \mathbb{R}-linear maps (in linear algebra),
(4) Top: topological spaces and continuous maps (in topology),
(5) Calabi-Yau category: in differential geometry/algebraic geometry \rightsquigarrow homological mirror symmetry/SYZ conjecture.

Let \mathfrak{C} be a category.
(1) Write $f \in \operatorname{Hom}_{\mathfrak{C}}(X, Y)$ as $f: X \rightarrow Y$.
(2) $f \in \operatorname{Hom}_{\mathfrak{C}}(X, Y)$ is an isomorphism if there exists a morphism $g \in$ $\operatorname{Hom}_{\mathfrak{C}}(Y, X)$ such that

$$
f \circ g=\mathrm{id}_{Y} \text { and } g \circ f=\mathrm{id}_{X}
$$

(3) A subcategory \mathfrak{C}^{\prime} of \mathfrak{C} is a category such that
$-\mathbf{O b}\left(\mathfrak{C}^{\prime}\right) \subseteq \mathbf{O b}(\mathfrak{C})$,
$-\operatorname{Hom}_{\mathfrak{C}^{\prime}}(X, Y) \subseteq \operatorname{Hom}_{\mathfrak{C}}(X, Y)$ for all $X, Y \in \mathbf{O b}\left(\mathfrak{C}^{\prime}\right)$,
$-\mathrm{id}_{X} \in \operatorname{Hom}_{\mathfrak{C}^{\prime}}(X, X)$ for each $X \in \mathbf{O b}\left(\mathfrak{C}^{\prime}\right)$.
We say that \mathfrak{C}^{\prime} is a full subcategory of \mathfrak{C} if it is a subcategory and moreover $\operatorname{Hom}_{\mathfrak{C}^{\prime}}(X, Y)=\operatorname{Hom}_{\mathfrak{C}}(X, Y)$ for each pair (X, Y) of objects.
(4) Top is a subcategory, but not a full subcategory, of Set.
(5) The opposite category \mathfrak{C}° of \mathfrak{C} is defined as follows:
$\mathbf{O b}\left(\mathfrak{C}^{\circ}\right):=\mathbf{O b}(\mathfrak{C}), \quad \operatorname{Hom}_{\mathfrak{C}^{\circ}}(X, Y):=\operatorname{Hom}_{\mathfrak{C}}(Y, X)$.
(6) Let $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$.

- f is a monomorphism or is said to be injective if for any $W \in \mathbf{O b}(\mathfrak{C})$ and any $g, g^{\prime} \in \operatorname{Hom}_{\mathfrak{C}}(W, X)$ with $f \circ g=f \circ g^{\prime}$, we have $g=g^{\prime}$.

$$
W \xrightarrow[g^{\prime}]{g} X \xrightarrow{f} Y
$$

- f is an epimorphism or is said to be surjective if for any $Z \in \mathbf{O b}(\mathfrak{C})$ and any $h, h^{\prime} \in \operatorname{Hom}_{\mathfrak{C}}(Y, Z)$ with $h \circ f=h^{\prime} \circ f$, we have $h=h^{\prime}$.

$$
X \xrightarrow{f} Y \xrightarrow[h^{\prime}]{h} Z
$$

- f is said to be bijective if it is both injective and surjective.
(7) $P \in \mathbf{O b}(\mathfrak{C})$ is initial if for any $Y \in \mathbf{O b}(\mathfrak{C}), \operatorname{Hom}_{\mathfrak{C}}(P, Y)$ has exactly one element. $Q \in \mathbf{O b}(\mathfrak{C})$ is final if for any $X \in \mathbf{O b}(\mathfrak{C}), \operatorname{Hom}_{\mathfrak{C}}(X, Q)$ has exactly one element.

Exercise 1.1.5. (1) Prove that two initial (resp., final) objects are isomorphic.
(2) Isomorphism is bijective, but the converse may not true.

A (covariant) functor $F: \mathfrak{C} \rightarrow \mathfrak{C}^{\prime}$ between two categories consists

1) a map $F: \mathbf{O b}(\mathfrak{C}) \rightarrow \mathbf{O b}\left(\mathfrak{C}^{\prime}\right)$,
2) $\forall \operatorname{pair}(X, Y)$ in $\mathbf{O b}(\mathfrak{C}), \exists \operatorname{map} F: \operatorname{Hom}_{\mathfrak{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathfrak{C}^{\prime}}\left(F(X), F\left(X^{\prime}\right)\right)$.

These data satisfy
a) $F\left(\mathrm{id}_{X}\right)=\mathrm{id}_{F(X)}$, and
b) $F(f \circ g)=F(f) \circ F(g)$.

A contravariant functor $G: \mathfrak{C} \rightarrow \mathfrak{C}^{\prime}$ is a functor $G: \mathfrak{C}^{\circ} \rightarrow \mathfrak{C}^{\prime}$.

Example 1.1.6. (1) Forgetful factor $F:$ Top \rightarrow Set.
(2) Fundamental group functor $\pi_{1}: \operatorname{Top}_{*} \rightarrow \operatorname{Group},(X, x) \mapsto \pi_{1}(X, x)$ (the fundamental group of X at x).
(3) For a given $X \in \mathbf{O b}(\mathfrak{C})$, define

$$
\begin{aligned}
& \operatorname{Hom}_{\mathfrak{C}}(X, \cdot): \mathfrak{C} \longrightarrow \text { Set, } \quad Z \longmapsto \operatorname{Hom}_{\mathfrak{C}}(X, Z), \\
& \operatorname{Hom}_{\mathfrak{C}}(\cdot, X): \mathfrak{C} \longrightarrow \text { Set, } \quad Z \longmapsto \operatorname{Hom}_{\mathfrak{C}}(Z, X) .
\end{aligned}
$$

Then
$\operatorname{Hom}_{\mathfrak{C}}(X, \cdot)$ is covariant and $\operatorname{Hom}_{\mathscr{C}}(\cdot, X)$ is contravariant.

Consider two functors $F_{1}, F_{2}: \mathfrak{C} \rightarrow \mathfrak{C}^{\prime}$. A morphism or natural transformation $\theta: F_{1} \rightarrow F_{2}$ consists of

$$
X \in \mathbf{O b}(\mathfrak{C}) \Longrightarrow \theta(X) \in \operatorname{Hom}_{\mathfrak{C}^{\prime}}\left(F_{1}(X), F_{2}(X)\right)
$$

These data satisfy the following diagram

is commutative, i.e., $F_{2}(f) \circ \theta(X)=\theta(Y) \circ F_{1}(f)$, for any $X, Y \in \mathbf{O b}(\mathfrak{C})$ and $f \in$ $\operatorname{Hom}_{\mathfrak{C}}(X, Y)$.

Definition 1.1.7. Given two categories \mathfrak{C} and \mathfrak{C}^{\prime}, define a new category $\operatorname{Func}\left(\mathfrak{C}, \mathfrak{C}^{\prime}\right)$ with

$$
\mathbf{O b}\left(\operatorname{Func}\left(\mathfrak{C}^{\mathfrak{C}}, \mathfrak{C}^{\prime}\right)\right):=\left\{\text { functors } F: \mathfrak{C} \rightarrow \mathfrak{C}^{\prime}\right\}
$$

and

$$
\operatorname{Hom}_{\text {Func }\left(\mathfrak{C}, \mathfrak{C}^{\prime}\right)}\left(F_{1}, F_{2}\right):=\left\{\text { morphisms } \theta: F_{1} \rightarrow F_{2}\right\}
$$

Definition 1.1.8. Let \mathfrak{C} be a category. We say that $F: \mathfrak{C} \rightarrow$ Set is a representable functor if $\exists X \in \mathbf{O b}(\mathfrak{C})$ such that F is isomorphic to $\operatorname{Hom}_{\mathfrak{C}}(X, \cdot)$ in the category Func $(\mathbb{C}$, Set $)$.

Remark 1.1.9. If $F: \mathfrak{C} \rightarrow$ Set is representable, then X is unique up to isomorphism and is called a representative of F.

Definition 1.1.10. We say a functor $F: \mathfrak{C} \rightarrow \mathfrak{C}^{\prime}$ is fully faithful if $\forall X, Y \in \mathbf{O b}(\mathfrak{C})$, the map $\operatorname{Hom}_{\mathfrak{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathfrak{C}^{\prime}}(F(X), F(Y))$ is bijective.

Theorem 1.1.11. (Yoneda's lemma) (1) For any $X \in \mathbf{O b}(\mathfrak{C})$ and $F \in \mathbf{O b}\left(\mathfrak{C}^{\vee}\right)$, where $\mathfrak{C}^{\vee}:=\operatorname{Func}\left(\mathfrak{C}^{\circ}\right.$, Set $)$, we have

$$
\operatorname{Hom}_{C^{\vee}}\left(\operatorname{Hom}_{\mathfrak{C}}(X), F\right) \simeq F(X)
$$

in Set, where $\operatorname{Hom}_{\mathfrak{C}}: \mathfrak{C} \rightarrow \mathfrak{C}^{\vee}$ is a functor given by $\operatorname{Hom}_{\mathfrak{C}}(X):=\operatorname{Hom}_{\mathfrak{C}}(\cdot, X)$.
(2) Hom $_{\mathfrak{C}}$ is a fully faithful functor.

Proof. (1) To $f \in \operatorname{Hom}_{\mathfrak{C}}{ }^{\vee}\left(\operatorname{Hom}_{\mathfrak{C}}(X), F\right)$, we associate $\phi(f) \in F(X)$ as follows:

$$
f(X): \operatorname{Hom}_{\mathfrak{C}}(X, X) \longrightarrow F(X), \quad \mathrm{id}_{X} \longmapsto \phi(f):=f(X)\left(\mathrm{id}_{X}\right)
$$

Conversely, to $s \in F(X)$, we can associate $\psi(s) \in \operatorname{Hom}_{C^{\vee}}\left(\operatorname{Hom}_{\mathfrak{C}}(X), F\right)$ as follows:

$$
\operatorname{Hom}_{\mathfrak{C}}(Y, X) \xrightarrow{F} \operatorname{Hom}_{\text {Set }}(F(X), F(Y)) \xrightarrow{s} F(Y)
$$

with $\psi(s)(Y):=s \circ F$. Then ϕ and ψ are inverses to each other.
(2) For any $X, Y \in \mathbf{O b}(\mathfrak{C})$, one has

$$
\operatorname{Hom}_{\mathfrak{C}^{\vee}}\left(\operatorname{Hom}_{\mathfrak{C}}(X), \operatorname{Hom}_{\mathfrak{C}}(Y)\right) \simeq \operatorname{Hom}_{\mathfrak{C}}(\cdot, Y)(X)=\operatorname{Hom}_{\mathfrak{C}}(X, Y)
$$

which implies that $\operatorname{Hom}_{\mathfrak{C}}$ is fully faithful.
1.1.5. Relations. A relation on a set A is a subset C of $A \times A$. If C is a relation on A, then we write $x C y$ to be $(x, y) \in C$.

An equivalence relation on a set A is a relation C on A having the following properties:
a) (Reflexivity) $\forall x \in A \Longrightarrow x C x$,
b) (Symmetry) $x C y \Longrightarrow y C x$,
c) (Transitivity) $x C y$ and $y C z \Longrightarrow x C z$.

Notion: $\sim:=$ equivalence relation.
(1) The equivalence class of $x \in A$:

$$
[x]:=\{y \in A: y \sim x\} \ni x
$$

(2) Two equivalence classes are either disjoint or equal. Hence

$$
A=\bigcup\{[x]: x \in A\}
$$

(3) A partition of a set A is a collection of disjoint nonempty subsets of A whose union is A.
(4) Given a partition \mathscr{D} of A, there exists an equivalence relation \sim on A from which it is derived.

Indeed, define \sim on A by requiring $x \sim y$ if and only if x, y belong to the same element of \mathscr{D}. Then \sim is an equivalence relation on A. Assume that \sim and \sim^{\prime} are two equivalence relations on A that give rise to the same collection of equivalence classes \mathscr{D}. Given $x \in A$, let

$$
[x]:=\{y \in A: y \sim x\}, \quad[x]^{\prime}:=\left\{y \in A: y \sim^{\prime} x\right\} .
$$

Because $[x] \cap[x]^{\prime} \ni\{x\}$, we must have $[x]=[x]^{\prime}$.
A relation C on a set A is called an order relation or simple order or linear order, if it has the following properties:
a) (Comparability) $\forall x, y \in A$ with $x \neq y \Longrightarrow$ either $x C y$ or $y C x$,
b) (Nonreflexivity) there does not exist $x \in A$ such that $x C x$,
c) (Transitivity) $x C y$ and $y C z \Longrightarrow x C z$.

Notion: $<$:= order relation.
(1) Equivalently:
a) $x \neq y \Longrightarrow$ either $x<y$ or $y<x$,
b) $x<y \Longrightarrow x \neq y$,
c) $x<y$ and $y<z \Longrightarrow x<z$.
(2) $x \leq y$ means $x<y$ or $x=y$.
(3) Let $(X,<)$ be an order relation. For $a<b$, define

$$
(a, b):=\{x \in X: a<x<b\}
$$

called an open interval in X. If $(a, b)=$, then a is the immediate predecessor of b, and b is theimmediate successor of a.
(4) Consider two sets with order relations $\left(A,<_{A}\right)$ and $\left(B,<_{B}\right)$. We say A and B have the same order type if there exists a bijective correspondence between them that preserves orders. That is, there exists a bijective function $f: A \rightarrow B$ such that

$$
a_{1}<_{A} a_{2} \Longrightarrow f\left(a_{1}\right)<_{B} f\left(a_{2}\right)
$$

For example, $((-1,1),<)$ and $(\mathbb{R},<)$ have the sane order type $(x \mapsto$ $\left.\frac{x}{1-x^{2}}\right) ;(\{0\} \cup(1,2),<)$ and $([0,2),<)$ have the same order type $(0 \mapsto 0$ and $x \mapsto x-1$ for $1<x<2$).
(5) Let $\left(A,<_{A}\right)$ and $\left(B,<_{B}\right)$ be two sets with order relations. Define an order relation $<$ on $A \times B$ by

$$
\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)
$$

if $a_{1}<_{A} a_{2}$ or if $a_{1}=a_{2}$ and $b_{1}<_{B} b_{2}$.
Assume that $(A,<)$ is a set with order relation, and A_{0} is a subset of A.
(1) b is the largest number of A_{0} if $b \in A_{0}$ and if $x \leq b$ for any $x \in A_{0} . a$ is the smallest number of A_{0} if $a \in A_{0}$ and if $a \leq x$ for any $x \in A_{0}$.
(2) A_{0} is bounded above if there is a $b \in A$ such that $x \leq b$ for all $x \in A_{0}$. We call b is an upper bound for A_{0}. Let

$$
\sup \left(A_{0}\right):=\quad \begin{gathered}
\text { the smallest element among } \\
\text { all upper bounds for } A_{0}
\end{gathered}
$$

be the least upper bound or supremum.
A_{0} is bounded below if there is a $a \in A$ such that $a \leq x$ for all $x \in A_{0}$. We call a is a lower bound for A_{0}. Let

$$
\inf \left(A_{0}\right):=\begin{gathered}
\text { the largest element among } \\
\text { all lower bounds for } A_{0}
\end{gathered}
$$

be the greatest lower bound or infimum.
(3) $(A,<)$ is said to have the least upper bound property (or shortly LUBP) if any nonempty subset A_{0} of A that is bounded above has a least upper bound. Similarly, it is said to have the greatest lower bound property (or shortly GLBP) if any nonempty subset A_{0} of A that is bounded below has a greatest lower bound. Observe that LUBP \Leftrightarrow GLBP.

The set $B:=(-1,0) \cup(0,1)$ does not have the least upper bound property (check it!).
Given a set A, a relation \prec on A is called a strict partial order on A if it has the following properties:

1) (Non-reflexivity) $a \prec a$ never hold,
2) (Transitivity) $a \prec b$ and $b \prec c \Rightarrow a \prec c$.

On \mathbb{R}^{2}, there is a natural strict partial order \prec defined by

$$
\left(x_{0}, y_{0}\right) \prec\left(x_{1}, y_{1}\right) \quad \Longleftrightarrow \quad y_{0}=y_{1} \text { and } x_{0}<x_{1}
$$

Let A be a set with a strict partial order \prec.
(1) If $B \subseteq A$, an upper bound on B is an element c of A such that for any $b \in B$, either $b=c$ of $b \prec c$.
(2) A maximal element of A is an element m of A such that for no element a of A does the relation $m \prec a$ hold.
(3) Zorn's lemma (1935):

Let A be a set that is strictly partially ordered. If any simply ordered subset of A has an upper bound in A, then A has a maximal element.
One of applications of Zorn's lemma is as follows: Let $A=\left\{a_{n}\right\}_{n \geq 1}$ with $a_{i} \in \mathbb{R}$ and $\left|a_{i}\right| \leq M$ for some positive number M. Then $(A,<)$ is a set with the strict partial order $<$. By Zorn's lemma, A has a maximal element.

In general, consider a sequence of functions $f(x, t)$ such that $|f(x, t)| \leq M$ for all $x \in[0,1]$ and $t \in \mathbb{R}$. For each $x \in[0,1]$, define

$$
A_{x}:=\{f(x, t)\}_{t \in \mathbb{R}}
$$

Then A_{x} has a maximal element $f(x)$. Then we get a map

$$
f:[0,1] \longrightarrow A:=\cup_{x \in[0,1]} A_{x}, \quad x \longmapsto f(x) .
$$

What's behavior of this function $f(x)$?
1.1.6. Cartesian products II. Let \mathscr{A} be a nonempty collection of sets. An indexing function for \mathscr{A} is a surjective function f from some set J, called the index set, to \mathscr{A}.
(1) We say (\mathscr{A}, f) an indexed family of sets.
(2) Given $\alpha \in J$, denote the set $f(\alpha) \in \mathscr{A}$ by A_{α}, and the indexed family of sets by $\left\{A_{\alpha}\right\}_{\alpha \in J \text {. }}$.
(3) Define

$$
\begin{aligned}
& \bigcup_{\alpha \in J} A_{\alpha}:=\left\{x: \exists \alpha \in J \text { such that } x \in A_{\alpha}\right\}, \\
& \bigcap_{\alpha \in J} A_{\alpha}:=\left\{x: \forall \alpha \in J, x \in A_{\alpha}\right\} .
\end{aligned}
$$

(4) When $J=\{1, \cdots, n\}$, we denote (3) to be

$$
\bigcup_{\alpha \in J} A_{\alpha}=\bigcup_{1 \leq i \leq n} A_{i}, \bigcap_{\alpha \in J} A_{\alpha}=\bigcap_{1 \leq i \leq n} A_{i}
$$

(5) When $J=\mathbb{Z}_{\geq 1}$, we denote (3) to be

$$
\bigcup_{\alpha \in J} A_{\alpha}=\bigcap_{i \geq 1} A_{i}, \quad \bigcap_{\alpha \in J} A_{\alpha}=\bigcap_{i \geq 1} A_{i} .
$$

Let $m \in \mathbb{N}$. Given a set X, we define an m-tuple of elements of X to be a function

$$
x:\{1, \cdots, m\} \longrightarrow X
$$

For each $i\{1, \cdots, m\}$, write

$$
x(i):=x_{i}
$$

i-th coordinate of \boldsymbol{x}, and $\boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right)$.
(1) Let $\left\{A_{1}, \cdots, A_{m}\right\}$ be a family of sets indexed with the set $\{1, \cdots, m\}$. Let

$$
X:=A_{1} \cup \cdots \cup A_{m} .
$$

We define the Cartesian product of this indexed family, denoted by

$$
\prod_{1 \leq \leq \leq m^{\prime}}
$$

to be the set of all m-tuples $\left(x_{1}, \cdots, x_{m}\right)$ of elements of X such that $x_{i} \in$ $A_{i}, 1 \leq i \leq m$.

Remark 1.1.12. (1) Recall two definitions of $A \times B$:

$$
\begin{aligned}
& A \times_{1} B:=\{(a, b): a \in A \text { and } b \in B\} \\
& A \times_{2} B:=\{x:\{1,2\} \rightarrow A \cup B \text { such that } x(1) \in A \text { and } x(2) \in B\}
\end{aligned}
$$

Define

$$
f: A \times_{1} B \longrightarrow A \times_{2} B, \quad(a, b) \longmapsto f((a, b))
$$

with $f((a, b))(1)=a$ and $f((a, b))(2)=b$. Science f is bijective, $A \times_{1} B \cong A \times_{2} B$.
(2) For A, B, C, we have three Cartesian products

$$
A \times(B \times C), \quad(A \times B) \times C, \quad A \times B \times C
$$

that are bijective. In particular, we can define A^{m} for $m \geq 1$.

Given a set X, define ω-tuple of elements of X to be the function

$$
x: \mathbb{Z}_{\geq 1} \longrightarrow X, \quad n \longmapsto x_{n}:=x(n),
$$

and write $\boldsymbol{x}=\left(x_{n}\right)_{n \geq 1}$. Let $\left\{A_{i}\right\}_{i \in \mathbb{Z}_{\geq 1}}$ be a family of sets indexed with the positive integers. Let

$$
X:=\bigcup_{i \in \mathbb{Z}_{\geq 1}} A_{i}
$$

The Cartesian product of $\left\{A_{i}\right\}_{i \in \mathbb{Z}_{\geq 1}}$, denoted by

$$
\prod_{i \in \mathbb{Z}_{\geq 1}} A_{i}
$$

is defined to be the set of ω-tuples $\left(x_{i}\right)_{i \in \mathbb{Z}_{\geq 1}}$ of X such that $x_{i} \in A_{i}$.
In general, let J be an index set and X a set.
(1) An J-tuple of X is a function

$$
x: J \longrightarrow X, \quad \alpha \longmapsto x_{\alpha}:=x(\alpha),
$$

where x_{α} is said to be the α-coordinate of \boldsymbol{x}. Write $\boldsymbol{x}=\left(x_{\alpha}\right)_{\alpha \in J}$.
(2) Let

$$
X^{J}:=\{J \text {-tuples of elements of } X\}
$$

(3) Let $\left\{A_{\alpha}\right\}_{\alpha \in J}$ be an index family of sets, and $X:=\cup_{\alpha \in J} A_{\alpha}$. The Cartesian product of $\left\{A_{\alpha}\right\}_{\alpha \in J}$, denoted by

$$
\prod_{\alpha \in J} A_{\alpha}
$$

is defined to be the set of all J-tuples $\left(x_{\alpha}\right)_{\alpha \in J}$ of X such that $x_{\alpha} \in A_{\alpha}$.

When X_{n} are all \mathbb{R}, we obtain

$$
\mathbb{R}^{\omega}:=\prod_{n \geq 1} X_{n}
$$

1.1.7. Finite, countable and uncountable sets. In this subsection we study the set

$$
\{0,1\}^{\omega}:=\prod_{n \geq 1} X_{n}
$$

where $X_{n}:=\{0,1\}$.

Definition 1.1.13. A set A is finite, if it is empty or there is a bijective correspondence of A with some $\{1, \cdots, n\}$. When $A=\varnothing$ we say that A has cardinality 0 , otherwise we say that A has cardinality n.

Lemma 1.1.14. Suppose that $n \in \mathbb{Z}_{\geq 1}, A$ is a nonempty set, and $a_{0} \in A$. There is a bijective correspondence f of A with $\{1, \cdots, n+1\}$ if and only if there is a bijective correspondence g of $A \backslash\left\{a_{0}\right\}$ with $\{1, \cdots, n\}$.

PROOF. \Leftarrow : Define $f: A \rightarrow\{1, \cdots, n+1\}$ to be

$$
f\left(a_{0}\right):=n+1, \quad f(x):=g(x)\left(x \neq a_{0}\right) .
$$

\Rightarrow : If $f\left(a_{0}\right)=n+1$, then we define $g:=\left.f\right|_{A \backslash\left\{a_{0}\right\}}$. Suppose now that $f\left(a_{0}\right)=$ $m \in\{1, \cdots, n\}$, and let $a_{1} \in A$ be such that $f\left(a_{1}\right)=n+1$. Then $a_{1} \neq a_{0}$. Define $h: A \backslash\left\{a_{0}\right\} \rightarrow\{1, \cdots, n\}$ to be $h\left(a_{1}\right)=m$ and $h(x):=f(x)$ for $x \neq a_{1}$.

Theorem 1.1.15. Let A be a set and assume there is a bijection $f: A \rightarrow\{1, \cdots, n\}$ for some $n \in \mathbb{Z}_{\geq 1}$. If B is a proper subset of A, then there is no bijection $g: B \rightarrow\{1, \cdots, n\}$, but (provided $B \neq \varnothing$) there is a bijection $h: B \rightarrow\{1, \cdots, m\}$ for some $m<n$.

Proof. WLOG, we may assume that $B \neq \varnothing$. We prove it by induction. When $n=1, A=\{a\}$, and $B=\varnothing$. Suppose that the theorem is true for n. Let $f: A \rightarrow$ $\{1, \cdots, n+1\}$ be a bijection and B a nonempty proper subset of A. Take $a_{0} \in B$ and $a_{1} \in A \backslash B$. By Lemma 1.1.14, there is a bijection $g: A \backslash\left\{a_{0}\right\} \rightarrow\{1, \cdots, n\}$. Since $B \backslash\left\{a_{0}\right\}$ is a proper subset of $A \backslash\left\{a_{0}\right\}$, the inductive hypothesis implies that there is no bijection $h: B \backslash\left\{a_{0}\right\} \rightarrow\{1, \cdots, n\}$, and either $B \backslash\left\{a_{0}\right\}=\varnothing$ or there is a bijection $k: B \backslash\left\{a_{0}\right\} \rightarrow\{1, \cdots, m\}$ (for some $m<n$). Applying again Lemma 1.1.14 the theorem holds for $n+1$.

Corollary 1.1.16. (1) If A is finite, then there is no bijection of A with a proper subset of itself.
(2) $\mathbb{Z}_{\geq 1}$ is not finite.
(3) The cardinality of a finite set A is uniquely determined by A.
(4) Any subset of a finite set is finite. If B is a proper subset of a given finite set A, then the cardinality of B is strictly less than the cardinality of A.
(5) $B \neq \varnothing \Rightarrow$ TFAF:
(i) B is finite,
(ii) there is a surjective function from some $\{1, \cdots, n\}$ onto B,
(iii) there is an injective function from B into some $\{1, \cdots, n\}$.
(6) Finite union and finite Cartesian products of finite sets are finite.

Proof. (1) Assume that B is a proper subset of A and there is a bijection f : $A \rightarrow B$. Because A is finite, there is a bijection $g: A \rightarrow\{1, \cdots, n\}$. Then $g \circ f^{-1}:$ $B \rightarrow\{1, \cdots, n\}$ is a bijection, which is impossible!
(2) Define the map $f: \mathbb{Z}_{\geq 1} \rightarrow \mathbb{Z}_{\geq 1} \backslash\{1\}$ by $f(n):=n+1$. Since $\mathbb{Z}_{\geq 1} \backslash\{1\}$ is proper and f is bijective, it follows from (1) that $\mathbb{Z}_{\geq 1}$ can not be finite.
(3) Suppose that $f: A \rightarrow\{1, \cdots, n\}$ and $g: A \rightarrow\{1, \cdots, m\}$ are bijective, for some $m, n \in \mathbb{Z}_{\geq 1}$. Then $g \circ f^{-1}:\{1, \cdots, n\} \rightarrow\{1, \cdots, m\}$ is bijective, so that $m=n$.
(4) Clearly.
(5) $($ i $) \Rightarrow$ (ii) : clearly. (ii) \Rightarrow (iii) : Suppose that $f:\{1, \cdots, n\} \rightarrow B$ is surjective. Define $g: B \rightarrow\{1, \cdots, n\}$ to be

$$
g(b):=\text { the smallest element of } f^{-1}(\{b\})
$$

For $b \neq b^{\prime}, f^{-1}(\{b\}) \cap f^{-1}\left(\left\{b^{\prime}\right\}\right)=\varnothing$, so that g is injective. (iii) $\Rightarrow(i)$: Suppose that $g: B \rightarrow\{1, \cdots, n\}$ is injective. Then there is some $m \leq n$ such that $g: B \rightarrow$ $\{1, \cdots, m\}$ is bijective. Then B is finite.
(6) If A and B are finite and both are not empty. There are bijections f : $\{1, \cdots, m\} \rightarrow A$ and $g:\{1, \cdots, n\} \rightarrow B$ for some choice of m and n. Define

$$
h:\{1, \cdots, m+n\} \longrightarrow A \cup B, \quad i \longmapsto\left\{\begin{array}{cc}
f(i), & 1 \leq i \leq m \\
g(i-m), & m+1 \leq i \leq m+n
\end{array}\right.
$$

Since h is surjective, according to (5) we see that $A \cup B$ is finite. By induction, we can prove that finite unions of finite sets is finite.

From the relation

$$
A \times B:=\bigcup_{a \in A}\{a\} \times B
$$

which is the finite union of finite sets, we conclude that $A \times B$ and therefore finite Cartesian products of finite sets are finite.

Unfortunately, the situation of infinite Cartesian products of finite sets is more complicated. We need the following definitions.

Definition 1.1.17. (1) A set A is said to be infinite if it is not finite. It is said to be countably infinite if there is a bijective correspondence $f: A \rightarrow \mathbb{Z}_{\geq 1}$.
(2) A set is said to be countable if it is either finite or countably infinite. A set that is not countable is said to be uncountable.

Theorem 1.1.18. $B \neq \varnothing \Longrightarrow$ TFAE:
(a) B is countable,
(b) there is surjective function $f: \mathbb{Z}_{\geq 1} \rightarrow B$,
(c) there is injective function $g: B \rightarrow \mathbb{Z}_{\geq 1}$.

PROOF. $(a) \Rightarrow(b)$: obvious.
$(b) \Rightarrow(c)$: Let $f: \mathbb{Z}_{\geq 1} \rightarrow B$ be surjective. Define $g: B \rightarrow \mathbb{Z}_{\geq 1}$ by $g(b):=$ the smallest element of $f^{-1}(\{b\})$.
$(c) \Rightarrow(a):$ Let $g: B \rightarrow \mathbb{Z}_{\geq 1}$ be an injective function. Then there is a bijection of B with subset of $\mathbb{Z}_{\geq 1}$. Hence we suffice to prove that every subset of $\mathbb{Z}_{\geq 1}$ is countable (see Lemma 1.1.19).

Lemma 1.1.19. If C is an infinite subset of $\mathbb{Z}_{\geq 1}$, then C is countable infinite.

Proof. Define $h: \mathbb{Z}_{\geq 1} \rightarrow C$ a bijection as follows. Denote by $h(1)$ the smallest element of C. Then assuming that $h(1), \cdots, h(n-1)$ are defined. Let

$$
h(n):=\text { the smallest element of } C \backslash \bigcup_{1 \leq i \leq n-1} h(i)
$$

Claim 1: h is injective. If $m<n$, then $h(m) \in h(\{1, \cdots, n-1\})$ so that $h(m) \neq h(n)$.

Claim 2: h is surjective. Let $c \in C$. The injectivity of h implies $h\left(\mathbb{Z}_{\geq 1}\right)$ is infinite and therefore $h(n)>c$ for some $c \in \mathbb{Z}_{\geq 1}$. Let

$$
m:=\text { the smallest element of } \mathbb{Z}_{\geq 1} \text { such that } h(m) \geq c
$$

For each $i=1, \cdots, m-1$, we have $h(i)<c$ so that $c \in C \backslash \cup_{1 \leq i \leq m-1} h(i)$. From the definition of $h(m)$, we must have $h(m) \leq c$. Hence $h(m)=c$.

Corollary 1.1.20. (1) A subset of a countable set is countable.
(2) $\mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1}$ is countably infinite.

Proof. (1) Let $A \subseteq B$ and B be countable. By Theorem 1.1.18, there is an injection $f: B \rightarrow \mathbb{Z}_{\geq 1}$. Then $\left.f\right|_{A}: A \rightarrow \mathbb{Z}_{\geq 1}$ is also injective, so that A is countable.
(2) Since $\mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1}$ is infinite, we now construct an injection $f: \mathbb{Z}_{\geq 1} \times$ $\mathbb{Z}_{\geq 1} \rightarrow \mathbb{Z}_{\geq 1}$. Define

$$
f(n, m):=2^{n} 3^{m} .
$$

If $f(n, m)=f(p, q)$, then $2^{n} 3^{m}=2^{p} 3^{q}$. If $n<p$, then $3^{m}=2^{p-n} 3^{q}$, contradicting! Therefore $n=p$ and then $m=q$.

Theorem 1.1.21. (1) A countable union of countable sets is countable.
(2) A finite Cartesian product of countable sets is countable.
(3) $\{0,1\}^{\omega}$ is uncountable.
(4) Given a set A. Then there are no injection $f: 2^{A} \rightarrow A$ and surjection $g: A \rightarrow$ 2^{A}.
(5) $2^{\mathbb{Z}} \geq 1$ is uncountable.

Proof. Observe that (5) follows from (4) and Theorem 1.1.18.
(1) Let $\left\{A_{n}\right\}_{n \in J}$ be an indexed family of countable sets, where the index set J is either $\{1, \cdots, N\}$ or $\mathbb{Z}_{\geq 1}$. Assume each $A_{n} \neq \varnothing$. By Theorem 1.1.18, there are surjections $f_{n}: \mathbb{Z}_{\geq 1} \rightarrow A_{n}$ and $g: \mathbb{Z}_{\geq 1} \rightarrow J$. Define

$$
h: \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1} \longrightarrow \bigcup_{n \in J} A_{n}, \quad(k, m) \longmapsto f_{g(k)}(m)
$$

Then h is a surjective function.
(2)WLOG, we may assume that the Cartesian product of two countable sets A and B is countable. As in (1), there are surjections $f: \mathbb{Z}_{\geq 1} \rightarrow A$ and $g: \mathbb{Z}_{\geq 1} \rightarrow B$. Define $h: \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1} \rightarrow A \times B$ to be $h(m, n):=(f(m), g(n))$.
(3) Let $X=\{0,1\}$. For any given function $g: \mathbb{Z}_{\geq 1} \rightarrow X^{\omega}$, we claim that g is not surjective. Denote

$$
g(n):=\left(x_{n 1}, x_{n 2}, x_{n 3}, \cdots, x_{n n}, \cdots\right), \quad x_{i j} \in\{0,1\} .
$$

Define $\boldsymbol{y}:=\left(y_{i}\right)_{i \in \mathbb{Z}_{\geq 1}}$ by

$$
y_{n}:=\left\{\begin{array}{cc}
0, & x_{n n}=1 \\
1 & x_{n n}=0
\end{array}\right.
$$

Then $\boldsymbol{y} \in X^{\omega}$ but $\boldsymbol{y} \notin g\left(\mathbb{Z}_{\geq 1}\right)$.
(4) It suffices to prove that given a map $g: A \rightarrow 2^{A}$, the map g is not surjective (because the existence of an injection implies the existence of a surjection). Define

$$
B:=\{a \in A: a \in A \backslash g(a)\} \in 2^{A} .
$$

Assume that $g\left(a_{0}\right)=B$. Then

$$
a_{0} \in B \Longleftrightarrow a_{0} \in A \backslash g\left(a_{0}\right) \Longleftrightarrow a_{0} \in A \backslash B
$$

Hence g is not surjective.

Exercise 1.1.22. (1) A real number x is said to be algebraic if it satisfies some polynomial equation of positive degree

$$
0=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a_{i} \in \mathbb{Q} .
$$

Assuming that each polynomial equation has only finitely many roots, show that the set of algebraic numbers is countable.
(2) A real number is said to be transcendental if it is not algebraic. Assuming that \mathbb{R} is uncountable, show that the transcendental numbers are uncountable (e.g., e, π are transcendental).

Exercise 1.1.23. We say that two sets A and B have the same cardinality if there exists bijection of A and B.
(1) Show that if $B \subseteq A$ and if there is bijection $f: A \rightarrow B$, then A and B have the same cardinality. [Hint: define $A_{1}:=A, B_{1}:=B$, and for any $n \geq 2$, $A_{n}:=f\left(A_{n-1}\right), B_{n}:=f\left(B_{n-1}\right)$. Then $A_{1} \supseteq B_{1} \supseteq A_{2} \supseteq B_{2} \supseteq A_{3} \supseteq \cdots$. Define

$$
h: A \longrightarrow B, \quad x \longmapsto\left\{\begin{array}{cc}
f(x), & \text { if } x \in A_{n} \backslash B_{n} \text { for some } n \\
x, & \text { otherwise }
\end{array}\right.
$$

]
(2) (Schroeder-Berstein theorem) If there exist injections $A \rightarrow B$ and $B \rightarrow A$, then A and B have the same cardinality.

1.2. One variable functions

We have learned elementary functions in high schools:
(1) Constant functions: $y=c$,
(2) Power functions: $y=x^{a}, a \neq 0$,
(3) Exponential functions: $y=a^{x}, a>0, a \neq 1, x \in \mathbb{R}$,
(4) Logarithmic functions: $y=\log _{a} x, a>0, a \neq 1, x>0$,
(5) Trigonometric functions: $\sin x, \cos x, \tan x, \cot x, \sec x, \csc x$,
(6) Inverse trigonometric functions: $\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x, \cot ^{-1} x, \sec ^{-1} x$, $\csc ^{-1} x$.
1.2.1. Some special type functions. We also know, for example, periodic functions, bounded functions, even/odd functions, monotone functions, inverse functions, \cdots.

Example 1.2.1. (a) Dirichlet function

$$
D(x):=\left\{\begin{array}{lc}
1, & x \in \mathbb{Q} \\
0, & x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

(b) sign function

$$
\operatorname{sgn}(x):=\left\{\begin{array}{cc}
-1, & x<0 \\
0, & x=0 \\
1, & x>0
\end{array}\right.
$$

(c) Define

$$
\lfloor x\rfloor:=n \quad \text { if } n \leq x<n+1
$$

and

$$
\langle x\rangle:=x-\lfloor x\rfloor .
$$

(d) Define

$$
\pi(x):=\# \text { (prime numbers } \leq x) .
$$

(e) Möbius function

$$
\mu(n):=\left\{\begin{array}{cc}
(-1)^{r}, & n=p_{1} \cdots p_{r} \text { with } p_{1}, \cdots, p_{r} \text { distinct } \\
0, & \text { otherwise. }
\end{array}\right.
$$

Figure: Johann Peter Gustav Lejeune Dirichlet (1805/2/13-1859/5/5)
(f) Margoldt function

$$
\Lambda(n):=\left\{\begin{array}{cc}
\ln p, & n=p^{\alpha}, \alpha \geq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(g) Hyperbolic functions:

$$
\sinh x:=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x:=\frac{e^{x}+e^{-x}}{2}, \quad \tanh x:=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

Observe that $y=\sin x($ resp. $y=\sinh x)$ is a solution of ODE $y^{\prime \prime}+y=0($ resp. $y^{\prime \prime}-y=0$).
1.2.2. Prime numbers and prime number theorem. Let $p_{1}<p_{2}<\cdots$ be the sequence of all prime numbers.

Theorem 1.2.2. (Euclid's theorem) There are infinitely many prime numbers.

Proof. Otherwise, there are finite many prime numbers $p_{1}<\cdots<p_{N}$. Consider

$$
a:=p_{1} \cdots p_{N}+1
$$

Then there is some p_{i} that divides a; consequently, $p_{i} \mid 1$, which is a contradiction.

Basic Questions:

(A) Are there formulas giving the nth prime number? The answer is yes, and there are many! But they are useless! For example,

$$
p_{n}=1+\sum_{1 \leq m \leq 2^{n}}\left\lfloor\left\lfloor\frac{n}{1+\pi(m)}\right\rfloor^{1 / n}\right\rfloor .
$$

When $n=2$, this formula yields

$$
p_{2}=1+\sum_{1 \leq m \leq 4}\left\lfloor\left\lfloor\frac{2}{1+\pi(m)}\right\rfloor^{1 / 2}\right\rfloor=1+1+1+0+0=3
$$

(B) Behavior or distribution of primes. The answer is the Prime number theorem.
From Theorem 1.2.2, we see that

$$
p_{k+1} \leq p_{1}+\cdots p_{k}+1, \quad k \geq 1
$$

Because $p_{1}=2$, we have

$$
\begin{equation*}
p_{k} \leq 2^{2^{k-1}}, \quad k \geq 1 \tag{1.2.1}
\end{equation*}
$$

Indeed, by the induction hypothesis, one has

$$
p_{k+1} \leq \prod_{1 \leq i \leq k} p_{i}+1 \leq \prod_{1 \leq i \leq k} 2^{2^{i-1}}+1=2^{2^{k}}-1+1=2^{2^{k}}
$$

Corollary 1.2.3. For any $x \geq 2$, we get

$$
\begin{equation*}
\pi(x)>\ln \ln x \tag{1.2.2}
\end{equation*}
$$

PROOF. There is an integer $\ell \in \mathbb{Z}_{\geq 1}$ such that $2^{2^{\ell-1}} \leq x<2^{2^{\ell}}$. Hence $\pi(x) \geq \ell$ because $p_{\ell} \leq 2^{2^{\ell-1}} \leq x$. From $2^{\ell}>\ln x / \ln 2$ we can conclude that

$$
\pi(x)>\ell>\frac{\ln (\ln x / \ln 2)}{\ln 2}>\frac{\ln \ln x}{\ln 2}>\ln \ln x
$$

since $0<\ln 2<1$.
By the Taylor series (we shall learn later), $(1-z)^{-1}=\sum_{n \geq 0} z^{n}(|z|<1)$, we see

$$
2 \geq \frac{p}{p-1}=\left(1-\frac{1}{p}\right)^{-1}=1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots
$$

and

$$
\begin{aligned}
2^{\pi(x)} & \geq \prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}=\prod_{p \leq x}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right) \\
& \geq \sum_{n \leq x} \frac{1}{n} \geq \int_{1}^{\lfloor x\rfloor+1} \frac{d t}{t}=\ln (\lfloor x\rfloor+1)>\ln x .
\end{aligned}
$$

Here the definite integral will be given later.

Theorem 1.2.4. For any $x \geq 2$, we have

$$
\begin{equation*}
\pi(x) \geq \frac{1}{2 \ln 2} \ln \lfloor x\rfloor \tag{1.2.3}
\end{equation*}
$$

and then
(1.2.4)

$$
p_{n} \leq 4^{n}, \quad n \geq 1
$$

Figure: Leonhard Euler (1707/4/15-1783/9/18)

Proof. Let $2=p_{1}<p_{2}<\cdots<p_{j} \leq x$ be all primes $\leq x$. Write any $n \leq x$ as

$$
n=\ell^{2} \cdot m
$$

where ℓ is a positive integer and m is square-free (i.e., $m=p_{1}^{\epsilon_{1}} \ldots p_{j}^{\epsilon_{j}}, \epsilon_{1}, \cdots, \epsilon_{j} \in$ $\{0,1\}$). Then $\ell \leq \sqrt{x}$. There are at most \sqrt{x} possibilities for ℓ at most 2^{j} possibilities for m. Hence

$$
x \leq \sqrt{x} 2^{j} \Longrightarrow j \geq \frac{\ln \sqrt{x}}{\ln 2}=\frac{\ln x}{2 \ln 2} .
$$

Thus $\pi(x)=\pi(\lfloor x\rfloor) \geq \ln \lfloor x\rfloor / 2 \ln 2$.
Chebyshev estimates:
(1) Leonhard Euler (1762) and Carl Friedrich Gauss (1792) conjectured:

$$
\begin{equation*}
\pi(x) \sim \frac{x}{\ln x} \tag{1.2.5}
\end{equation*}
$$

(2) Adrien-Marie Legendre (1798) conjectured:

$$
\begin{equation*}
\pi(x) \sim \frac{x}{A \ln x+B} \tag{1.2.6}
\end{equation*}
$$

with (1808) $A=1$ and $B=-1.08366$.
(3) Charles-Jean de la Vallée Poussin and Jacques Hadamard (1896) proved the prime number theorem:

$$
\begin{equation*}
\pi(x) \sim \frac{x}{\ln x} \tag{1.2.7}
\end{equation*}
$$

(4) Logarithmic integral (Gauss):

$$
\begin{equation*}
\mathbf{l i}(x):=\text { p.v. } \int_{0}^{x} \frac{d t}{\ln t}=\lim _{\epsilon \rightarrow 0}\left(\int_{0}^{1-\epsilon}+\int_{1+\epsilon}^{x}\right) \frac{d t}{\ln t^{\prime}}, x \geq 2, \tag{1.2.8}
\end{equation*}
$$

is a good approximation for $\pi(x)$. Define

$$
\begin{equation*}
\mathbf{L i}(x):=\int_{2}^{x} \frac{d t}{\ln t} \quad \text { (definite integral). } \tag{1.2.9}
\end{equation*}
$$

Figure: Johann Carl Friedrich Gauss (1777/4/30-1855/2/23)

Figure: Adrien-Marie Legendre (1752/9/18-1833/1/10)
Then

$$
\begin{equation*}
\mathbf{L i}(x)=\underbrace{\lim _{\epsilon \rightarrow 0}\left(\int_{0}^{1-\epsilon}+\int_{1+\epsilon}^{2}\right) \frac{d t}{\ln t}}_{\text {well-defined improper integral }}+\mathbf{L i}(x) \tag{1.2.10}
\end{equation*}
$$

UNAFtamarw
Figure: Jacques Solomon Hadamard (1865/12/8-1963/10/17)

Figure: Pafnuty Chebyshev (1821/5/26-1894/12/8)

Figure: Paul Erdös (1913/3/26-1996/9/20)

Because

$$
\begin{gathered}
\lim _{\epsilon \rightarrow 0}\left(\int_{0}^{1-\epsilon}+\int_{1+\epsilon}^{2}\right) \frac{d t}{\ln t}=\lim _{\epsilon \rightarrow 0}\left(\int_{0}^{1-\epsilon} \frac{d t}{\ln t}+\int_{0}^{1-\epsilon} \frac{d s}{\ln (2-s)}\right) \\
=\lim _{\epsilon \rightarrow 0}\left[\int_{\epsilon}^{1} \frac{d u}{\ln (1-u)}+\int_{\epsilon}^{1} \frac{d u}{\ln (1+u)}\right]=\int_{0}^{1}\left[\frac{1}{\ln (1-u)}+\frac{1}{\ln (1+u)}\right] d u \\
\quad \text { and } \\
\lim _{u \rightarrow 0} u^{1 / 2}\left[\frac{1}{\ln (1-u)}+\frac{1}{\ln (1+u)}\right]=\lim _{u \rightarrow 0} \frac{u^{-1 / 2}}{2}[-(1-u)+(1+u)]=0 .
\end{gathered}
$$

(5) Prime number theorem implies

$$
\mathbf{l i}(x) \sim \mathbf{L i}(x) \sim \frac{x}{\ln x} \sim \pi(x)
$$

Since
$\mathbf{L i}(x)=\frac{x}{\ln x}+\frac{x}{\ln ^{2} x}-\frac{2}{\ln 2}-\frac{2}{\ln ^{2} 2}-2 \int_{2}^{x} \frac{d t}{\ln ^{3} t}=\frac{x}{\ln x}\left[1+\frac{1}{\ln x}+O\left(\frac{1}{\ln ^{2} x}\right)\right]$,
we get

$$
\pi(x) \sim \frac{x}{\ln x} \frac{1}{1-\frac{1}{\ln x}}=\frac{x}{\ln x-1}
$$

(6) Chebyshev's estimate (1850):

- for any $x \geq 2$,

$$
\begin{equation*}
c_{1} \frac{x}{\ln x} \leq \pi(x) \leq C_{1} \frac{x}{\ln x} \tag{1.2.11}
\end{equation*}
$$

where $c_{1}:=\ln \left(2^{1 / 2} 3^{1 / 3} 5^{1 / 5} / 30^{1 / 30}\right) \approx 0.921292$ and $C_{1}=6 c_{1} / 5 \approx$ 1.1055 .

- if $\pi(x) /(x / \ln x)$ has the limit as $x \rightarrow \infty$, then this limit must be 1.

Theorem 1.2.5. (Erdös) For any $x \geq 2$, we have

$$
\begin{equation*}
\frac{3 \ln 2}{8} \frac{x}{\ln x} \leq \pi(x) \leq 6 \ln 2 \frac{x}{\ln x} \tag{1.2.12}
\end{equation*}
$$

Proof. Step 1: Let $e_{p}(n!)$ be the exponent of which p appears in the factorization of n !. Then

$$
e_{p}(n!)=\sum_{k \geq 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor
$$

For example,

$$
e_{2}(4)=e_{2}\left(2^{3} \times 3\right)=3=2+1=\lfloor 4 / 2\rfloor+\left\lfloor 4 / 2^{2}\right\rfloor .
$$

Assume it holds for n and write $n+1=p^{u} m$ where $p \nmid m$. Then

$$
e_{p}((n+1)!)=e_{p}(n!)+u=\sum_{1 \leq k \leq u} \underbrace{\left(\left\lfloor\frac{n}{p^{k}}\right\rfloor+1\right)}_{\left\lfloor(n+1) / p^{k}\right\rfloor}+\sum_{k>u}\left\lfloor\frac{n}{p^{k}}\right\rfloor .
$$

Step 2: For any $n \geq 2$, one has

$$
\prod_{n<p \leq 2 n} p \left\lvert\,\binom{ 2 n}{n}\right. \text { and } \left.\binom{2 n}{n} \right\rvert\, \prod_{p<2 n} p^{r_{p}}
$$

where r_{p} is the unique integer satisfying $p^{r_{p}} \leq 2 n<p^{r_{p}+1}$. Indeed, the first divisibility relation is obvious. For $p<2 n$,

$$
e_{p}\left(\binom{2 n}{n}\right)=e_{p}((2 n)!)-2 e_{p}(n!)=\sum_{k \geq 1}\left(\left\lfloor\frac{2 n}{p^{k}}\right\rfloor-2\left\lfloor\frac{n}{p^{k}}\right\rfloor\right) .
$$

If $k>r_{p}$, then $p^{k} \geq p^{r_{p}+1}>2 n$ so that $\left\lfloor 2 n / p^{k}\right\rfloor=0=\left\lfloor n / p^{k}\right\rfloor$. Therefore

$$
e_{p}\left(\binom{2 n}{n}\right)=\sum_{1 \leq k \leq r_{p}}\left(\left\lfloor\frac{2 n}{p^{k}}\right\rfloor-2\left\lfloor\frac{n}{p^{k}}\right\rfloor\right)=\sum_{1 \leq k \leq r_{p}} 1=r_{p}
$$

since $\lfloor 2 y\rfloor-2\lfloor y\rfloor=1$ if $\frac{m}{2} \leq y \leq \frac{m+1}{2}$ for some $m \geq 0$.
Step 3: For any $x \geq 2$,

$$
\pi(x) \geq \frac{3 \ln 2}{8} \frac{x}{\ln x} .
$$

By Step 2, $\binom{2 n}{n} \leq(2 n)^{\pi(2 n)}$. Because

$$
(1+1)^{2 n}=\sum_{0 \leq k \leq 2 n}\binom{2 n}{k} \text { and }\binom{2 n}{n} \geq\binom{ 2 n}{k}(0 \leq k \leq 2 n),
$$

we get

$$
\binom{2 n}{n}>\frac{2^{2 n}}{2 n+1}>2^{n}, \quad n \geq 3
$$

Consequently,

$$
2^{n}<\frac{2^{2 n}}{2 n+1}<\binom{2 n}{n} \leq(2 n)^{\pi(2 n)} \Longrightarrow \pi(2 n)>\frac{\ln 2}{2} \frac{2 n}{\ln (2 n)}(n \geq 3) .
$$

Assume that $x \geq 8$ and let n be the unique integer satisfying $2 n \leq x<2 n+2$ (so $n \geq 3$). Moreover, $2 n>x-2 \geq \frac{3}{4} x$. Since the function $y \mapsto y / \ln y$ is increasing for any $y \geq e\left(\right.$ i.e., $(y / \ln y)^{\prime}=(\ln y-1) /(\ln y)^{2} \geq 0$ for $\left.y \geq e\right)$, we conclude that

$$
\pi(x) \geq \pi(2 n) \geq \frac{\ln 2}{2} \frac{2 n}{\ln (2 n)} \geq \frac{\ln 2}{2} \frac{3 x / 4}{\ln (3 x / 4)}=\frac{3 \ln 2}{8} \frac{x}{\ln x+\ln \frac{3}{4}}>\frac{3 \ln 2}{8} \frac{x}{\ln x}
$$

for $x \geq 8$.
Step 4: For $x \geq 2$, one has

$$
\pi(x) \leq 6 \ln 2 \frac{x}{\ln x} .
$$

By Step 2, $\pi_{n<p \leq 2 n} p<(1+1)^{2 n}=2^{2 n}$ and

$$
2 n \ln 2>\sum_{n<p \leq 2 n} \ln p \geq \ln n[\pi(2 n)-\pi(n)]=\pi(2 n) \ln n-\pi(n)\left(\ln \frac{n}{2}+\ln 2\right) .
$$

Using $\pi(n) \leq n$ yields

$$
\pi(2 n) \ln n-\pi(n) \ln \frac{n}{2}<2 n \ln 2+\pi(n) \ln 2<(3 \ln 2) n
$$

Write

$$
f(x):=\pi(2 n) \ln 2
$$

then

$$
f(n)-f(n / 2)<(3 \ln 2) n
$$

Take $n=2^{i}(2 \leq i \leq k)$ and obtain

$$
f\left(2^{i}\right)-f\left(2^{i-1}\right)<(3 \ln 2) 2^{i}
$$

Hence

$$
\pi\left(2^{k+1}\right) \ln \left(2^{k}\right)<3 \ln 2 \sum_{2 \leq i \leq k} 2^{i}+\pi(4) \ln 2<3 \ln 2 \sum_{1 \leq i \leq k} 2^{i}<(3 \ln 2) 2^{k+1}
$$

so that

$$
\pi\left(2^{k+1}\right)<(6 \ln 2) \frac{2^{k}}{\ln \left(2^{k}\right)}
$$

Given $x \geq 2$, choose $k \geq 1$ in such a way that $2^{k} \leq x<2^{k+1}$. If $x \geq 4$, then $k \geq 2$ and $2^{k} \geq 4>e$. Thus $2^{k} / \ln \left(2^{k}\right) \leq x / \ln x$ when $x \geq 4$. Therefore

$$
\pi(x) \leq \pi\left(2^{k+1}\right)<6 \ln 2 \frac{2^{k}}{\ln \left(2^{k}\right)}<(6 \ln 2) \frac{x}{\ln x}
$$

Step 3 and Step 4 give the desired result.
Bertrand's postulate:
(1) In 1845, Joseph Bertrand proved that for any $n \leq 6 \cdot 10^{6}$, there is a prime number in $[n, 2 n]$.
(2) Bertrand conjectured that (1) was true for any $n \in \mathbb{Z}_{\geq 1}$.
(3) In 1850, Chebyshev proved (2)

Theorem 1.2.6. For each $n \in \mathbb{N}$, there exists a prime number p such that $n<p \leq 2 n$.

Proof. The following proof is due to Erdös.
Step 1: For each $n \in \mathbb{N}$,

$$
\prod_{p \leq n} p<4^{n}
$$

WLOG, we may assume that $n \geq 3$ and the result holds for each $k-1, \cdots, n-1$. If n is even, then

$$
\prod_{p \leq n} p=\prod_{p \leq n-1} p
$$

Hence one can assume that n is odd. Write $n=2 m+1$ and observe

$$
\prod_{m+1<p \leq 2 m+1} p \left\lvert\,\binom{ 2 m+1}{m+1}\right., \quad\binom{2 m+1}{m+1} \leq \frac{2^{2 m+1}}{2}=4^{m}
$$

So

$$
\prod_{p \leq 2 m+1} p=\left(\prod_{p \leq m+1} p\right)\left(\prod_{m+1<p \leq 2 m+1} p\right) \leq 4^{m+1} \cdot 4^{m}=4^{2 m+1}
$$

Step 2: If $n \geq 3, p$ is prime, and $\frac{2}{3} n<p \leq n$, then

$$
p \nmid\binom{2 n}{n} .
$$

Indeed, $p>\frac{2}{3} n \geq 2$. Because $3 p>2 n$, we see that p and $2 p$ are the only multiplies of p which are $\leq 2 n$. Therefore $p^{2} \|(2 n)$!. Since

$$
\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}
$$

we conclude that $\binom{2 n}{n}$ is not a multiple of p.
Step 3: Assume that $n \geq 4$, and the result is false for some n (so that there are no primes in the interval $[n, 2 n]$). In this step, we shall show that $n<512$. By Step 2, each prime number p which divides $\binom{2 n}{n}$ is $\leq \frac{2}{3} n$. Let $p^{\alpha} \|\binom{ 2 n}{n}$. Then

$$
\alpha \leq r_{p} \text { and } p^{r_{p}} \leq 2 n<p^{r_{p}+1}
$$

If $\alpha \geq 2$, then $p^{2} \leq p^{\alpha} \leq 2 n$ and $p \leq \sqrt{2 n}$, so that

$$
\begin{aligned}
\binom{2 n}{n} & =\prod_{p \left\lvert\,\binom{ 2 n}{n}\right.} p=\left(\prod_{p \|\binom{ 2 n}{n}, \alpha=1} p^{\alpha}\right)\left(\prod_{p \|\binom{(2 n}{n}, \alpha \geq 2} p^{\alpha}\right) \\
& \leq \prod_{p \leq 2 n / 3} p \cdot \prod_{p \leq \sqrt{2 n}} p^{r_{p}} \leq 4^{2 n / 3} \cdot(2 n)^{\sqrt{2 n}} .
\end{aligned}
$$

Using $\binom{2 n}{n} \geq 2^{2 n} /(2 n+1)$ yields

$$
4^{2 n / 3}(2 n)^{\sqrt{2 n}} \geq \frac{4^{n}}{2 n+1} \Rightarrow 4^{n / 3} \leq(2 n)^{\sqrt{2 n}+2} \Rightarrow \frac{\ln 2}{3}(2 n)<(\sqrt{2 n}+2) \ln (2 n)
$$

Setting $y:=\sqrt{2 n}$, we get

$$
\frac{\ln 2}{3} y^{2}-2(y+2) \ln y<0
$$

Consider the function $f(y):=\frac{\ln 2}{3} y^{2}-2(y+2) \ln y$ with $y \geq 0$. From

$$
f^{\prime}(y)=\frac{2 \ln 2}{3} y-2 \ln y-2 \frac{y+2}{y}, \quad f^{\prime \prime}(y)=\frac{2}{3} \ln 2-\frac{2}{y}+\frac{4}{y^{2}}>\frac{2}{3} \ln 2-\frac{2}{y^{\prime}}
$$

we see that when $y>32, f^{\prime \prime}(y)>0$. Since $f^{\prime}(32)=\frac{64}{3} \ln 2-2 \ln (32)-2.2>0$, we obtain that $f^{\prime}(y)>0$ for $y \geq 32$. In particular, $f(y) \geq f(32)$ for $y \geq 32$. But

$$
f(32)=2^{10} \frac{\ln 2}{3}-340 \times \ln 2=\frac{1024-1020}{3} \ln 2=\frac{4}{3} \ln 2>0
$$

we conclude that $f(y)>0$ for any $y \geq 32$. This contradiction shows $y<32$ or $n<512$.

For each $n=1, \cdots, 511$, the interval [$n, 2 n$] always contains a prime number. Therefore in Step 4 the assumption is wrong. Thus the result holds.

Twin prime conjecture:
(1) Theorem 1.2.6implies

$$
\begin{equation*}
p_{n+1}-p_{n} \leq p_{n} \tag{1.2.13}
\end{equation*}
$$

Figure: Yitang Zhang (1955-)

Conjecture 1.2.7. (Gramer, 1936) One has
(1.2.14)

$$
\limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\left(\ln p_{n}\right)^{2}} \leq 1
$$

The sup/inf limit will be defined later.
(2) Baker-Haman-Pintz (2001) proved

$$
\begin{equation*}
p_{n+1}-p_{n}<p_{n}^{0.525}, \quad n \gg 1 . \tag{1.2.15}
\end{equation*}
$$

(4) If p and $p+2$ are both prime numbers, we say $(p, p+2)$ is twin prime.

Conjecture 1.2.8. (Twin prime conjecture) There exist infinitely many integers n such that $p_{n+1}-p_{n}=2$. Equivalently

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)=2 \tag{1.2.16}
\end{equation*}
$$

(4) Goldston-Pintz-Yildrim (2009-2010) proved

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\ln p_{n}}=0, \quad \liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\sqrt{\ln p_{n}}\left(\ln \ln p_{n}\right)^{2}}<\infty . \tag{1.2.17}
\end{equation*}
$$

Theorem 1.2.9. (Y.-T. Zhang, 2013) One has

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right) \leq 7 \times 10^{7} \tag{1.2.18}
\end{equation*}
$$

Let $b_{1}<\cdots<b_{k}$ be positive integers. For each prime number p, set

$$
\begin{equation*}
v_{b_{1}, \cdots, b_{l}}(p):=\#\left\{b_{i}(\bmod p): 1 \leq i \leq k\right\} \tag{1.2.19}
\end{equation*}
$$

Figure: Godfrey Harold Hardy (1877/2/7-1947/12/1)

When $k=2,\left(b_{1}, b_{2}\right)=(0,2)$, we have

$$
v_{0,2}(p)=\#\{0(\bmod p), 2(\bmod p)\}=\left\{\begin{array}{ll}
1, & p=2 \\
2, & p \geq 3
\end{array} \Longrightarrow v_{0,2}(p)<p\right.
$$

Conjecture 1.2.10. (Dickson, 1904) If $v_{b_{1}, \cdots, b_{k}}(p)<p$ for all prime numbers p, then there exist infinitely many positive integers n such that $n+b_{1}, \cdots, n+b_{k}$ are all prime numbers.

It is clear that Conjecture 1.2 .10 implies Conjecture 1.2 .8 .

Conjecture 1.2.11. (Hardy-Littlewood, 1923) For any $x, y \geq 1$, we have

$$
\begin{equation*}
\pi(x+y) \leq \pi(x)+\pi(y) \tag{1.2.20}
\end{equation*}
$$

Hensley-Richards (1972) proved that Conjecture 1.2.10 and Conjecture 1.2.11 are incompatible. People believe that Conjecture 1.2.10 is true, while Conjecture 1.2.11 would be false.
1.2.3. π and e. As we will prove later that

$$
\begin{align*}
e & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\sum_{k \geq 0} \frac{1}{k!}, \tag{1.2.21}\\
\frac{\pi^{2}}{6} & =\sum_{n \geq 1} \frac{1}{n^{2}} \\
n! & \sim n^{n} e^{-n} \sqrt{2 \pi n}, \quad n \rightarrow \infty . \quad \text { (Stirling'sformula) } \tag{1.2.23}
\end{align*}
$$

1.2.4. Metric spaces. Consider the n dimensional Euclidean space \mathbb{R}^{n} with the usual distance function $d_{\mathbb{R}^{n}}$ given by

$$
d_{\mathbb{R}^{n}}(\boldsymbol{x}, \boldsymbol{y}):=\left(\sum_{1 \leq i \leq n}\left(x^{i}-y^{i}\right)^{2}\right)^{1 / 2}, \quad x=\left(x^{1}, \cdots, x^{n}\right), \quad y=\left(y^{1}, \cdots, y^{n}\right)
$$

In high school it is well known that

- $d_{\mathbb{R}^{n}}(\boldsymbol{x}, \boldsymbol{y}) \geq 0$ and $d_{\mathbb{R}^{n}}(\boldsymbol{x}, \boldsymbol{y})=0$ if and only if $\boldsymbol{x}=\boldsymbol{y}$,
- $d_{\mathbb{R}^{n}}(\boldsymbol{x}, \boldsymbol{y})=d_{\mathbb{R}^{n}}(\boldsymbol{y}, \boldsymbol{x})$,
- $d_{\mathbb{R}^{n}}(\boldsymbol{x}, \boldsymbol{z}) \leq d_{\mathbb{R}^{n}}(\boldsymbol{x}, \boldsymbol{y})+d_{\mathbb{R}^{n}}(\boldsymbol{y}, \boldsymbol{z})$.

Definition 1.2.12. A metric space is a pair (X, d), where X is nonempty and d is a metric on X. That is, $d: X \times X \rightarrow \overline{\mathbb{R}}:=\overline{\mathbb{R}} \cup\{\infty\}$ satisfying

1) (Positiveness) $d(x, y) \geq 0$ and $d(x, y)=d(y, x)$,
2) (Symmetry) $d(x, y)=d(y, x)$,
3) (Triangle inequality) $d(x, z) \leq d(x, y)+d(y, z)$.

We say that d is finite if the image of d is contained in \mathbb{R}.
Any metric space induces a finite metric on some set. Indeed, let (X, d) be a metric space, and pick a point $x \in X$. Define

$$
[x]_{d}:=\{y \in X: d(x, y) \neq \infty\}
$$

Then $y \sim_{d} x \Leftrightarrow y \in[x]_{d}$ is an equivalence relation. Then d is a finite metric on $[x]_{d}$.

Definition 1.2.13. A map $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ between two metric spaces is called distance-preserving if

$$
\begin{equation*}
d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right), \quad x_{1}, x_{2} \in X \tag{1.2.24}
\end{equation*}
$$

A bijective distance-preserving map is called an isometry, Two metric spaces are isometric if there is an isometry between them.

Example 1.2.14. (1) For any given nonempty set X, we can define the trivial metric

$$
d_{\mathbb{R}}(x, y):=\left\{\begin{array}{cc}
0, & x=y \tag{1.2.25}\\
1 & x \neq y
\end{array}\right.
$$

(2) Let $X=\mathbb{R}$. There are two useful metrics:

$$
\begin{equation*}
d(x, y):=|x-y|, \quad d_{\ln }(x, y):=\ln (1+|x-y|) \tag{1.2.26}
\end{equation*}
$$

The second one appears in the complex algebraic geometry and differential geometry.
(3) Given two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, define the product metric on $X \times Y$ by

$$
\begin{equation*}
d_{X \times Y}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\left(d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)\right)^{1 / 2} \tag{1.2.27}
\end{equation*}
$$

Figure: Felix Hausdorff (1868/11/8-1942/1/26)
(4) $X=\mathbb{R}^{n}$:

$$
d_{\mathbb{R}^{n}}(x, y):=\left(\sum_{1 \leq i \leq n}\left(x^{i}-y^{i}\right)^{2}\right)^{1 / 2}
$$

(5) For a metric space (X, d) and $\lambda>0$, define

$$
\begin{equation*}
d_{\lambda}(x, y):=\lambda d(x, y) \tag{1.2.28}
\end{equation*}
$$

(6) If (X, d) is a metric space and $Y \subseteq X$, we see that $\left(Y, d_{Y}:=\left.d\right|_{X}\right)$ is itself a metric space.

Assume that (X, d) is a metric space.
(1) We say that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. That is, for any $\epsilon>0$, there exists a positive integer $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<\epsilon$ whenever $n, m \geq n_{0}$.
(2) (X, d) is said to be complete if any Cauchy sequence has a limit in X. It is clear that this limit is unique.
(3) $\left(\mathbb{R} \backslash 0,\left.d_{\mathbb{R}}\right|_{\mathbb{R} \backslash 0}\right)$ is non-complete.
(4) For $\delta>0$, define the δ-neighborhood of $A \subseteq X$ to be

$$
A_{\delta}:=\{x \in X: d(x, A)<\delta\}
$$

where $d(x, A):=\inf \{d(x, a): a \in A\}$.
(5) The Hausdorff distance between two given subsets $A, B \subseteq X$ is

$$
\begin{equation*}
d_{\mathbf{H}}^{X}(A, B):=\inf \left\{\delta>0: A \subseteq B_{\delta} \text { and } B \subseteq A_{\delta}\right\} \tag{1.2.29}
\end{equation*}
$$

Given metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, define the Gromov-Hausdoff distance

$$
d_{\mathbf{G H}}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right):=\inf \left\{\begin{array}{l}
d_{\mathbf{H}}^{Z}(f(X), g(Y)): \begin{array}{c}
\left(Z, d_{Z}\right) \text { metric space and } \\
f: X \hookrightarrow Z, g: Y \hookrightarrow Z \\
\text { isometric embeddings }
\end{array} \tag{1.2.30}
\end{array}\right\}
$$

Figure: Mikhail Gromov (1943/12/23-)
where isometric embeddings mean that $\left(X, d_{X}\right) \rightarrow\left(f(X),\left.d_{Z}\right|_{f(X)}\right)$ and $\left(Y, d_{Y}\right) \rightarrow$ $\left(g(Y),\left.d_{Z}\right|_{g(Y)}\right)$ are isometries.

We say a sequence of metric spaces $\left\{\left(X_{n}, d_{n}\right)\right\}_{n \geq 1}$ converges in the GromovHausdorff sense to a metric space (X, d), written as $\left(X_{n}, d_{n}\right) \rightarrow_{\mathbf{G H}}(X, d)$, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{\mathbf{G H}}\left(\left(x_{n}, d_{n}\right),(X, d)\right)=0 \tag{1.2.31}
\end{equation*}
$$

For example, a sequence of cylinders with decreasing to zero radius converges in the Gromov-Hausdorff sense to a line.

This concept is an important tool to study the behavior of "singular space", particularly the study of the Ricci flow (introduced by Hamilton) which leads to a proof (Perelman) of Poincarés conjecture (that is, any closed, simply-connected, three dimensional manifold is diffeomorphic to \mathbb{S}^{3}).
1.2.5. Functionals. Consider the function

$$
f(x):=x^{2}, \quad x \in \mathbb{R} .
$$

It is easy to check that f is continuous, $\min _{x \in \mathbb{R}} f(x)=f(0)=0$, and $f^{\prime}(0)=0$.
Let X denote the set of all functions defined on \mathbb{R} and consider

$$
\mathscr{F}: X \longrightarrow \mathbb{R}, \quad f \longmapsto f(0)^{2} .
$$

Clearly that $\min _{f \in X} \mathscr{F}(f)=\mathscr{F}(0)=0$.
Question: How can we define the "derivative" of \mathscr{F} ?

Definition 1.2.15. A vector space (over \mathbb{R}) is a set X, of elements x, y, z, \cdots (vectors), together with two operations of addition $(+)$ and multiplication (\cdot), satisfying
(1) $x+y \in X, \forall x, y \in X$,
(2) $a \in \mathbb{R}, x \in X \Longrightarrow a \cdot x \in X$,
(3) $x, y \in X \Longrightarrow x+y=y+x$,
(4) $x, y, z \in X \Longrightarrow(x+y)+z=x+(y+z)$,
(5) $\exists 0 \in X$ (zero vector) such that $x+0=x, \forall x \in X$,
(6) $\forall x \in X, \exists-x \in X$ such that $x+(-x)=0$,
(7) $\forall a, b \in \mathbb{R}, \forall x \in X \Longrightarrow a \cdot(b \cdot x)=(a b) \cdot x$,
(8) $\forall a \in \mathbb{R}, \forall x, y \in X \Longrightarrow a \cdot(x+y)=a \cdot x+a \cdot y$,
(9) $\forall a, b \in \mathbb{R}, \forall x \in X \Longrightarrow(a+b) \cdot x=a \cdot x+b \cdot x$,
(10) $\forall x \in X, 1 \cdot x=x$.

Equivalently, $(X,+, \cdot)$ is a vector space if $(X,+)$ is an Abelian group and $(X,+, \cdot)$ is a left \mathbb{R}-module.

Example 1.2.16. (1) \mathbb{R}^{n} is a vector space.
(2) Fix an interval $I \subset \mathbb{R}$, define

$$
X:=\{\text { real-valued functions defined on } I\} .
$$

Let

$$
(\phi+\psi)(x):=\phi(x)+\psi(x), \quad(a \cdot \phi)(x):=a \cdot \phi(x) .
$$

Then $(X,+, \cdot)$ is a vector space.
(3) Let

$$
X^{\prime}:=\{f \in X: f(0)-f(1)=1\}
$$

where X is the vector space given in (2) with $I=[0,1]$. Then $\left(X^{\prime},+, \cdot\right)$ is not a vector space (Hint: consider functions $f(x)=1-x$ and $g(x)=1-x^{2}$).

Definition 1.2.17. A functional is a map \mathscr{F} from a vector space X to \mathbb{R}.

Example 1.2.18. (Examples of functionals) (1) $\mathscr{F}(x):=\left(x^{2}\right)^{2}-\left(x^{1}\right)^{2}$ for $\boldsymbol{x}=$ $\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2}$.
(2) $X=C[0, \pi / 2]$ the space of all continuous functions over $[0, \pi / 2]$, and

$$
\mathscr{F}(\phi):=\int_{0}^{\pi / 2}\left[2 \phi(x)^{3}+9(\sin x) \phi(x)^{2}+12\left(\sin ^{2} x\right) \phi(x)-\cos x\right] d x
$$

(3) $X=\mathbb{R}^{2}$, and

$$
\mathscr{F}(\boldsymbol{x}):=\left\{\begin{array}{cc}
\frac{x y^{2}}{x^{2}+y^{4}}, & x \neq 0, \\
0, & x=0 .
\end{array}\right.
$$

Definition 1.2.19. Consider a functional $\mathscr{F}: X \rightarrow \mathbb{R}$. The Gateaux variation of \mathscr{F} at $x \in D \subseteq X$ is

$$
\begin{equation*}
\partial \mathscr{F}(x ; h):=\lim _{\epsilon \rightarrow 0} \frac{\mathscr{F}(x+\epsilon h)-\mathscr{F}(x)}{\epsilon} . \tag{1.2.32}
\end{equation*}
$$

Example 1.2.20. (1) $\mathscr{F}(\boldsymbol{x}):=\left(x^{2}\right)^{2}-\left(x^{1}\right)^{2}$ for $\boldsymbol{x}=\left(x^{1}, x^{2}\right)$,
Ə $\mathscr{F}(\boldsymbol{x} ; \boldsymbol{h})=\lim _{\epsilon \rightarrow 0} \frac{\left[\left(x^{2}+\epsilon h^{2}\right)^{2}-\left(x^{1}+\epsilon h^{1}\right)^{2}\right]-\left(x^{2}\right)^{2}-\left(x^{1}\right)^{2}}{\epsilon}=2\left(x^{2} h^{2}-x^{1} h^{1}\right)$.
(2) For \mathscr{F} defined in Example 1.2 .18 (2),

$$
\partial \mathscr{F}(\phi ; \phi)=\int_{0}^{\pi / 2}\left[6 \phi(x)^{2} \psi(x)+18 \sin x \phi(x) \psi(x)+12 \sin ^{2} x \psi(x)\right] d x
$$

(3) For \mathscr{F} defined in Example 1.2.18(3),

$$
\partial \mathscr{F}(\mathbf{0} ; \boldsymbol{h})=\left\{\begin{array}{cl}
\left(h^{2}\right)^{2} /\left(h^{1}\right)^{2}, & h^{1} \neq 0 \\
0, & h^{1}=0
\end{array}\right.
$$

1.3. References

(1) Munkres, James R. Topology, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. xvi+537 pp. ISBN: 0-13-181629-2 MR3728284
(2) Zhang, Fubao; Xue, Xingmei; Chao, Xiaoli. Lectures on Mathematical Analysis (Chinese), Science Press, 2019.
(3) Kashiwara, Masaki; Schapira, Pierre. Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer-Verlag, Berlin, 2006. x+497 pp. ISBN: 978-3-504-27949-5; 3-540-27949-0 MR21822076 (2006k:18001)
(4) Kashiwara, Masaki; Schapira, Pierre. Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, Berlin, 1990. x+512 pp. ISBN: 3-540-51861-4 MR1074006 (92a:58132)
(5) Iwaniec, Henryk; Kowalski, Emmanuel. Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004. xii+615 pp. ISBN: 0-8218-3633-1 MR2061214 (2005h: 11005)

CHAPTER 2

Sequences

2.1. Convergent sequences

2.1.1. Definition. Let $X=\mathbb{R}, d(x, y):=|x-y|$. Then (X, d) is a metric space. Actually (X, d) is a complete metric space, i.e., any Cauchy sequence has a limit in X. Recall that
$\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy $\Longleftrightarrow \forall \epsilon>0, \exists N \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<\epsilon, \forall n, m \geq N$, $\lim _{n \rightarrow \infty} x_{n}=x \in X \quad \Longleftrightarrow \forall \epsilon>0, \exists N \in \mathbb{N}$ such that $d\left(x_{n}, x_{m}\right)<\epsilon, \forall n \geq N$.

Definition 2.1.1. Given a sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$.
(1) $a \in \mathbb{R}$ is called a limit of $\left(a_{n}\right)_{n \in \mathbb{N}}$ if $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that

$$
\left|a_{n}-a\right|<\epsilon, \quad \text { whenever } n>N .
$$

We write $a_{n} \rightarrow a$ or $\lim _{n \rightarrow \infty} a_{n}=a$.
We shall prove that a limit of $\left(a_{n}\right)_{n \in \mathbb{N}}$, if exists, is unique. Hence we can say that a is the limit of $\left(a_{n}\right)_{n \in \mathbb{N}}$.
(2) $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent if $\exists a \in \mathbb{R}$ such that $a_{n} \rightarrow a$. Otherwise, we say that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is divergent.
2.1.2. Examples. We give some examples to practice " $\epsilon-N$ ".

Example 2.1.2. (1) $|q|<1 \Longrightarrow \lim _{n \rightarrow \infty} q^{n}=0$.
(2) $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$.
(3) $a \geq 1 \Longrightarrow \lim _{n \rightarrow \infty} \sqrt[n]{a}=1$.
(4) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.

Proof. (1) When $q=0$, each q^{n} is zero. Assume now that $0<|q|<1$.

$$
\left|q^{n}-0\right|<\epsilon \Longleftrightarrow|q|^{n}<\epsilon \Longleftrightarrow n>\frac{\ln \epsilon}{\ln |q|}
$$

Hence $\forall \epsilon>0, \exists N=\lfloor\ln \epsilon /|\ln | q \mid\rfloor$ such that

$$
\left|q^{n}-0\right|<\epsilon \quad \text { whenever } n>N .
$$

(2) Write

$$
\sqrt{n+1}-\sqrt{n}=\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2 \sqrt{n}}
$$

Then we can take $N=\left\lfloor 1 / 4 \epsilon^{2}\right\rfloor$.
(3) WLOG, we may assume that $a>1$. Hence $\sqrt[n]{a}>1$ and write it as $\sqrt[n]{a}=$ $1+y_{n}$. Because $y_{n}>0$ and

$$
a=\left(1+y_{n}\right)^{n}=1+n y_{n}+\frac{n(n-1)}{2} y_{n}^{2}+\cdots+y_{n}^{n}>1+n y_{n}
$$

we see that

$$
|\sqrt[n]{a}-1|=\left|y_{n}\right|<\frac{a-1}{n} \longrightarrow 0
$$

(4) As in (3), write $\sqrt[n]{n}=1+y_{n}$ with $y_{n}>0$. Then

$$
n=\left(1+y_{n}\right)^{n}=1+n y_{n}+\frac{n(n-1)}{2} y_{n}^{2}+\cdots+y_{n}^{n}>1+\frac{n(n-1)}{2} y_{n}^{2}
$$

and

$$
|\sqrt[n]{n}-1|=\left|y_{n}\right|<\sqrt{\frac{2}{n-1}} \longrightarrow 0
$$

Let $\left(a_{n}\right)_{n \geq 1}$ be a divergent sequence. Then $\forall a \in \mathbb{R}, a_{n} \nrightarrow a$. Thus

$$
a_{n} \nrightarrow a \Longleftrightarrow \exists \epsilon_{0}>0, \forall N \in \mathbb{N}, \exists n_{0}>N \text { such that }\left|a_{n_{0}}-a\right| \geq \epsilon_{0}
$$

Example 2.1.3. (1) $\left\{(-1)^{n-1}\right\}_{n \geq 1}$ is divergent.
(2) $\{\sin n\}_{n \geq 1}$ is divergent.

Proof. (1) We first prove that $(-1)^{n-1} \nrightarrow 1$. $\exists \epsilon_{0}=1, \forall N \in \mathbb{N}, \exists n_{0}=2 N>$ N such that

$$
\left|a_{n_{0}}-a\right|=\left|(-1)^{2 n-1}-1\right|=|-2|=2>1=\epsilon_{0}
$$

Next, for any $a \neq 1$, we show that $(-1)^{n-1} \nrightarrow a$. $\exists \epsilon_{0}=|a-1| / 2, \forall N \in \mathbb{N}$, $\exists n_{0}=2 N+1$ such that $\left|a_{n_{0}}-a\right|=|1-a|>\epsilon_{0}$.
(2) Because $|\sin n| \leq 1$, we suffice to show that $\forall A \in[-1,1], \sin n \nrightarrow A$. WLOG, we may assume that $0 \leq A \leq 1$. $\exists \epsilon_{0}=\sqrt{2} / 2, \forall N \in \mathbb{N}, \exists n_{0}=\lfloor(2 N \pi-$ $\left.\left.\frac{\pi}{2}\right)+\frac{\pi}{4}\right\rfloor$ such that $\sin n_{0}<-\sqrt{2} / 2$ and $\left|\sin n_{0}-A\right| \geq \sqrt{2} / 2=\epsilon_{0}$.

Remark 2.1.4. (1) Example 2.1.2(2) implies that

$$
\lim _{n \rightarrow \infty}\left(a_{n}-a_{n-1}\right)=0 \nRightarrow \lim _{n \rightarrow \infty} a_{n} \text { convergent. }
$$

(2) Example 2.1.3 implies that

$$
\left\{a_{n}\right\}_{n \geq 1} \text { bounded } \nRightarrow \lim _{n \rightarrow \infty} a_{n} \text { exists. }
$$

Example 2.1.5. If $\lim _{n \rightarrow \infty} a_{n}=a$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=a
$$

Proof. $\forall \epsilon>0, \exists N_{0} \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\epsilon / 2$ whenever $n>N_{0}$. Write

$$
\begin{aligned}
&\left|\frac{a_{1}+\cdots+a_{n}}{n}-a\right|=\left|\frac{a_{1}+\cdots+a_{n}-n a}{n}\right| \\
&=\left|\frac{a_{1}+\cdots+a_{N_{0}}-N_{0} a}{n}+\frac{\left(a_{N_{0}+1}-a\right)+\cdots+\left(a_{N}-a\right)}{n}\right| \\
& \leq \frac{\left|a_{1}+\cdots+a_{N_{0}}-N_{0} a\right|}{n}+\frac{\left|a_{N_{0}+1}-a\right|+\cdots+\left|a_{n}-a\right|}{n} \\
& \quad \leq \frac{n-N_{0}}{n} \frac{\epsilon}{2}+\frac{\left|a_{1}+\cdots+a_{N_{0}}-N_{0} a\right|}{n} .
\end{aligned}
$$

Take

$$
N>\max \left\{N_{0}, \frac{\left|a_{1}+\cdots+a_{N_{0}}-N_{0} a\right|}{\epsilon / 2}\right\}
$$

We then get

$$
\left|\frac{a_{1}+\cdots+a_{n}}{n}-a\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Example 2.1.6. Any real number is a limit of some sequence of rational numbers.
Proof. Given a real number $a \in \mathbb{R}$. Define $a_{n}:=\lfloor n a\rfloor / n$. Because

$$
n a-1<\lfloor n a\rfloor n a
$$

we have

$$
a-\frac{1}{n}<\frac{\lfloor n a\rfloor}{n}<a
$$

or

$$
\left|a_{n}-a\right|=\left|\frac{\lfloor n a\rfloor}{n}-a\right|<\frac{1}{n} \longrightarrow 0
$$

2.2. Properties of convergent sequences

2.2.1. Basic properties. We left a question in Definition 2.1.1 that a limit, if exists, is unique. In this subsection we shall prove this fact.

Theorem 2.2.1. (1) $a_{n} \rightarrow a, a_{n} \rightarrow b \Longrightarrow a=b$.
(2) $\left\{a_{n}\right\}_{n \geq 1}$ is convergent $\Longrightarrow\left\{a_{n}\right\}_{n \geq 1}$ is bounded.
(3) $a_{n} \rightarrow a, b_{n} \rightarrow b, a<b \Longrightarrow \exists N \in \mathbb{N}$ such that $a_{n}<b_{n}, \forall n \geq N$.
(4) $a_{n} \rightarrow a$ and $b<a<c \Longrightarrow \exists N \in \mathbb{N}$ such that $b<a_{n}<c, \forall n>N$.
(5) $a_{n} \rightarrow a, b_{n} \rightarrow b, a_{n} \leq b_{n}(\forall n>N) \Longrightarrow a \leq b$.
(6) $a_{n} \rightarrow a \Longrightarrow\left|a_{n}\right| \rightarrow|a|$.

Proof. (1) Given $\epsilon>0, \exists N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\left|a_{n}-a\right|<\epsilon \quad\left(\forall n>N_{1}\right) \quad \text { and } \quad\left|b_{n}-b\right|<\epsilon \quad\left(\forall n>N_{2}\right) .
$$

Then

$$
|a-b| \leq\left|a_{n}-b+\left|a_{n}-a\right|<2 \epsilon \quad\left(\forall n>\max \left(N_{1}, N_{2}\right)\right)\right.
$$

By the arbitrary of ϵ we must have $a=b$.
(2) Take $\epsilon=1, \exists N_{1} \in \mathbb{N}$ such that $a-1<a_{n}<a+1, \forall n>N_{1}$. Hence $\forall n \geq 1$,

$$
\min \left\{a_{1}, \cdots, a_{N}, a-1\right\} \leq a_{n} \leq \max \left\{a_{1}, \cdots, a_{N}, a+1\right\}
$$

(3) Take $\epsilon=\frac{b-a}{2}>0, \exists N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\left|a_{n}-a\right|<\frac{b-a}{2} \quad\left(n>N_{1}\right) \text { and }\left|b_{n}-b\right|<\frac{b-a}{2} \quad\left(n>N_{2}\right)
$$

Hence

$$
a_{n}<\frac{b-a}{2}+a=\frac{b+a}{2}<b_{n} \quad\left(n>\max \left(N_{1}, N_{2}\right)\right)
$$

(4) Letting $b_{n}>=b$ in (3), we can find $N \in \mathbb{N}$ such that $b=b_{n}<a_{n}(n>N)$.
(5) If $\lim _{n \rightarrow \infty} b_{n}=b<a=\lim _{n \rightarrow \infty} a_{n}$, then by (3), we have $b_{n}<a_{n}$ for al $n>N$.
(6) $a_{n} \rightarrow a$ implies that $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\epsilon$. Hence $\left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right|<\epsilon$.

Remark 2.2.2. (1) $\left\{a_{n}\right\}_{n \geq 1}$ is bounded $\nRightarrow\left\{a_{n}\right\}_{n \geq 1}$ is convergent.
(2) $a_{n} \rightarrow a, b_{n} \rightarrow b, a_{n}<b_{n} \nRightarrow a<b$. For example, $a_{n}=1 / n, b_{n}=2 / n$, but $a=b=0$.
(3) $\left\{\left|a_{n}\right|\right\}_{n \geq 1}$ is convergent $\nRightarrow\left\{a_{n}\right\}_{n \geq 1}$ is convergent.

Theorem 2.2.3. If $x_{n} \leq y_{n} \leq z_{n}$ holds for any $n \geq N_{0}$ and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}=$ a, then $\lim _{n \rightarrow \infty} y_{n}=a$.

Proof. $\forall \epsilon>0, \exists N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\left|x_{n}-a\right|<\epsilon, \quad\left|z_{n}-a\right|<\epsilon
$$

Then

$$
a-\epsilon<x_{n} \leq y_{n} \leq z_{n}<a+\epsilon
$$

for all $n>\max \left(N_{0}, N_{1}, N_{2}\right)$. Hence $x_{n} \rightarrow a$.

Example 2.2.4. (1) $a_{1}, \cdots, a_{k}>0 \Longrightarrow$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{1}^{n}+\cdots+a_{k}^{n}}=\max \left\{a_{1}, \cdots, a_{k}\right\} \tag{2.2.1}
\end{equation*}
$$

WLOG, we may assume that $\max \left\{a_{1}, \cdots, a_{k}\right\}=a_{1}$. Then

$$
a_{1}<\sqrt[n]{a_{1}^{n}+\cdots+a_{k}^{n}} \leq \sqrt[n]{k a_{1}^{n}}=(\sqrt[n]{k}) a_{1} \rightarrow a_{1}
$$

(2) One has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1+\sqrt[n]{2}+\cdots+\sqrt[n]{n}}{n}=1 \tag{2.2.2}
\end{equation*}
$$

Indeed,

$$
\frac{1+1+\cdots+1}{n} \leq \frac{1+\sqrt[n]{2}+\cdots+\sqrt[n]{n}}{n} \leq \frac{\sqrt[n]{n}+\cdots+\sqrt[n]{n}}{n}
$$

so $1 \leq(1+\sqrt[n]{2}+\cdots+\sqrt[n]{n}) / n \leq \sqrt[n]{n} \rightarrow 1$.
2.2.2. Algebraic operations. Suppose we have two sequences $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$, we can ask the behaviors of $a_{n} \pm b_{n}, a_{n} b_{n}$, and $a_{n} / b_{n}\left(b_{n} \neq 0\right.$ for larger $\left.n\right)$.

Theorem 2.2.5. Assume that $a_{n} \rightarrow a, b_{n} \rightarrow b$, and $\alpha, \beta \in \mathbb{R}$. Then

$$
\begin{equation*}
\alpha a_{n} \pm \beta b_{n} \rightarrow \alpha a \pm \beta b, \quad a_{n} b_{n} \rightarrow a b, \quad \frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}(b \neq 0) . \tag{2.2.3}
\end{equation*}
$$

PROOF. (1) $b_{b} \rightarrow b$ implies $-b_{n} \rightarrow-b$. We may prove $\alpha a_{n}+\beta b_{n} \rightarrow \alpha a+\beta b$.

$$
0 \leq\left|\left(\alpha a_{n}+\beta b_{n}\right)-(\alpha a+\beta b)\right| \leq|\alpha|\left|a_{n}-a\right|+|\beta|\left|b_{n}-b\right| \rightarrow 0 .
$$

(2) $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are convergent $\Longrightarrow\left|a_{n}\right| \leq M_{1}$ and $\left|b_{n}\right| \leq M_{2}$.
$0 \leq\left|a_{n} b_{n}-a b\right|=\left|a_{n}\left(b_{n}-b\right)+\left(a_{n}-a\right) b\right| \leq M_{1}\left|b_{n}-b\right|+M_{2}\left|a_{n}-a\right| \rightarrow 0$.
(3) $b_{n} \rightarrow b \Longrightarrow\left|b_{n}\right| \rightarrow|b|$. Since $|b|>0$, it follows that $\left|b_{n}\right|>|b| / 2$ for $n \gg 1$.

$$
\begin{gathered}
0 \leq\left|\frac{a_{n}}{b_{n}}-\frac{a}{b}\right|=\left|\frac{b\left(a_{n}-a\right)-a\left(b_{n}-b\right)}{b_{n} b}\right| \\
\leq \frac{|b|\left|a_{n}-a\right|+|a|\left|b_{n}-b\right|}{\left|b_{n}\right||b|} \leq \frac{2}{|b|^{2}}\left(|b|\left|a_{n}-a\right|+|a|\left|b_{n}-b\right|\right) \rightarrow 0 .
\end{gathered}
$$

Remark 2.2.6. (1) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)$ exists $\nRightarrow \lim _{n \rightarrow \infty} a_{n}$ exists or $\lim _{n \rightarrow \infty} b_{n}$ exists. For example, $a_{n}=(-1)^{n-1}, b_{n}=(-1)^{n}$.
(2) $\lim _{n \rightarrow \infty} a_{n} b_{n}$ exists $\nRightarrow \lim _{n \rightarrow \infty} a_{n}$ exists or $\lim _{n \rightarrow \infty} b_{n}$ exists. For example, $a_{n}=b_{n}=(-1)^{n-1}$.
(3) $\lim _{n \rightarrow \infty} a_{n} / b_{n}$ exists $\nRightarrow \lim _{n \rightarrow \infty} a_{n}$ exists or $\lim _{n \rightarrow \infty} b_{n}$ exists. For example, $a_{n}=(-1)^{n}, b_{n}=n$.

Example 2.2.7. (1) For all $a>0$,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a}=1 .
$$

Example 2.1.2implies 2.2.4 holds for $a \geq 1$. When $0<a<1$,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{\frac{1}{a}}}=\frac{1}{1}=1
$$

(2) For $q>1$,
(2.2.5)

$$
\lim _{n \rightarrow \infty} \frac{\log _{q} n}{n}=0
$$

In fact,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}<q^{\epsilon} \Longrightarrow \sqrt[n]{n}<q^{\epsilon}(\forall n>N)
$$

So

$$
\frac{\log _{q} n}{n}<\epsilon(\forall n>N) \Longrightarrow \frac{\log _{q} n}{n} \rightarrow 0
$$

2.2.3. Infinitely small and infinitely large sequences. A sequence $\left\{a_{n}\right\}_{n \geq 1}$ is said to be an infinitely small sequence, if $\lim _{n \rightarrow \infty} a_{n}=0$ or $a_{n} \rightarrow 0$.
(1) $a_{n} \rightarrow a \Longleftrightarrow a_{n}-a \rightarrow 0 \Longleftrightarrow a_{n}=a+\alpha_{n}$ with $\alpha_{n} \rightarrow 0$.
(2) $a_{n} \rightarrow 0 \Longleftrightarrow\left|a_{n}\right| \rightarrow 0$.
(3) $a_{n} \rightarrow 0, b_{n} \rightarrow 0 \Longrightarrow a_{n}+b_{n}, a_{n}-b_{n}, a_{n} b_{n} \rightarrow 0$.
(4) $a_{n} \rightarrow 0, b_{n} \rightarrow 0 \nRightarrow a_{n} / b_{n} \rightarrow 0$. For example,

$$
\left\{\begin{array}{l}
a_{n}=\frac{1}{n}, \\
b_{n}=\frac{1}{n},
\end{array} \quad \frac{a_{n}}{b_{n}} \equiv 1, \quad\left\{\begin{array}{c}
a_{n}=\frac{1}{n}, \\
b_{n}=\frac{1}{n^{2}},
\end{array} \quad \frac{a_{n}}{b_{n}}=n, \quad\left\{\begin{array}{cc}
a_{n}=\frac{1}{n^{2}}, & \frac{a_{n}}{b_{n}}=\frac{1}{n} \\
b_{n}=\frac{1}{n}, & . .
\end{array}\right.\right.\right.
$$

(5) $a_{n} \rightarrow 0,\left|b_{n}\right| \leq M \Longrightarrow a_{n} b_{n} \rightarrow 0$.

A sequence $\left\{a_{n}\right\}_{n \geq 1}$ is said to be an infinitely large sequence, if $\forall C>0$, $\exists N \in \mathbb{N}$ such that

$$
\left|a_{n}\right| \geq C \text { whenever } n>N
$$

Notation: $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $a_{n} \rightarrow \infty$.
(1) Write

$$
\begin{array}{ccc}
\lim _{n \rightarrow \infty} a_{n}=+\infty & \Longleftrightarrow & \left\{a_{n}\right\}_{n \geq 1} \text { is an infinitely large sequence } \\
\text { or } a_{n} \rightarrow+\infty & \text { and } a_{n}>0\left(\forall n \geq N_{0}\right) .
\end{array}
$$

(2) Write

$$
\begin{array}{ccc}
\lim _{n \rightarrow \infty} a_{n}=-\infty & \Longleftrightarrow & \left\{a_{n}\right\}_{n \geq 1} \text { is an infinitely large sequence } \\
\text { or } a_{n} \rightarrow-\infty & \text { and } a_{n}<0\left(\forall n \geq N_{0}\right) .
\end{array}
$$

(3) $a_{n} \rightarrow+\infty$ or $a_{n} \rightarrow-\infty \Longrightarrow a_{n} \rightarrow \infty$. But the convergence is not true, for example $a_{n}=(-1)^{n} n$.
(4) $a_{n}, b_{n} \rightarrow \pm \infty \Longrightarrow a_{n}+b_{n} \rightarrow \pm \infty$.
(5) $a_{n} \rightarrow \pm \infty, b_{n} \rightarrow \mp \infty \Longrightarrow a_{n}-b_{n} \rightarrow \pm \infty$.
(6) $a_{n} \rightarrow \infty,\left|b_{n}\right| \leq M \Longrightarrow a_{n} b_{n} \rightarrow \infty$.
(7) $a_{n}, b_{n} \rightarrow \pm \infty \Longrightarrow a_{n} b_{n} \rightarrow \pm \infty$.
(8) $a_{n} \rightarrow \pm \infty, b_{n} \rightarrow \mp \infty \Longrightarrow a_{n} b_{n} \rightarrow-\infty$.
(9) $a_{n} \rightarrow 0, a_{n} \neq 0 \Longrightarrow 1 / a_{n} \rightarrow \infty$.

Example 2.2.8. (1) $|q|>1 \Longrightarrow q^{n} \rightarrow \infty$. Indeed,

$$
\left|q^{n}\right|=|q|^{n} \geq|q|^{\frac{\ln C}{\ln |q|}}=C
$$

for $n \geq N=\lfloor\ln C / \ln |q|\rfloor$.
(2) $a_{n}:=\sum_{1 \leq k \leq n} 1 /(\sqrt{n}+\sqrt{k}) \rightarrow+\infty$. Indeed,

$$
a_{n}>\frac{n}{2 \sqrt{n}}=\frac{\sqrt{n}}{2} \rightarrow+\infty
$$

(3) Set

$$
a_{n}:=\frac{x_{0} n^{k}+x_{1} n^{k-1}+\cdots+x_{k-1} n+x_{k}}{y_{0} n^{\ell}+y_{1} n^{\ell-1}+\cdots+y_{\ell-1} n+y_{\ell}}, \quad\left(k, \ell \in \mathbb{N}, x_{0} y_{0} \neq 0\right)
$$

Since

$$
a_{n}=n^{k-\ell} \frac{x_{0}+\frac{x_{1}}{n}+\cdots+\frac{x_{k-1}}{n^{k-1}}+\frac{x_{k}}{n^{k}}}{y_{0}+\frac{y_{1}}{n}+\cdots+\frac{y_{\ell-1}}{n^{\ell-1}}+\frac{y_{\ell}}{n^{\ell}}}
$$

we get

$$
\lim _{n \rightarrow \infty} a_{n}=\left\{\begin{array}{cc}
0, & k<\ell \\
x_{0} / y_{0}, & k=\ell \\
\infty, & k>\ell
\end{array}\right.
$$

(4) $a_{n}=\sqrt[n]{n!} \rightarrow+\infty$. Observe that

$$
(n!)^{2}=(1 \cdot n)[2 \cdot(n-1)] \cdots[k(n-k)] \cdot(n \cdot 1)=\prod_{1 \leq k \leq n}[k(n-k+1)] \geq n^{2}
$$

since $k(n-k+1) \geq n$ which can be deduced from the inequality $(k-1)(n-k) \geq$ $0(1 \leq k \leq n)$.
2.2.4. Stolz's theorems. These theorems are used to deal with " ∞ / ∞ or " $0 / 0$ " limits.

Theorem 2.2.9. (Stolz's theorem I: " ∞ / ∞ " type) Given two sequence $\left\{x_{n}\right\}_{n \geq 1}$ and $\left\{y_{n}\right\}_{n \geq 1}$. If

$$
y_{n}<y_{n+1}, \quad y_{n} \rightarrow+\infty, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}=a(\text { a real number or } \pm \infty)
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}=a \tag{2.2.6}
\end{equation*}
$$

Proof. Case 1: $a=0 . \forall \epsilon>0, \exists N_{1} \in \mathbb{N}$ such that

$$
\left|x_{n}-x_{n-1}\right|<\epsilon\left(y_{n}-y_{n-1}\right), \quad \forall n>N_{1} .
$$

In particular,

$$
\left|x_{n}-x_{N_{1}}\right| \leq \sum_{N_{1}+1 \leq i \leq n}\left|x_{i}-x_{i-1}\right| \leq \sum_{N_{1}+1 \leq i \leq n} \epsilon\left(y_{i}-y_{i-1}\right)=\epsilon\left(y_{n}-y_{N_{1}}\right)
$$

thus

$$
\left|\frac{x_{n}}{y_{n}}-\frac{x_{N_{1}}}{y_{n}}\right| \leq \epsilon\left(1-\frac{y_{N_{1}}}{y_{n}}\right)<\epsilon
$$

But $y_{n} \rightarrow+\infty, \exists N_{2} \in \mathbb{N}$ such that $\left|x_{N_{1}} / y_{n}\right|<\epsilon$ whenever $n>N_{2}$. Finally,

$$
\left|\frac{x_{n}}{y_{n}}\right| \leq \epsilon+\epsilon=2 \epsilon
$$

whenever $n>N=\max \left\{N_{1}, N_{2}\right\}$.
Case 2: $a \neq 0$. The basic idea is to construct new sequences and then apply Case 1. Let

$$
\widetilde{x}_{n}:=x_{n}-a y_{n}
$$

Then

$$
\frac{\tilde{x}_{n}-\tilde{x}_{n-1}}{y_{n}-y_{n-1}}=\frac{\left(x_{n}-a y_{n}\right)-\left(x_{n-1}-a y_{n-1}\right)}{y_{n}-y_{n-1}}=\frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}-a \rightarrow 0
$$

From Case 1, we have $\widetilde{x}_{n} / y_{n} \rightarrow 0$ or $x_{n} / y_{0} \rightarrow a$.
Case 3: $a=+\infty . \exists N_{1} \in \mathbb{N}$ such that $x_{n}-x_{n-1}>y_{n}-y_{n-1}>0\left(\forall n>N_{1}\right)$. Moreover

$$
x_{n}-x_{N_{1}}=\sum_{N_{1}+i \leq i \leq n}\left(x_{i}-x_{i-1}\right)>\sum_{N_{1}+1 \leq i \leq n}\left(y_{i}-y_{i-1}\right)=y_{n}-y_{N_{1}}
$$

Letting $n \rightarrow+\infty$ yields $x_{n} \rightarrow+\infty$. According to Case 1,

$$
\lim _{n \rightarrow \infty} \frac{y_{n}}{x_{n}}=\lim _{n \rightarrow \infty} \frac{y_{n}-y_{n-1}}{x_{n}-x_{n-1}}=\frac{1}{+\infty}=0
$$

Case 4: $a=-\infty$. Observe that

$$
\frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}} \rightarrow-\infty \Longleftrightarrow \frac{\left(-x_{n}\right)-\left(-x_{n-1}\right)}{y_{n}-y_{n-1}} \rightarrow+\infty
$$

Now the last case follows from Case 3.

Theorem 2.2.10. (Stolz's theorem II: " $0 / 0$ " type) Given two sequences $\left\{x_{n}\right\}_{n \geq 1}$ and $\left\{y_{n}\right\}_{n \geq 1}$. If
$x_{n} \rightarrow 0, \quad y_{n}>y_{n+1}, \quad y_{n} \rightarrow 0, \quad$ and $\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n+1}}{y_{n}-y_{n+1}}=a($ a real number or $\pm \infty)$
then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n+1}}{y_{n}-y_{n+1}}=a \tag{2.2.7}
\end{equation*}
$$

Proof. Case 1: $a \in \mathbb{R} . \forall \epsilon>0, \exists N \in \mathbb{N}$ such thst

$$
a-\epsilon<\frac{x_{n}-x_{n+1}}{y_{n}-y_{n+}}<a+\epsilon, \quad \forall n>N
$$

or

$$
(a-\epsilon)\left(y_{n}-y_{n+1}\right)<x_{n}-x_{n+1}<(a+\epsilon)\left(y_{n}-y_{n+1}\right), \quad \forall n>N
$$

In particular,

$$
(a-\epsilon)\left(y_{n}-y_{n+p}\right)<x_{n}-x_{n+p}<(a+\epsilon)\left(y_{n}-y_{n+p}\right), \quad \forall n>N \text { and } p \geq 1
$$

Letting $p \rightarrow+\infty$ yields

$$
(a-\epsilon) y_{n} \leq x_{n} \leq(a+\epsilon) y_{n} \Longrightarrow\left|\frac{x_{n}}{y_{n}}-a\right| \leq \epsilon
$$

Case 2: $a=+\infty$. Given $C>0, \exists N \in \mathbb{N}$ such that $x_{n}-x_{n+1}>C\left(y_{n}-y_{n+1}\right)$ $\Longrightarrow x_{n}-x_{n+p}>C\left(y_{n}-y_{n+p}\right), \forall n>N$ and $p \geq 1$. Letting $p \rightarrow+\infty$ yields $x_{n} / y_{n} \geq$ C.

Case 3: $a=-\infty$. The proof is similar to that given in Theorem 2.2.9 Case 4.

Example 2.2.11. (1) $a_{n} \rightarrow a \Longrightarrow$

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+2 a_{2}+\cdots+n a_{n}}{n^{2}}=\frac{a}{2}
$$

(2) $\lim _{n \rightarrow \infty} a_{n}=a$ or $\pm \infty \Longrightarrow \lim _{n \rightarrow \infty} \frac{1}{n}\left(a_{1}+\cdots+a_{n}\right)=a$.
(3) $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\ell \Longrightarrow$ Find $\lim _{n \rightarrow \infty} a_{n} / n$ and $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{1 \leq i \leq n} a_{i}$.
(4) $a_{n} \leq a_{n+1}, \lim _{n \rightarrow \infty} \frac{1}{n}\left(a_{1}+\cdots+a_{n}\right)=a \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=a$.
(5) $a_{n}=s_{n}-s_{n-1}, \sigma_{n}=\frac{1}{n+1}\left(s_{0}+\cdots+s_{n}\right), n a_{n} \rightarrow 0, \sigma_{n}$ is convergent $\Longrightarrow s_{n}$ is also convergent and

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sigma_{n}
$$

PROOF. (1) Let $y_{n}:=a_{1}+2 a_{2}+\cdots+n a_{n}$, and $y_{n}:=n^{2}$. By Theorem 2.2.9.

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}=\lim _{n \rightarrow \infty} \frac{n a_{n}}{n^{2}-(n-1)^{2}}=\lim _{n \rightarrow \infty} \frac{n a_{n}}{2 n-1}=\frac{a}{2}
$$

(2) Let $x_{n}=a_{1}+\cdots+a_{n}$ and y_{n}. Then

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}}=\lim _{n \rightarrow \infty} a_{n}=a
$$

(3) Let $x_{n}:=a_{n+1}-a_{n}$ and

$$
y_{n}:=\frac{1}{n+1} \sum_{1 \leq i \leq n} x_{i}=\frac{a_{n+1}-a_{0}}{n+1}
$$

Because $x_{n} \rightarrow \ell$, we obtain $y_{n} \rightarrow \ell\left(\right.$ by (2)) and then $a_{n} / n \rightarrow \ell$. Similarly set

$$
\tilde{y}_{n}:=\frac{1}{n^{2}} \sum_{1 \leq i \leq n} i\left(a_{i+1}-a_{i}\right)=\frac{1}{n^{2}}\left(n a_{n+1}-\sum_{1 \leq i \leq n} a_{i}\right) .
$$

By (1), $\widetilde{y}_{n} \rightarrow \ell / 2$ so that $\sum_{1 \leq i \leq n} a_{i} / n^{2}=\frac{a_{n+1}}{n}-\widetilde{y}_{n} \rightarrow \ell-\frac{\ell}{2}=\frac{\ell}{2}$.
(4) Since $a_{n} \leq a_{n+1}$, it follows that $\sigma_{n}:=\frac{1}{n}\left(a_{1}+\cdots+a_{n}\right) \leq n a_{n} / n=a_{n}$. On the other hand, for all $m>n$,

$$
\sigma_{m}=\frac{1}{m}\left(\sum_{1 \leq i \leq n} a_{i}+\sum_{n+1 \leq i \leq m} a_{i}\right) \geq \frac{1}{m} \sum_{1 \leq i \leq n} a_{i}+\frac{m-n}{m} a_{n} \rightarrow a_{n}
$$

as $m \rightarrow \infty$. Therefore $\sigma_{n} \rightarrow a$.
(5) Observe that

$$
s_{n}-\sigma_{n}=\frac{1}{n+1} \sum_{1 \leq i \leq n} i a_{i} .
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{1 \leq i \leq n} i a_{i}=\lim _{n \rightarrow \infty} \frac{\sum_{1 \leq i \leq n} i a_{i}-\sum_{1 \leq i \leq n-1} i a_{i}}{(n+1)-n}=\lim _{n \rightarrow \infty} n a_{n}=0 .
$$

(6) According to (3), we know that $a_{n} \rightarrow a \Longrightarrow \frac{1}{n}\left(a_{1}+\cdots+a_{n}\right) \rightarrow a$. However, the converse is not true. For example, consider the sequence $\left\{(-1)^{n}\right\}_{n \geq 1}$.

Example 2.2.12. (1) $k \in \mathbb{Z}_{+} \Longrightarrow$

$$
\lim _{n \rightarrow \infty} n\left(\frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k+1}}-\frac{1}{k+1}\right)=\frac{1}{2}
$$

(2) $\lim _{n \rightarrow \infty} n\left(a_{n}-a\right)=b, k \in \mathbb{Z}_{+} \Longrightarrow$

$$
\lim _{n \rightarrow \infty} n\left(\frac{a_{1}+2^{k} a_{2}+\cdots+n^{k} a_{n}}{n^{k+1}}-\frac{a}{k+1}\right)=\frac{b}{k}+\frac{a}{2} .
$$

Proof. (1) Using Theorem 2.2.9 we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(\frac{1^{k}+\cdots+n^{k}}{n^{k+1}}-\frac{1}{k+1}\right)=\lim _{n \rightarrow \infty} \frac{(k+1)\left(1^{k}+\cdots+n^{k}\right)-n^{k+1}}{(k+1) n^{k}} \\
= & \lim _{n \rightarrow \infty} \frac{\left[(k+1)\left(1^{k}+\cdots+n^{k}\right)-n^{k+1}\right]-\left[(k+1)\left(1^{k}+\cdots+(n-1)^{k}\right)-(n-1)^{k+1}\right]}{(k+1) n^{k}-(k+1)(n-1)^{k}} \\
= & \lim _{n \rightarrow \infty} \frac{(k+1) n^{k}-\left[n^{k+1}-(n-1)^{k+1}\right]}{(k+1)\left[n^{k}-(n-1)^{k}\right]}=\lim _{n \rightarrow+\infty} \frac{\frac{1}{2} k(k+1) n^{k}+\cdots}{k(k+1) n^{k}+\cdots}=\frac{1}{2} .
\end{aligned}
$$

(2) Observe that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n\left(\frac{a_{1}+2^{k} a_{2}+\cdots+n^{k} a_{n}}{n^{k+1}}-\frac{a}{k+1}\right) \\
=\lim _{n \rightarrow \infty} \frac{(k+1) \sum_{1 \leq i \leq n} i^{k} a_{i}-a n^{k+1}}{(k+1) n^{k}}=\lim _{n \rightarrow \infty} \frac{(k+1) n^{k} a_{n}-a\left(n^{k+1}-(n-1)^{k+1}\right)}{(k+1)\left[n^{k}-(n-1)^{k}\right]}
\end{gathered}
$$

and

$$
n^{k+1}-(n-1)^{k+1}=(n-1+1)^{k+1}-(n-1)^{k+1}=(k+1)(n-1)^{k}+\frac{k(k+1)}{2}(n-1)^{k-1}+\cdots .
$$

Hence

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n\left(\frac{a_{1}+2^{k} a_{2}+\cdots+n^{k} a_{n}}{n^{k+1}}-\frac{a}{k+1}\right) \\
=\lim _{n \rightarrow \infty} \frac{(k+1) a_{n} n^{k}-(k+1) a(n-1)^{k}-\frac{a k(k+1)}{2}(n-1)^{k-1}+\cdots}{(k+1)\left[k(n-1)^{k-1}+\cdots\right]}
\end{gathered}
$$

$$
\begin{gathered}
=\lim _{n \rightarrow \infty} \frac{(k+1) n^{k}\left(a_{n}-a\right)+(k+1) a\left[n^{k}-(n-1)^{k}\right]-\frac{k(k+1) a}{2}(n-1)^{k-1}+\cdots}{(k+1)\left[k(n-1)^{k}+\cdots\right]} \\
=\frac{b}{k}+a-\frac{a}{2}=\frac{b}{k}+\frac{a}{2} .
\end{gathered}
$$

Theorem 2.2.13. (Toeplitz's theorem) Assume that $p_{n 0}+p_{n 1}+\cdots+p_{n n}=1$ for all $n \in \mathbb{N}$, and each $p_{i j} \geq 0$. Let

$$
y_{n}:=\sum_{0 \leq i \leq n} p_{n i} x_{i}, \quad n \in \mathbb{N} .
$$

Then TFAE:
(i) $x_{n} \rightarrow a \Longrightarrow y_{n} \rightarrow a$,
(ii) $p_{n m} \rightarrow 0$ for each $m \in \mathbb{N}$.

Proof. \Longrightarrow : Take $x_{n}=\delta_{n m}$. Then $x_{n} \rightarrow 0$ and $y_{n}=p_{n m}(n \geq m)$. Hence

$$
\lim _{n \rightarrow \infty} p_{n m}=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} x_{n}=0
$$

\Longleftarrow : Suppose $x_{n} \rightarrow a$. Then $\exists M>0$ such that $\left|x_{n}-a\right| \leq M$ for all $n \in \mathbb{Z}_{+}$. $\forall \epsilon>0, \exists N^{*} \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\epsilon / 2$ for all $n>N^{*}$. But from $\lim _{n \rightarrow \infty} p_{n i}=$ 0 , we get that $\exists N_{i}>N^{*}$ such that

$$
0 \leq p_{n i} \leq \frac{\epsilon}{2 N^{*} M}, \quad n>N_{i}
$$

Let $N:=\max _{0 \leq i \leq N^{*}} N_{i}$. Then

$$
\begin{aligned}
\left|y_{n}-a\right| & =\left|\sum_{0 \leq i \leq n} p_{n i} x_{i}-\sum_{0 \leq i \leq n} p_{n i} a\right| \\
& \leq \sum_{0 \leq i \leq N^{*}} p_{n i}\left|x_{i}-a\right|+\sum_{N^{*}+1 \leq i \leq n} p_{n i}\left|x_{i}-a\right| \\
& <M N^{*} \frac{\epsilon}{2 N^{*} M}+\frac{\epsilon}{2} \sum_{N^{*}+1 \leq i \leq n} p_{n i}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Example 2.2.14. (1) $b_{n}>0, b_{0}+b_{1}+\cdots+b_{n} \rightarrow \infty, a_{n} / b_{n} \rightarrow s \Longrightarrow$

$$
\lim _{n \rightarrow \infty} \frac{a_{0}+a_{1}+\cdots+a_{n}}{b_{0}+b_{1}+\cdots+b_{n}}=s
$$

(2) $p_{k}>0, \frac{p_{n}}{p_{0}+p_{1}+\cdots+p_{n}} \rightarrow 0, s_{n} \rightarrow s \Longrightarrow$

$$
\lim _{n \rightarrow \infty} \frac{\sum_{0 \leq i \leq n} s_{i} p_{n-i}}{\sum_{0 \leq i \leq n} p_{i}}=s
$$

(3) $p_{k}, q_{k}>0, \frac{p_{n}}{p_{0}+\cdots+p_{n}} \rightarrow 0, \frac{q_{n}}{q_{0}+\cdots+q_{n}} \rightarrow 0 \Longrightarrow$

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{\sum_{0 \leq i \leq n} r_{i}}=0
$$

Here $r_{n}:=\sum_{0 \leq i \leq n} p_{i} q_{n-i}$.
Proof. (1) Let $x_{n}:=a_{n} / b_{n}, p_{n m}:=b_{m} / \sum_{0 \leq i \leq n} b_{i}$, and $y_{n}:=\sum_{0 \leq i \leq n} p_{n i} x_{i}$. Then

$$
\lim _{n \rightarrow \infty} p_{n m}=0, \quad \sum_{0 \leq i \leq n} p_{n i}=1, \quad p_{n m} \geq 0
$$

By Theorem 2.2.13.

$$
\lim _{n \rightarrow \infty} \frac{\sum_{0 \leq i \leq n} a_{i}}{\sum_{0 \leq i \leq n} b_{i}}=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} x_{n}=s
$$

(2) Let $p_{n m}:=p_{n-m} / \sum_{0 \leq i \leq n} p_{i}$, where $0 \leq m \leq n$ and $n=1,2, \cdots$, and

$$
x_{n}:=s_{n}, \quad y_{n}:=\sum_{0 \leq i \leq n} p_{n i} x_{i}=\frac{\sum_{0 \leq i \leq n} s_{i} p_{n-i}}{\sum_{0 \leq i \leq n} p_{i}}
$$

(3) Let

$$
P_{n}:=\sum_{0 \leq i \leq n} p_{i}, \quad Q_{n}:=\sum_{0 \leq i \leq n} q_{n}, \quad R_{n}:=\sum_{0 \leq i \leq n} r_{i},
$$

and

$$
p_{n m}:=\frac{p_{n-m} Q_{m}}{\sum_{0 \leq i \leq n} p_{i} Q_{n-i}}, \quad x_{n}:=\frac{q_{n}}{Q_{n}}, \quad y_{n}:=\sum_{0 \leq i \leq n} p_{n i} x_{i} .
$$

Example 2.2.15. (1) Show that

$$
\begin{equation*}
\left(\frac{n}{3}\right)^{n}<n!<\left(\frac{n+2}{\sqrt{6}}\right)^{n} \tag{2.2.8}
\end{equation*}
$$

(2) Show that

$$
\begin{equation*}
n<\left(1+\frac{2}{\sqrt{n}}\right)^{n} \tag{2.2.9}
\end{equation*}
$$

Proof. (1) Recall that

$$
(n!)^{2}=\prod_{1 \leq k \leq n}[k(n-k+1)] \geq n^{n}
$$

so that

$$
n!>n^{n / 2}=(\sqrt{n})^{n}
$$

The inequality (2.2.8) gives a better lower bound for $n!$ than $(\sqrt{n})^{n}$. Suppose that $k!>(k / 3)^{k}$ holds. Since

$$
(k+1)!=(k+1) k!>(k+1)\left(\frac{k}{3}\right)^{k}
$$

it follows that in order to prove $(k+1)!>((k+1) / 3)^{k+1}$ we shall prove

$$
(k+1)\left(\frac{k}{3}\right)^{k}>\left(\frac{k+1}{3}\right)^{k+1}
$$

or

$$
3 k^{k}>(k+1)^{k} \Longleftrightarrow\left(1+\frac{1}{k}\right)^{k}<3
$$

But

$$
\begin{aligned}
\left(1+\frac{1}{k}\right)^{k} & =1+1+\sum_{2 \leq i \leq k} \frac{k(k-1) \cdots(k-i+1)}{i!} \frac{1}{k^{i}} \\
& <2+\sum_{2 \leq i \leq k} \frac{1}{i!}<2+\sum_{2 \leq i \leq k} \frac{1}{i(i-1)}<3 .
\end{aligned}
$$

Assume that $k!<((k+2) / \sqrt{6})^{k}$. From $(k+1)!=(k+1) k!<(k+1)((k+$ 2) $/ \sqrt{6})^{k}$, we shall prove that

$$
(k+1)\left(\frac{k+2}{\sqrt{6}}\right)^{k}<\left(\frac{k+3}{\sqrt{6}}\right)^{k+1}
$$

Indeed,

$$
\begin{gathered}
\left(\frac{k+3}{\sqrt{6}}\right)^{k+1}=\left(\frac{k+2}{\sqrt{6}}+\frac{1}{\sqrt{6}}\right)^{k+1}>\left(\frac{k+2}{\sqrt{6}}\right)^{k+1}+(k+1)\left(\frac{k+2}{\sqrt{6}}\right)^{k} \frac{1}{\sqrt{6}} \\
+\frac{(k+1) k}{2}\left(\frac{k+2}{\sqrt{6}}\right)^{k-1} \frac{1}{(\sqrt{6})^{2}}+\frac{(k+1) k(k-1)}{6}\left(\frac{k+2}{\sqrt{6}}\right)^{k-2} \frac{1}{(\sqrt{6})^{3}} \\
=\left(\frac{k+2}{\sqrt{6}}\right)^{k}\left[\frac{k+2}{\sqrt{6}}+\frac{k+1}{\sqrt{6}}+\frac{k(k+1)}{2 \sqrt{6}(k+2)}+\frac{(k+1) k(k-1)}{6 \sqrt{6}(k+2)^{2}}\right] \\
=\left(\frac{k+2}{\sqrt{6}}\right)^{k} \frac{16 k^{3}+75 k^{2}+125 k+72}{6 \sqrt{6}(k+2)^{2}}
\end{gathered}
$$

We now claim that

$$
\frac{16 k^{3}+75 k^{2}+125 k+72}{6 \sqrt{6}(k+2)^{2}}>k+1 \Leftrightarrow 16 k^{3}+75 k^{2}+125 k+72>6 \sqrt{6}\left(k^{3}+5 k^{2}+8 k+4\right)
$$

But this follows from the following observation: $16>6 \sqrt{6}, 75>30 \sqrt{6}, 125>$ $48 \sqrt{6}$, and $72>24 \sqrt{6}$.
(2) it follows from

$$
\left(1+\frac{2}{\sqrt{n}}\right)=1+n \cdot \frac{2}{\sqrt{n}}+\frac{n(n-1)}{2}\left(\frac{2}{\sqrt{n}}\right)^{2}+\cdots>\frac{n(n-1)}{2} \frac{4}{n}=2(n-1)
$$

When $n \geq 2$, we get $2(n-1) \geq n$.

Example 2.2.16. Let $x_{1}=a, x_{2}=b$, and $x_{n}=\left(x_{n-1}+x_{n-2}\right) / 2$. Find $\lim _{n \rightarrow \infty} x_{n}$.

Proof. Observe that

$$
x_{n+1}-x_{n}=\frac{x_{n}+x_{n-1}}{2}-x_{n}=\frac{x_{n-1}-x_{n}}{2}=\cdots=\frac{x_{2}-x_{1}}{(-2)^{n-1}}=\frac{b-a}{(-2)^{n-1}}
$$

and

$$
\begin{gathered}
x_{n+1}=\sum_{1 \leq m \leq n}\left(x_{m+1}-x_{m}\right)+x_{1}=(b-a) \sum_{1 \leq m \leq n} \frac{1}{(-2)^{m-1}}+a \\
=(b-a) \frac{1-(-1 / 2)^{n-1}}{1-(-1 / 2)}+a \rightarrow \frac{2}{3}(b-a)+a=\frac{2 b+a}{3} .
\end{gathered}
$$

Example 2.2.17. (1) Suppose that $\lambda \in \mathbb{R}$ and $|\lambda|<1$. Then

$$
\lim _{n \rightarrow \infty} a_{n}=a \Longleftrightarrow \lim _{n \rightarrow \infty}\left(a_{n+1}-\lambda a_{n}\right)=(1-\lambda) a .
$$

(2) We have

$$
\lim _{n \rightarrow \infty} a_{n}=a \Longleftrightarrow \lim _{n \rightarrow \infty}\left(4 a_{n+2}-4 a_{n+1}+a_{n}\right)=a .
$$

Proof. (1) The " \Rightarrow " is clear. Now we assume that $a_{n+1}-\lambda a_{n} \rightarrow(1-\lambda) a$. Let

Then

$$
x_{n}:=a_{n+1}-\lambda a_{n} .
$$

$$
\frac{a_{n+1}}{\lambda^{n+1}}=\frac{a_{n}}{\lambda^{n}}+\frac{x_{n}}{\lambda^{n+1}}
$$

and

$$
a_{n}=\lambda^{n}\left(a_{0}+\sum_{1 \leq k \leq n} \frac{x_{k-1}}{\lambda^{k}}\right), \quad n \in \mathbb{Z}_{+} .
$$

When $0<\lambda<1$, we have $\lambda^{n} \rightarrow 0$ and by Theorem 2.2.9

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{a_{0}+\sum_{1 \leq k \leq n} \frac{x_{k-1}}{\lambda^{k}}}{\left(\frac{1}{\lambda}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{x_{n}}{\lambda^{n+1}}}{\left(\frac{1}{\lambda}\right)^{n+1}-\left(\frac{1}{\lambda}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{x_{n}}{1-\lambda}=\frac{(1-\lambda) a}{1-\lambda}=a .
\end{aligned}
$$

When $\lambda=0$, the conclusion is trivial. When $-1<\lambda<0$, we consider the term

$$
a_{2 n}=\lambda^{2 n}\left(a_{0}+\sum_{1 \leq k \leq 2 n} \frac{x_{k-1}}{\lambda^{k}}\right) .
$$

Hence

$$
\lim _{n \rightarrow \infty} a_{2 n}=\frac{1}{1-\lambda^{2}} \lim _{n \rightarrow \infty}\left(x_{2 n+1}+\lambda x_{2 n}\right)=a .
$$

Similarly,

$$
-a_{2 n+1}=(-\lambda)^{2 n+1}\left(a_{0}+\sum_{1 \leq k \leq 2 n+1} \frac{x_{k-1}}{\lambda^{k}}\right)
$$

and

$$
\lim _{n \rightarrow \infty} a_{2 n+1}=-\frac{1}{\lambda^{2}-1} \lim _{n \rightarrow \infty}\left(x_{2 n+2}+\lambda x_{2 n+1}\right)=a
$$

According to Theorem 2.3.9. $\lim _{n \rightarrow \infty} a_{n}=a$.
(2) Assume that $4 a_{n+2}-4 a_{n+1}+a_{n} \rightarrow a$. Observe that

$$
\begin{gathered}
4 a_{n+2}-4 a_{n+1}+a_{n}=4\left(a_{n+2}-a_{n+1}+\frac{1}{4} a_{n}\right) \\
=4\left[\left(a_{n+2}-\frac{1}{2} a_{n+1}\right)-\frac{1}{2}\left(a_{n+1}-\frac{1}{2} a_{n}\right)\right]:=4\left(y_{n+1}-\frac{1}{2} y_{n}\right) .
\end{gathered}
$$

Hence

$$
y_{n+1}-\frac{1}{2} y_{n} \rightarrow \frac{1}{4} a=\left(1-\frac{1}{2}\right) \frac{a}{2}
$$

By (1), we must have

$$
\lim _{n \rightarrow \infty} y_{n}=\frac{a}{2} \text { or } a_{n+1}-\frac{1}{2} a_{n} \rightarrow\left(1-\frac{1}{2}\right) a
$$

Using (1) again yields $a_{n} \rightarrow a$.

Example 2.2.18. Define

$$
a_{n+1}:=\sin a_{n}, \quad n \in \mathbb{N} \text { and } 0<a_{0}<\pi .
$$

Show that

$$
a_{n} \text { is decreasing and } \lim _{n \rightarrow \infty} a_{n}=0
$$

Moreover

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt{3 / n}}=1
$$

Proof. $a_{1}=\sin a_{0} \in(0, \pi)$. In general, we have $0<a_{n}<\pi$. Since $\sin x<x$ for all $x \in(0, \pi)$, it follows that $a_{n+1}<a_{n}$. By Theorem 2.3.1, the limit $\lim) n \rightarrow \infty a_{n}$ exists, says $\alpha \in[0, \pi)$. Hence $\alpha=\sin \alpha$ which implies $\alpha=0$.

By Theorem 2.2.9.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n a_{n}^{2}} & =\lim _{n \rightarrow \infty} \frac{\frac{1}{a_{n}^{2}}}{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{a_{n+1}^{2}}-\frac{1}{a_{n}^{2}}}{(n+1)-n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{a_{n+1}^{2}}-\frac{1}{a_{n}^{2}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{\sin ^{2} a_{n}}-\frac{1}{a_{n}^{2}}\right)=\frac{1}{3}
\end{aligned}
$$

Here we used the fact that

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{x^{2}-\sin ^{2} x}{x^{2} \sin ^{2} x}=\lim _{x \rightarrow 0} \frac{\frac{x^{4}}{3}}{x^{4}}=\frac{1}{3}
$$

and $\sin ^{2} x \sim\left(x-\frac{x^{3}}{6}+o\left(x^{4}\right)\right)^{2} \sim x^{2}-\frac{x^{4}}{3}+\cdots$.

2.3. Convergence tests

The most important test is the so-called Cauchy criterion which gives a necessary and sufficient condition on the convergence of a given sequence.
2.3.1. Monotone sequences. A sequence $\left\{a_{n}\right\}_{n \geq 1}$ is said to be (monotonically) increasing (resp. decreasing) if $a_{n} \leq a_{n+1}$ (resp. $a_{n} \geq a_{n+1}$) for all $n=$ $1,2, \cdots$.

Theorem 2.3.1. Suppose that $\left\{a_{n}\right\}_{n \geq 1}$ is monotonic (i.e., monotonically increasing or decreasing). Then

$$
\begin{equation*}
\left\{a_{n}\right\}_{n \geq 1} \text { is convergent } \Longleftrightarrow\left\{a_{n}\right\}_{n \geq 1} \text { is bounded. } \tag{2.3.1}
\end{equation*}
$$

PROOF. \Longrightarrow : clearly.
$\Longleftarrow:$ WLOG, we may assume that $a_{n} \leq a_{n+1}$. Let $E:=\left\{a_{n}: n=1,2, \cdots\right\}$. If $\left\{a_{n}\right\}_{n \geq 1}$ is bounded, then by Zorn's lemma $a:=\sup E$ exists and hence $a_{n} \leq a$.
$\forall \epsilon>0, \exists N \in \mathbb{N}$ such that $a-\epsilon<a_{N} \leq a$, for otherwise, $a-\epsilon$ would be an upper bound of E. Since a_{n} is increasing, we get that $a-\epsilon<a_{n} \leq a$ for all $n>N$.

Example 2.3.2. (1) $a_{1}:=\sqrt{2}, a_{n+1}:=\sqrt{2+a_{n}}(n \geq 1) \Longrightarrow$ Find $\lim _{n \rightarrow \infty} a_{n}$.
(2) $a_{1}>0, a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{1}{a_{n}}\right)(n \geq 1) \Longrightarrow$ Find $\lim _{n \rightarrow \infty} a_{n}$.

Proof. (1) Observe that

- If $\lim _{n \rightarrow \infty} a_{n}=a$, then " $a=\sqrt{2+a^{\prime}} " \Longrightarrow(a-2)(a+1)=0 \Longrightarrow a=2$.
- $a_{2}=\sqrt{2+a_{1}}=\sqrt{2+\sqrt{2}}>a_{1}, a_{2}<\sqrt{2+2}=2 ; a_{3}=\sqrt{2+a_{2}}>$ $\sqrt{2 a_{2}}>a_{2}$.
In general, we claim that

$$
\sqrt{2} \leq a_{n}<2 \text { and } a_{n+1}>a_{n}
$$

In fact, $\sqrt{2} \leq a_{n}<2 \Longrightarrow a_{n+1}=\sqrt{2+a_{n}}<\sqrt{2+2}=2$, and $a_{n+1}>a_{n} \Longrightarrow$ $a_{n+2}=\sqrt{2+a_{n+1}}>\sqrt{2 a_{n+1}}>a_{n+1}$. Hence $\left\{a_{n}\right\}_{n \geq 1}$ is monotonically increasing and bounded $\Longrightarrow \lim _{n \rightarrow \infty} a_{n}=2$.
(2) $\forall n \geq 1$, we have $a_{n}>0$ and

$$
a_{n+1}-1=\frac{1}{2}\left(a_{n}+\frac{1}{a_{n}}\right)-1=\frac{1}{2}\left(\sqrt{a_{n}}-\frac{1}{\sqrt{a_{n}}}\right)^{2} \geq 0 .
$$

On the other hand,

$$
a_{n+1} \leq \frac{1}{2}\left(a_{n}+a_{n}\right)=a_{n}
$$

Hence $a_{n} \geq a_{n+1} \geq \cdots \geq 1 \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=a$ exists and $a \geq 1$. Solving the equation $a=\frac{1}{2}\left(a+\frac{1}{a}\right)$ yields $a=1$.

Example 2.3.3. $a_{1}=1, a_{n+1}=\frac{1}{1+a_{n}}(n \geq 1) \Longrightarrow$ Find $\lim _{n \rightarrow \infty} a_{n}$.
Proof. Observe

$$
a_{2}=\frac{1}{2}, \quad a_{3}=\frac{2}{3}, \quad a_{4}=\frac{3}{5}, \quad a_{5}=\frac{5}{8}, \quad \cdots
$$

We claim that $\left\{a_{2 n}\right\}_{n \geq 1}$ is increasing but $\left\{s_{2 n-1}\right\}_{n \geq 1}$ is decreasing, and $\frac{1}{2} \leq a_{n} \leq 1$. Indeed, $\frac{1}{2} \leq a_{n} \leq 1 \Longrightarrow a_{n+1} \geq \frac{1}{1+1}=\frac{1}{2}$ and $a_{n+1} \leq \frac{1}{1+0}=1$. Moreover

$$
a_{2 n+2}=\frac{1}{1+a_{2 n+1}} \geq \frac{1}{1+a_{2 n-1}}=a_{2 n}, \quad a_{2 n+1}=\frac{1}{1+a_{2 n}} \leq \frac{1}{1+a_{2 n-2}}=a_{2 n-1}
$$

Let $\lim _{n \rightarrow \infty} a_{2 n}=A$ and $\lim _{n \rightarrow \infty} a_{2 n-1}=B \Longrightarrow B=1 /(1+A)$ and $A=1 /(1+B)$ $\Longrightarrow A=B=(\sqrt{5}-1) / 2$. Thus $a_{n} \rightarrow(\sqrt{5}-1) / 2$.
2.3.2. Three important constants π, e, and γ. Recall that $\pi=3.1415926 \cdots$ and $e=2.7182818284590 \cdots$.
A. Constant π. The following theorem is will-known.

Theorem 2.3.4. (Euler, 1734) We have

$$
\begin{equation*}
\sum_{n \geq 1} \frac{1}{n^{2}}:=\lim _{N \rightarrow \infty} \sum_{1 \leq n \leq N} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \tag{2.3.2}
\end{equation*}
$$

Proof. (1) The first proof is due to John Scholes.
Claim 1: For any $m \in \mathbb{N}$,

$$
\cot ^{2}\left(\frac{\pi}{2 m+1}\right)+\cdots+\cot ^{2}\left(\frac{m \pi}{2 m+1}\right)=\frac{2 m(2 m-1)}{6}
$$

Consider

$$
\cos (n x)+\mathbf{i} \sin (n x)=e^{\mathbf{i} n x}=\left(e^{\mathbf{i} x}\right)^{n}=(\cos x+\mathbf{i} \sin x)^{n}
$$

The imaginary part yields

$$
\sin (n x)=\binom{n}{1} \sin x \cos ^{n-1} x-\binom{n}{3} \sin ^{3} x \cos ^{n-3} x \pm \cdots
$$

Let $n:=2 m+1$ and $x=\frac{r \pi}{2 m+1}(1 \leq r \leq m) \Longrightarrow$

$$
0=\sin (n x)=\binom{n}{1} \sin x \cos ^{n-1} x-\binom{n}{3} \sin ^{3} x \cos ^{n-3} x \pm \cdots
$$

Divided by $\sin ^{n} x\left(0<x<\frac{\pi}{2}\right)$ we get

$$
\begin{aligned}
0 & =\binom{n}{1} \cot ^{n-1} x-\binom{n}{3} \cot ^{n-3} x \pm \cdots \\
& =\binom{2 m+1}{1} \cot ^{2 m} x-\binom{2 m+1}{3} \cot ^{2 m-2} x \pm \cdots
\end{aligned}
$$

Let

$$
P(t):=\binom{2 m+1}{1} t^{m}-\binom{2 m+1}{3} t^{m-1} \pm \cdots+(-1)^{m}\binom{2 m+1}{2 m+1}
$$

This polynomial has m different roots

$$
a_{r}:=\cot ^{2}\left(\frac{r \pi}{2 m+1}\right), \quad 1 \leq r \leq m
$$

Therefore

$$
P(t)=\binom{2 m+1}{1} \prod_{1 \leq r \leq m}\left[t-\cot ^{2}\left(\frac{r \pi}{2 m+1}\right)\right]
$$

In particular

$$
\sum_{1 \leq r \leq m} a_{r}=\frac{\binom{2 m+1}{3}}{\binom{2 m+1}{1}}=\frac{2 m(2 m-1)}{6}
$$

Claim 2: One has

$$
\sum_{1 \leq r \leq m} \csc ^{2}\left(\frac{r \pi}{2 m+1}\right)=\frac{2 m(2 m+2)}{6}
$$

Indeed,

$$
\begin{aligned}
& \sum_{1 \leq r \leq m} \csc ^{2}\left(\frac{r \pi}{2 m+1}\right)=\sum_{1 \leq r \leq m} \frac{1}{\sin ^{2}\left(\frac{r \pi}{2 m+1}\right)} \\
= & \sum_{1 \leq r \leq m}\left[1+\cot ^{2}\left(\frac{r \pi}{2 m+1}\right)\right]=m+\frac{2 m(2 m-1)}{6} .
\end{aligned}
$$

In the interval $(0, \pi / 2)$, the following relations hold:

$$
0<\sin y<y<\tan y, \quad 0<\cot y<\frac{1}{y}<\csc y, \quad 0<\cot ^{2} y<\frac{1}{y^{2}}<\csc ^{2} y
$$

Consequently,

$$
\frac{2 m(2 m-1)}{6}<\sum_{1 \leq r \leq m}\left(\frac{2 m+1}{r \pi}\right)^{2}<\frac{2 m(2 m+2)}{6}
$$

Equivalently

$$
\frac{\pi^{2}}{6} \frac{2 m}{2 m+1} \frac{2 m-1}{2 m+1}<\sum_{1 \leq r \leq m} \frac{1}{r^{2}}<\frac{\pi^{2}}{6} \frac{2 m}{2 m+1} \frac{2 m+2}{2 m+1}
$$

Finally letting $m \rightarrow \infty$ yields $\sum_{n \geq 1} \frac{1}{n^{2}}=\pi^{2} / 6$.
(2) The second proof is due to Beukers-Calabi-Kolk. Observe

$$
\sum_{n \geq 1} \frac{1}{n^{2}}=\sum_{n \geq 0} \frac{1}{(2 n-1)^{2}}+\sum_{n \geq 1} \frac{1}{(2 n)^{2}}
$$

Hence

$$
\sum_{n \geq 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \Longleftrightarrow \sum_{k \geq 0} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

Define

$$
J:=\iint_{[0,1] \times[0,1]} \frac{d x d y}{1-x^{2}-y^{2}}=\sum_{k \geq 0} \frac{1}{(2 k+1)^{2}}
$$

If

$$
u=\cos ^{-1} \sqrt{\frac{1-x^{2}}{1-x^{2} y^{2}}}, \quad v:=\cos ^{-1} \sqrt{\frac{1-y^{2}}{1-x^{2} y^{2}}}
$$

then $x=\sin u / \cos v, y=\sin v / \cos u$, and

$$
J=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2-u} d u d v=\frac{\pi^{2}}{8}
$$

B. Constant e. Define

$$
a_{n}:=\left(1+\frac{1}{n}\right)^{n}, \quad b_{n}:=\left(1+\frac{1}{n}\right)^{n+1}, \quad e_{n}:=1+\sum_{1 \leq k \leq n} \frac{1}{k!}=\sum_{0 \leq k \leq n} \frac{1}{k!}
$$

Claim 1: For each n,

$$
a_{n}<a_{n+1}, \quad b_{n}>b_{n+1} .
$$

Proof. For each n,

$$
\begin{aligned}
a_{n}= & \left(1+\frac{1}{n}\right)^{n}=\sum_{0 \leq k \leq n}\binom{n}{k} \frac{1}{n^{k}}=1+\sum_{1 \leq k \leq n} \frac{n(n-1) \cdots(n-k)}{k!} \frac{1}{n^{k}} \\
= & 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) \\
< & 1+1+\frac{1}{2!}\left(1-\frac{1}{n+1}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n+1}\right) \cdots\left(1-\frac{n-1}{n+1}\right) \\
& +\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right) \cdots\left(1-\frac{n}{n+1}\right)=a_{n+1} .
\end{aligned}
$$

For b_{n},

$$
\begin{gathered}
\frac{b_{n-1}}{b_{n}}=\frac{\left(1+\frac{1}{n-1}\right)^{n}}{\left(1+\frac{1}{n}\right)^{n+1}}=\left(\frac{1+\frac{1}{n-1}}{1+\frac{1}{n}}\right)^{n} \frac{1}{1+\frac{1}{n}} \\
=\left(1+\frac{1}{n^{2}-1}\right)^{n} \frac{1}{1+\frac{1}{n}}>\left(1+\frac{n}{n^{2}-1}\right) \frac{1}{1+\frac{1}{n}}>\left(1+\frac{1}{n}\right) \frac{1}{1+\frac{1}{n}}=1
\end{gathered}
$$

Claim 2: We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}:=e \tag{2.3.3}
\end{equation*}
$$

exists.
Proof. Because

$$
a_{n}<1+1+\sum_{2 \leq k \leq n} \frac{1}{k!} \leq 2+\sum_{2 \leq k \leq n} \frac{1}{k(k-1)}=3-\frac{1}{n}<3
$$

the claim follows from Theorem 2.3.1 and Claim 1.

Claim 3: For any $n \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}<\left(1+\frac{1}{n+1}\right)^{n+1}<e<\left(1+\frac{1}{n+1}\right)^{n+2}<\left(1+\frac{1}{n}\right)^{n+1} \tag{2.3.4}
\end{equation*}
$$

Claim 4: We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e_{n}=e \tag{2.3.5}
\end{equation*}
$$

Proof. Observe that $e_{n}<e_{n+1}$ and

$$
\begin{aligned}
a_{n} & =1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) \\
& >1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{k!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ yields

$$
e \geq 1+1+\frac{1}{2!}+\cdots+\frac{1}{k!}=e_{k}
$$

On the other hand, $a_{n}<e_{n}$. So $\lim _{n \rightarrow \infty} e_{n}=e$.

Example 2.3.5. (1) $\forall n \geq 1 \Longrightarrow$

$$
\begin{equation*}
\left(\frac{n+1}{e}\right)^{n}<n!<e\left(\frac{n+1}{e}\right)^{n+1} \tag{2.3.6}
\end{equation*}
$$

(2) We have
(2.3.7)

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}
$$

PROOF. (1) $\forall k \geq 1$,

$$
\left(\frac{k+1}{k}\right)^{k}<e<\left(\frac{k+1}{k}\right)^{k+1}
$$

So

$$
\frac{(n+1)^{n}}{n!}=\prod_{1 \leq k \leq n}\left(\frac{k+1}{k}\right)^{k}<e^{n}<\prod_{1 \leq k \leq n}\left(\frac{k+1}{k}\right)^{k+1}=\frac{(n+1)^{n+1}}{n!}
$$

(2) By (1), one has

$$
\frac{n+1}{e}<\sqrt[n]{n!}<\frac{n+1}{e} \sqrt[n]{n+1}
$$

and

$$
\frac{n+1}{n} \cdot \frac{1}{e}<\frac{\sqrt[n]{n!}}{n}<\frac{n+1}{n} \cdot \sqrt[n]{n+1} \cdot \frac{1}{e}
$$

Letting $n \rightarrow \infty$ yields 2.3.7.
C. Euler constant γ. Given $p>0$ and let

$$
S_{n}:=\sum_{1 \leq k \leq n} \frac{1}{k^{p}}, \quad n \in \mathbb{Z}_{+} .
$$

Then $S_{n}<S_{n+1}$, and

$$
\begin{aligned}
S_{n} & \leq S_{2^{n}-1} \\
& =1+\underbrace{\left(\frac{1}{2^{p}}+\frac{1}{3^{p}}\right)}_{<2^{-(p-1)}}+\underbrace{\left(\frac{1}{4^{p}}+\cdots+\frac{1}{7^{p}}\right)}_{<4^{-(p-1)}=2^{-2(p-1)}}+\cdots+\underbrace{\left(\frac{1}{2^{(n-1) p}}+\cdots+\frac{1}{\left(2^{n}-1\right)^{p}}\right)}_{<2^{-(n-1)(p-1)}} \\
& <\frac{1}{1-\frac{1}{2^{p-1}}}=\frac{2^{p-1}}{2^{p-1}-1} .
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} S_{n} \text { exists for all } p>1
$$

When $p=1$, by Theorem 2.2.9

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\ln n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln n-\ln (n-1)}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln \left(1+\frac{1}{n-1}\right)} \\
=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln \left(1+\frac{1}{n}\right)} \cdot \lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\ln \left(1+\frac{1}{n-1}\right)}=1
\end{gathered}
$$

because

$$
\frac{1}{n+1}<\ln \left(1+\frac{1}{n}\right)<\frac{1}{n}
$$

Consequently

$$
S_{n} \geq 1+\frac{1}{2}+\cdots+\frac{1}{n} \rightarrow+\infty, \quad \text { if } 0<p \leq 1
$$

In particular

$$
1+\frac{1}{2}+\cdots+\frac{1}{n} \sim \ln n \quad \text { as } n \rightarrow \infty
$$

Define

$$
\begin{equation*}
a_{n}:=\sum_{1 \leq k \leq n} \frac{1}{k}-\ln n \tag{2.3.8}
\end{equation*}
$$

Then

$$
a_{n}>a_{n+1}>0, \quad \lim _{n \rightarrow \infty} a_{n} \text { exists. }
$$

Indeed,

$$
a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n>\ln \frac{2}{1}+\ln \frac{3}{2}+\cdots+\ln \frac{n+1}{n}-\ln n=\ln \frac{n+1}{n}>0
$$

and

$$
a_{n+1}-a_{n}=\frac{1}{n+1}-\ln (n+1)+\ln n=\frac{1}{n+1}-\ln \left(1+\frac{1}{n}\right)<0
$$

Figure: Joseph Liouville (1809/3/24-1882/9/8)

Definition 2.3.6. The Euler constant γ is defined to be

$$
\begin{equation*}
\gamma:=\lim _{n \rightarrow \infty}\left(\sum_{1 \leq k \leq n} \frac{1}{k}-\ln n\right) \tag{2.3.9}
\end{equation*}
$$

Conjecture 2.3.7. γ is irrational, i.e., $\gamma \in \mathbb{R} \backslash \mathbb{Q}$.

Theorem 2.3.8. (1) (Liouville, 1840) e is irrational.
(2) π is irrational.

Proof. (1) Recall that

$$
e=\sum_{k \geq 0} \frac{1}{k!}=\lim _{n \rightarrow \infty} \sum_{0 \leq k \leq n} \frac{1}{k!}
$$

Assume that $e=a / b$ is rational, with $a, b>0$. Then

$$
n!b e=n!a, \quad \forall n \in \mathbb{N}
$$

On the other hand,

$$
\begin{aligned}
b n!e= & b n!\left[\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)+\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots\right)\right] \\
= & b n!\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right) \\
& +b \underbrace{\left(\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots\right)}_{\frac{1}{n+1}<?<\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\cdots=\frac{1}{n}}
\end{aligned}
$$

When n is large enough, the second term is not an integer. This contradiction shows that e is not rational.
(2) We give a proof due to Niven (1946). Let $\pi=a / b$. Define

$$
f(x):=\frac{x^{n}(a-b x)^{n}}{n!}, \quad F(x):=f(x)-f^{(2)}(x)+f^{(4)}(x)-\cdots+(-1)^{n} f^{(2 n)}(x)
$$

But

$$
\mathbb{Z} \ni F(\pi)+F(0)=\int_{0}^{\pi} f(x) \sin x d x
$$

with $0<f(x) \sin x<\frac{\pi^{n} n^{n}}{n!} \ll 1($ as $n \gg 1)$.
2.3.3. Subsequences. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence and $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ s strictly increasing function. Then $\left\{a_{\varphi(k)}\right\}_{k \geq 1}$ is called a subsequence and write $\left\{a_{n_{k}}\right\}_{k \geq 1}$.

Theorem 2.3.9. (1) If $\lim _{n \rightarrow \infty} a_{n}=a$, then for any subsequence $\left\{a_{n_{k}}\right\}_{k \geq 1}$ one has

$$
\lim _{k \rightarrow \infty} a_{n_{k}}=a
$$

(2) $\left\{a_{n}\right\}_{n \geq 1}$ is convergent \Longrightarrow each subsequence is convergent.
(3) \exists divergent subsequence of $\left\{a_{n}\right\}_{n \geq 1} \Longrightarrow\left\{a_{n}\right\}_{n \geq 1}$ is divergent.
(4) \exists two convergent subsequences with distinct limits $\Longrightarrow\left\{a_{n}\right\}_{n \geq 1}$ is divergent.
(5) $\left\{a_{n}\right\}_{n \geq 1}$ is convergent $\Longleftrightarrow\left\{a_{2 n-1}\right\}_{n \geq 1}$ and $\left\{a_{2 n}\right\}_{n \geq 1}$ are convergent and have the same limits.

Proof. (1) - (4) can be proved by directly definition. For (5), assume that $\lim _{n \rightarrow \infty} a_{2 n-1}=\lim _{n \rightarrow \infty} a_{2 n}=a$. Then $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that

$$
\left|b_{n}-a\right|<\epsilon, \quad\left|c_{n}-a\right|<\epsilon, \quad b_{n}:=a_{2 n}, c_{n}:=a_{2 n-1}
$$

For a_{n}, if $n=2 k$, then $\left|a_{n}-a\right|<\epsilon(n>2 N)$; if $n=2 k-1$, then $\left|a_{n}-a\right|<\epsilon$ ($n>2 N-1$).

Example 2.3.10. (Fibonacci sequence) Let

$$
a_{1}=a_{2}=1, \quad a_{n+1}=a_{n}+a_{n-1}(n \geq 2) \quad \Longrightarrow \quad \text { find } \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

Let

$$
b_{n}:=\frac{a_{n+1}}{a_{n}}
$$

Then

$$
b_{n}=\frac{a_{n}+a_{n-1}}{a_{n}}=1+\frac{a_{n-1}}{a_{n}}=1+\frac{1}{b_{n-1}}
$$

We have proved as in Example 2.3.3 that

$$
b_{2 n-1}<b_{2 n+1}, \quad b_{2 n}>b_{2 n+2}, \quad 1 \leq b_{n} \leq 2
$$

Then

$$
\lim _{n \rightarrow \infty} b_{n}=\frac{\sqrt{5}+1}{2}, \quad \lim _{n \rightarrow \infty}\left(b_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{1}{b_{n-1}}=\frac{\sqrt{5}-1}{2} \approx 0.618
$$

The explicit expression for a_{n} is

$$
a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Figure: Fibonacci sequence

Suppose

$$
a_{n}-\alpha a_{n-1}=\beta\left(a_{n-1}-\alpha a_{n-2}\right)
$$

Then

$$
\alpha+\beta=1, \quad \alpha \beta=-1
$$

so that $(\alpha, \beta)=((1+\sqrt{5}) / 2,(1-\sqrt{5}) / 2)$ or $((1-\sqrt{5}) / 2,(1+\sqrt{5}) / 2)$. From

$$
\begin{aligned}
& a_{n}-\frac{1+\sqrt{5}}{2} a_{n-1}=\frac{1-\sqrt{5}}{2}\left(a_{n-1}-\frac{1+\sqrt{5}}{2} a_{n-2}\right), \\
& a_{n}-\frac{1-\sqrt{5}}{2} a_{n-1}=\frac{1+\sqrt{5}}{2}\left(a_{n-1}-\frac{1-\sqrt{5}}{2} a_{n-2}\right)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& a_{n}-\frac{1-\sqrt{5}}{2} a_{n-1}=\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}\left(a_{2}-\frac{1-\sqrt{5}}{2} a_{1}\right) \\
& a_{n}-\frac{1+\sqrt{5}}{2} a_{n-1}=\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\left(a_{2}-\frac{1+\sqrt{5}}{2} a_{1}\right)
\end{aligned}
$$

Eliminating a_{n-1} yields the formula for a_{n}.

Theorem 2.3.11. (Bolzano-Weierstrass theorem) Every bounded sequence has a convergent subsequence.

Karl Weierstraß 1815-1897
Figure: Karl Theodor Wihelm Weierstrass (1815/10/31-1897/2/19)

Proof. Assume $\left\{a_{n}\right\}_{n \geq 1}$ is bounded, i.e., $a_{n} \in[a, b]$ for some interval $[a, b]$ and all $n \geq 1$. Then one of $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$ contains infinitely many $a_{n}{ }^{\prime}$'s, say $\left[a_{1}, b_{1}\right]$. Take $x_{n_{1}} \in\left[a_{1}, b_{1}\right]$. In this process, we can find a sequence of closed intervals

$$
\left[a_{1}, b_{1}\right] \supset\left[a_{2}, b_{2}\right] \supset \cdots \supset\left[a_{k}, b_{k}\right] \supset \cdots
$$

with

$$
b_{k}-a_{k}=\frac{b-a}{2^{k}} \rightarrow 0 \text { and } \exists x_{n_{k}} \in\left[a_{k}, b_{k}\right]
$$

But a_{n} is increasing and b_{n} is decreasing, we conclude that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$ both exist. Moreover

$$
0 \leq b-a \leq b_{n}-a_{n} \rightarrow 0
$$

Hence

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=c
$$

and $c \in\left[a_{k}, b_{k}\right]$ for each k. From $\left|x_{n_{k}}-1\right| \leq b_{k}-a_{k}$, we see that $\lim _{n \rightarrow \infty} x_{n_{k}}=$ c.

Theorem 2.3.12. $\left\{a_{n}\right\}_{n \geq 1}$ is unbounded $\Longrightarrow \exists$ subsequence $\left\{a_{n_{k}}\right\}_{k \geq 1}$ such that $\left\{a_{n_{k}}\right\}_{k \geq 1}$ is unbounded.

Proof. $\exists n_{1}$ such that $\left|a_{n_{1}}\right|>1$. Then $\exists n_{2}>n_{1}$ such that $\left|a_{n_{2}}\right|>2$. Hence \exists subsequence $\left\{n_{k}\right\}_{k \geq 1}$ such thst $\left|a_{n_{k}}\right| \geq k$.

Figure: Augustin Louis Cauchy (1789/8/21-1857/5/23)
2.3.4. Cauchy sequences. We say that a sequence $\left\{a_{n}\right\}_{n \geq 1}$ is a Cauchy sequence if $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that $\left|a_{n}-a_{m}\right|<\epsilon$ whenever $n, m \geq N$.

Example 2.3.13. (1) $\left\{a_{n}\right\}_{n \geq 1}$ is not Cauchy, where $a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$.
(2) $\left\{a_{n}\right\}_{n \geq 1}$ is Cauchy, where $a_{n}=1+\frac{1}{2 \sqrt{2}}+\cdots+\frac{1}{n \sqrt{n}}$.

PROOF. (1) $\forall n \geq 1$,

$$
a_{2 n}-a_{n}=\frac{1}{n+1}+\cdots+\frac{1}{2 n} \geq \frac{n}{2 n}=\frac{1}{2}
$$

(2) $\forall n \geq 1$,
$\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n(n+1)}} \cdot \frac{1}{\sqrt{n+1}+\sqrt{n}}>\frac{1}{2} \frac{1}{(n+1) \sqrt{n+1}}$.
Hence $\forall m>n$,

$$
a_{m}-a_{n}=\frac{1}{(n+1) \sqrt{n+1}}+\cdots+\frac{1}{m \sqrt{m}}<\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{m}}<\frac{2}{\sqrt{n}}
$$

Remark 2.3.14. Cauchy sequence is bounded.

Proof. $\exists N \in \mathbb{N}$ such that $\left|a_{m}-a_{n}\right|<1$ whenever $m, n \geq N$.

Theorem 2.3.15. (Cauchy criterion) $\left\{a_{n}\right\}_{n \geq 1}$ is convergent $\Longleftrightarrow\left\{a_{n}\right\}_{n \geq 1}$ is Cauchy.

Proof. \Longrightarrow : Let $\lim _{n \rightarrow \infty} a_{n}=a$. Then $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that

$$
\left|a_{n}-a\right|<\epsilon, \quad \forall n>N .
$$

Hence

$$
\left|a_{m}-a_{n}\right| \leq\left|a_{m}-a\right|+\left|a_{n}-a\right|<2 \epsilon
$$

for all $n, m>N$.
$\Longleftarrow: \exists N_{0} \in \mathbb{N}$ such that $\left|a_{n}-a_{N_{0}+1}\right|<1, \forall n>N_{0}$. In particular, $\left|a_{n}\right| \leq M$. By Theorem 2.3.11. \exists subsequence $\left\{a_{n_{k}}\right\}_{k \geq 1}$ such that $\lim _{k \rightarrow \infty} a_{n_{k}}=a$. Furthermore $\left|a_{n}-a\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|a_{n_{k}}-a\right|<\epsilon+\left|a_{n_{k}}-a\right|$
whenever $n, n_{k}>N$.

Remark 2.3.16. The above theorem may not be true for any metric spaces. For example,

$$
x_{0}=2, \quad x_{n+1}:=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) \in \mathbf{Q} .
$$

Then $\left\{x_{n}\right\}_{n \geq 1}$ is a Cauchy sequence in \mathbf{Q}, but $x_{n} \rightarrow \sqrt{2} \notin \mathbf{Q}$.

Remark 2.3.17. We have defined that a metric space is complete if \forall Cauchy sequence is convergent. Hence \mathbb{R} is complete, but \mathbb{Q} is not.

Remark 2.3.18. "Completeness" can be specialized on Riemannian manifolds so that the completeness is, in this case, equivalent to the fact that every geodesic can be extended for any time.

CHAPTER 3

Continuous functions

3.1. Limits of functions

We begin with an example. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$satisfying

$$
f(x+y)=f(x) f(y)
$$

for any $x, y \in \mathbb{R}$? Letting $x=y$ yields

$$
f(2)=f(1+1)=[f(1)]^{2} .
$$

In general, one has

$$
f(n)=[f(1)]^{n}
$$

for any $n \in \mathbb{Z}_{+}$. Moreover

$$
f(1)=f(\underbrace{\frac{1}{n}+\cdots+\frac{1}{n}}_{n})=\left[f\left(\frac{1}{n}\right)\right]^{n} \text { and } f(1)=f(1) f(0)
$$

so that

$$
f(0)=1, \quad f\left(\frac{1}{n}\right)=[f(1)]^{\frac{1}{n}}
$$

For any $p / q \in \mathbb{Q}$ one has

$$
f\left(\frac{p}{q}\right)=f(\underbrace{\frac{1}{q}+\cdots+\frac{1}{q}}_{p})=\left[f\left(\frac{1}{q}\right)\right]^{p}=[f(1)]^{\frac{p}{q}} .
$$

For any $x \in \mathbb{R}$, we have proved that there is a sequence $\left\{a_{n}\right\}_{n \geq 1}$ in \mathbb{Q} such that

$$
\lim _{n \rightarrow \infty} a_{n}=x
$$

In summary,

$$
f(x) \stackrel{\text { we expect }}{\longleftrightarrow} f\left(a_{n}\right)=[f(1)]^{a_{n}} \xrightarrow{n \rightarrow \infty}[f(1)]^{x}
$$

If one can prove

$$
f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(x)=\lim _{n \rightarrow \infty} f\left(a_{n}\right)
$$

we have

$$
f(x)=[f(1)]^{x}, \quad x \in \mathbb{R} .
$$

We can conclude that when f and lim can be changed, $f(x)=[f(1)]^{x}$ for all $x \in \mathbb{R}$. As we shall see later by Heine's theorem, $f(x)=[f(1)]^{x}$ for all $x \in \mathbb{R}$ when f is continuous.
3.1.1. Definitions. We start with the definition of limits of functions.

Definition 3.1.1. (1) If $f:(a,+\infty) \rightarrow \mathbb{R}$ and $A \in \mathbb{R}$, we define

$$
\lim _{x \rightarrow+\infty} f(x)=A \Longleftrightarrow \begin{gather*}
\forall \epsilon>0 \exists M>a \text { such that } \\
|f(x)-A|<\epsilon \tag{3.1.1}\\
\text { whenever } x>M
\end{gather*}
$$

(2) If $f:(-\infty, b) \rightarrow \mathbb{R}$ and $A \in \mathbb{R}$, we define

$$
\lim _{x \rightarrow-\infty} f(x)=A \Longleftrightarrow \begin{gather*}
\forall \epsilon>0 \exists M<b \text { such that } \\
|f(x)-A|<\epsilon \tag{3.1.2}\\
\text { whenever } x<M
\end{gather*}
$$

(3) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $A \in \mathbb{R}$, we define

$$
\lim _{x \rightarrow \infty} f(x)=A \Longleftrightarrow \quad \begin{gather*}
\forall \epsilon>0 \exists M>0 \text { such that } \\
|f(x)-A|<\epsilon \tag{3.1.3}\\
\text { whenever }|x|>M
\end{gather*}
$$

Theorem 3.1.2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $A \in \mathbb{R}$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f(x)=A \Longleftrightarrow \lim _{x \rightarrow+\infty} f(x)=A=\lim _{x \rightarrow-\infty} f(x) \tag{3.1.4}
\end{equation*}
$$

Example 3.1.3. Compute

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{1+e^{x}}, \quad \lim _{x \rightarrow \infty} \frac{\sin x}{x}
$$

Since

$$
\lim _{x \rightarrow+\infty} \frac{e^{x}}{1+e^{x}}=1 \text { and } \lim _{x \rightarrow-\infty} \frac{e^{x}}{1+e^{x}}=0
$$

it follows that the limit $\lim _{x \rightarrow \infty} \frac{e^{x}}{1+e^{x}}$ does not exist. For the second one,

$$
\left|\frac{\sin x}{x}\right| \leq \frac{1}{|x|}
$$

we see that $\lim _{x \rightarrow \infty} \sin x / x=0$.

Definition 3.1.4. Consider a deleted neighborhood $\stackrel{\circ}{U}(a, \rho):=(a-\rho, a) \cup(a, a+$ $\rho)$. Let $f: \dot{U}(a, \rho) \rightarrow \mathbb{R}, A \in \mathbb{R}$, define

$$
\lim _{x \rightarrow a} f(x)=A \Longleftrightarrow \quad \begin{gather*}
\nabla \epsilon>0=0 \tag{3.1.5}\\
\text { whenever } 0<|x-a|<\delta .
\end{gather*}
$$

If f is defined at a, then $\lim _{x \rightarrow a} f(x)=f(a)$ is the definition of the continuity of f at a.

Definition 3.1.5. (One-sided limits) (1) $f:(a-\rho, a) \rightarrow \mathbb{R}(\rho>0), A \in \mathbb{R}$, define

$$
\lim _{x \rightarrow a-} f(x) \equiv f(a-)=A \Longleftrightarrow \begin{gather*}
|f(x)-A|<\epsilon \tag{3.1.6}\\
\text { whenever }-\delta<x-a<0
\end{gather*}
$$

(2) $f:(a, a+\rho) \rightarrow \mathbb{R}(\rho>0), A \in \mathbb{R}$, define

$$
\lim _{x \rightarrow a+} f(x) \equiv f(a+)=A \Longleftrightarrow \begin{gather*}
\forall \epsilon>0 \exists \delta>0 \text { such that } \tag{3.1.7}\\
|f(x)-A|<\epsilon \\
\text { whenever } 0<x-a<\delta
\end{gather*}
$$

Theorem 3.1.6. We have

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=A \quad \Longleftrightarrow \quad f(a+)=A=f(a-) \tag{3.1.8}
\end{equation*}
$$

Example 3.1.7. (1) If

$$
f(x)=\left\{\begin{array}{cc}
-1, & x<0 \\
0, & x=0 \\
1, & x>0
\end{array}\right.
$$

then $f(0+)=-1$ and $f(0+)=1$.
(2) If

$$
f(x)= \begin{cases}0, & x \leq 0 \\ \frac{1}{x}, & x>0\end{cases}
$$

then $f(0-)=0$, but $f(0+)$ does not exist.
3.1.2. Properties of the limits of a function. The following properties can be proved as for the limits of sequences.

Theorem 3.1.8. (1) (Uniqueness) $\lim _{x \rightarrow a} f(x)$ is unique, if it exists.
(2) (Local boundedness) $\lim _{x \rightarrow a} f(x)$ exists $\Longrightarrow f$ is bounded in some delated neighborhood of a.
(3) $\lim _{x \rightarrow a} f(x)=A>B=\lim _{x \rightarrow a} g(x) \Longrightarrow f(x)>g(x)$ in some $\mathscr{U}(a, \rho)$.
(4) $\lim _{x \rightarrow a} f(x)=A \Longrightarrow \lim _{x \rightarrow a}|f(x)|=|A|$.
(5) $g(x) \leq f(x) \leq h(x)$ for any $x \in \mathscr{U}(a, \rho) \Longrightarrow$ if $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=$ A, then $\lim _{x \rightarrow a} f(x)=A$.
(6) If $\lim _{x \rightarrow a} f(x)=A, \lim _{x \rightarrow a} g(x)=B, \alpha, \beta \in \mathbb{R}$, then

$$
\lim _{x \rightarrow a}(\alpha f(x)+\beta g(x))=\alpha A+\beta B, \lim _{x \rightarrow a} f(x) g(x)=A B, \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{A}{B}(\text { if } B \neq 0)
$$

(7) $\lim _{x \rightarrow x_{0}} g(x)=u_{0}, \lim _{u \rightarrow u_{0}} f(u)=A, g \neq u_{0}$ in $Ц ْ\left(x_{0}, \rho\right) \Longrightarrow$

$$
\lim _{x \rightarrow x_{0}} f(g(x))=A
$$

Example 3.1.9. (1) $\lim _{x \rightarrow 0} x\lfloor 1 / x\rfloor=1$. Indeed, $1 / x-1<\lfloor 1 / x\rfloor \leq 1 / x$.
(2) $\lim _{x \rightarrow \infty} x^{k} / a^{x}=0(a>0$ and $k \in \mathbb{N})$. Because $0<x^{k} / a^{x} \leq(\lfloor x\rfloor+$ 1) ${ }^{k} / a^{\lfloor x\rfloor+1} a$.
3.1.3. Two important limits. When $0<x<\pi$, we know that $0<\sin x<x$. The following property shows that when x is very small, we can use x to substitute $\sin x$.

Proposition 3.1.10. One has

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \tag{3.1.9}
\end{equation*}
$$

Proof. When $0<x<\pi / 2$, we have

$$
\sin x<x<\tan x
$$

so that

$$
\cos x<\frac{\sin x}{x}<1
$$

Hence $\lim _{x \rightarrow 0+} \sin x / x=1$. Similarly, we can prove that $\lim _{x \rightarrow 0-} \sin x / x=1$.

Remark 3.1.11. (1) We have proved that

$$
0 \stackrel{x \rightarrow \infty}{\leftarrow} \frac{\sin x}{x} \xrightarrow{x \rightarrow 0} 1
$$

What about the value of the integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x \quad\left(=\frac{\pi}{2}\right) ?
$$

Proposition 3.1.12. One has

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e \tag{3.1.10}
\end{equation*}
$$

Proof. For any $x \geq 1$ we have

$$
\left(1+\frac{1}{\lfloor x\rfloor+1}\right)^{\lfloor x\rfloor}<\left(1+\frac{1}{x}\right)^{x}<\left(1+\frac{1}{\lfloor x\rfloor}\right)^{\lfloor x\rfloor+1}
$$

Using $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$, we get $\lim _{x \rightarrow+\infty}(1+1 / x)^{x}=e$. Similarly, when $x \rightarrow-\infty$, we set $y:=-x \rightarrow+\infty$. Then

$$
\left(1+\frac{1}{x}\right)^{x}=\left(1-\frac{1}{y}\right)^{-y}=\left(1+\frac{1}{y-1}\right)^{y}=\left(1+\frac{1}{y-1}\right)^{y-1} \frac{y}{y-1} \rightarrow e
$$

as $x \rightarrow-\infty$.

Remark 3.1.13. (1) $\lim _{y \rightarrow 0}(1+y)^{1 / y}=e$.
(2) $\lim _{y \rightarrow \infty}(1-1 / y)^{y}=1 / e$.
(3) $\lim _{n \rightarrow \infty}[n \sin (2 \pi n!e)]=2 \pi$.

Proof. We give a proof of (3). From $e=\sum_{k \geq 0} \frac{1}{k!}$ we have

$$
n!e=\underbrace{n!\sum_{0 \leq k \leq n} \frac{1}{k!}}_{\in \mathbb{Z}}+\underbrace{n!\sum_{k \geq n+1} \frac{1}{k!}}_{:=\epsilon_{n} \rightarrow 0} .
$$

Then

$$
n \sin (2 \pi n!e)=n \sin \left(2 \pi \epsilon_{n}\right)=\frac{\sin \left(2 \pi \epsilon_{n}\right)}{2 \pi \epsilon_{n}} \frac{2 \pi \epsilon_{n}}{1 / n} \rightarrow 1 \times 2 \pi=2 \pi
$$

Here

$$
\frac{1}{n+1}<\epsilon_{n}:=\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\cdots<\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\cdots=\frac{1}{n}
$$

3.1.4. Heine's theorem. This theorem builds a bridge between limits of functions and limits of sequences.

Theorem 3.1.14. (Heine) $f: \stackrel{\cup}{U}(a, \rho) \rightarrow \mathbb{R}, A \in \mathbb{R} \Longrightarrow$

$$
\begin{align*}
\lim _{x \rightarrow a} f(x)=A & \Longleftrightarrow \quad \begin{array}{c}
\forall\left\{a_{n}\right\}_{n \geq 1} \subset \grave{U}(a, \rho) \text { with } a_{n} \rightarrow a \\
\text { we have } \lim _{n \rightarrow \infty} f\left(a_{n}\right)=A .
\end{array} \tag{3.1.11}\\
& \Longleftrightarrow \quad \begin{array}{c}
\left.\forall a_{n}\right\}_{n \geq 1} \subset \grave{U}(a, \rho) \text { with } a_{n} \rightarrow a \\
\text { we have }\left\{f\left(a_{n}\right)\right\}_{n \geq 1} \text { converges. }
\end{array} \tag{3.1.12}
\end{align*}
$$

Proof. (1) $\Leftarrow:$ If $\lim _{x \rightarrow a} f(x) \neq A$, then $\exists \epsilon_{0}>0, \forall \delta>0, \exists x \in \stackrel{(}{U}(a, \delta)$ such that

$$
|f(x)-A| \geq \epsilon_{0}>0
$$

Take $\delta_{1}=\rho, \delta_{2}=\rho / 2, \cdots, \delta_{n}=\rho / n, \cdots$, and find $a_{1}, \cdots, a_{n} \in \grave{U}(a, \rho / n)$ such that $\left|f\left(a_{n}\right)-A\right| \geq \epsilon_{0}$. Since $a_{n} \rightarrow a$, we have $f\left(a_{n}\right) \nrightarrow A$.
\Rightarrow : Clearly.
(2) \Rightarrow : Clearly.
\Leftarrow : We should prove that any sequence $\left(f\left(a_{n}\right)\right)_{n \geq 1}$ has the same limit. Suppose that $a_{n} \rightarrow a$ and $b_{n} \rightarrow a$, but $f\left(a_{n}\right) \rightarrow A \neq B \leftarrow f\left(b_{n}\right)$. Consider the new
sequence $\left(x_{n}\right)_{n \geq 1}$:

$$
a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \cdots, a_{n}, b_{n}, \cdots
$$

Then $x_{n} \rightarrow a$ but $f\left(x_{n}\right)_{n \geq 1}$ diverges. Hence A must be equal to B.

Example 3.1.15. (1) $\sin \frac{1}{x}$ has no limit at $x=0$.
(2) Dirichlet function has no limit at every point $x \in \mathbb{R}$.

Proof. (1) For $x_{n}=1 / n \pi$ and $y_{n}=1 /\left(2 n \pi+\frac{\pi}{2}\right)$, we get

$$
\sin \frac{1}{x_{n}}=0, \quad \sin \frac{1}{y_{n}}=1
$$

Hence $\sin \frac{1}{x}$ has no limit at $x=0$.
(2) Recall that

$$
D(x)=\left\{\begin{array}{l}
1, \quad x \in \mathbb{Q} \\
0, \quad x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

For any $a \in \mathbb{R}$, we can find a sequence $\left\{a_{n}\right\}_{n \geq 1}$ such that $a_{n} \rightarrow a$. On the other hand, $\exists b_{n} \in \mathbb{R} \backslash \mathbb{Q}$ such that $b_{n} \rightarrow a$. But $D\left(a_{n}\right)=1 \neq 0=D\left(b_{n}\right)$.
(3) Topologist's sine curve:

$$
X=\left\{\left(x, \sin \frac{1}{x}\right): x \in(0,1]\right\}
$$

which can be obtained by the continuous map

$$
(0,1] \longrightarrow X \subseteq \mathbb{R}^{2}, \quad x \longmapsto\left(x, \sin \frac{1}{x}\right)
$$

By the continuity of f, X and hence \bar{X} are connected, but \bar{X} is not path-connected.

Theorem 3.1.16. We have

$$
\begin{array}{ccc}
& \\
\lim _{x \rightarrow \infty} f(x) \text { exists } & \Longleftrightarrow \quad \begin{array}{c}
\forall \epsilon>0 \exists M>0 \text { such that } \\
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon \\
\text { whenever }\left|x_{1}\right|,\left|x_{2}\right|>M . \\
\forall \epsilon>0 \exists \delta>0 \text { such that }
\end{array} \\
\lim _{x \rightarrow a-} f(x) \text { exists } & \Longleftrightarrow \quad \begin{array}{c}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon
\end{array} \\
\text { whenever } a-\delta<x_{1}, x_{2}<a .
\end{array}
$$

PROOF. \Longrightarrow : Clearly.
$\Longleftarrow:$ Cauchy test for sequence $\Rightarrow \forall\left\{a_{n}\right\}_{n \geq 1} \rightarrow \infty,\left\{f\left(a_{n}\right)\right\}_{n \geq 1}$ converges \Rightarrow $\lim _{x \rightarrow \infty} f(x)$ exists by Heine's theorem, Theorem 3.1.14.

3.2. Various comparison symbols

We have proved that $\lim _{x \rightarrow 0} \sin x / x=1$, so that in principal, we can replace $\sin x$ by x. A natural question is in context when/how we can do it. This section answers this question.
3.2.1. Infinitesimals. Actually we have six limit types:

$$
x \rightarrow a, x \rightarrow a+, x \rightarrow a-, x \rightarrow-\infty, x \rightarrow+\infty, x \rightarrow \infty .
$$

We will focus on the first type.

Definition 3.2.1. We say that $f(x)$ is an infinitesimal or $f(x)=\boldsymbol{o}(1)$ as $x \rightarrow a$ if $\lim _{x \rightarrow a} f(x)=0$.

Remark 3.2.2. (1) $\lim _{x \rightarrow a} f(x)=A \Longleftrightarrow f(x)-A=o(1)$ as $x \rightarrow a$.
(2) $f(x)=o(1)$ as $x \rightarrow a \Longleftrightarrow|f(x)|=o(1)$ as $x \rightarrow a$.
(3) $f(x)=o(1), g(x)=o(1)$ as $x \rightarrow a \Longleftrightarrow \forall \alpha, \beta \in \mathbb{R}, \alpha f(x)+\beta g(x)=o(1)$ as $x \rightarrow a$.
(4) $f(x)=o(1)$ as $x \rightarrow a$, and $g(x)$ is bounded in $\grave{U}(a, \delta)$ (for some $\delta>0) \Longrightarrow$ $f(x) g(x)=o(1)$ as $x \rightarrow a$.

Example 3.2.3. (1) $x \rightarrow 0$:

$$
\sin x=o(1), \quad \tan x=o(1), \quad a^{x}-1=o(1)(a>0)
$$

$x \rightarrow 0+:$

$$
x^{\alpha}=o(1)(\alpha>0), \quad 1-\cos x=o(1) .
$$

$x \rightarrow+\infty$:

$$
\frac{1}{x^{\alpha}}=o(1)(\alpha>0), \quad a^{x}=o(1)(0<a<1) .
$$

$x \rightarrow \infty$:

$$
\frac{1}{x^{n}}=o(1)\left(n \in \mathbb{Z}_{+}\right), \quad \frac{1}{x^{1 / 3}}=o(1)
$$

$x \rightarrow-\infty:$

$$
a^{x}=o(1)(a>1)
$$

(2) $x \rightarrow 0$:

$$
x e^{x}+3 \ln (1+x)=o(1), \quad e^{\sin x} \cos x-1=o(1)
$$

$x \rightarrow \infty$:

$$
\frac{x+\sin x}{x^{2}+5 x-2}=\frac{3 x}{e^{x}+\ln x}=\sqrt{x+1}-\sqrt{x}=\ln \left(1+\frac{1}{x}\right)+\frac{\sin x}{x}=o(1)
$$

(3) Find A and B so that

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x+5}+A x+B\right)=1
$$

Proof. Write

$$
\sqrt{x^{2}+2 x+5}+A x+B=1+\alpha(x), \quad \alpha(x)=o(1)(x \rightarrow+\infty)
$$

Then

$$
A=-\sqrt{1+\frac{2}{x}+\frac{5}{x^{2}}}+\frac{1-B}{x}+\frac{\alpha}{x}
$$

Letting $x \rightarrow+\infty$ yields $A=-1$ and then

$$
B=1+\alpha+x-\sqrt{x^{2}+2 x+5}
$$

But B is a constant, we must have

$$
B=1+\lim _{x \rightarrow+\infty} \frac{-2 x-5}{\sqrt{x^{2}+2 x+5}+x}=1-\lim _{x \rightarrow+\infty} \frac{2+\frac{5}{x}}{1+\sqrt{1+\frac{2}{x}+\frac{5}{x^{2}}}}=0 .
$$

Thus $\sqrt{x^{2}+2 x+5}-x-1=o(1)$ as $x \rightarrow \infty$.

Definition 3.2.4. Assume that $u(x)=o(1)$ and $v(x)=o(1)$ as $x \rightarrow a$.
(1) We say

$$
\begin{equation*}
u(x)=o(v(x)) \text { as } x \rightarrow a \Longleftrightarrow \lim _{x \rightarrow a} \frac{u(x)}{v(x)}=0 \tag{3.2.1}
\end{equation*}
$$

In particular, when $v(x) \equiv 1$, we get our old notion.
(2) We say

$$
\begin{equation*}
u(x)=O(v(x)) \text { as } x \rightarrow a \Longleftrightarrow\left|\frac{u(x)}{v(x)}\right| \leq M(\text { in some } \dot{U}(a, \delta)) \tag{3.2.2}
\end{equation*}
$$

(3) We say

$$
u(x) \approx v(x) \text { as } x \rightarrow a \Longleftrightarrow u(x)=O(v(x)) \text { and } v(x)=O(u(x)) \text { as } x \rightarrow a
$$

$$
\begin{equation*}
\Longleftrightarrow 0<m \leq\left|\frac{u(x)}{v(x)}\right| \leq M(\exists 0<m<M \text { in } \grave{U}(a, \delta)) . \tag{3.2.3}
\end{equation*}
$$

(4) We say

$$
\begin{equation*}
u(x) \sim v(x) \text { as } x \rightarrow a \Longleftrightarrow \lim _{x \rightarrow a} \frac{u(x)}{v(x)}=1 \tag{3.2.4}
\end{equation*}
$$

Proposition 3.2.5. (1) $u(x)=v(x)=o(1)$ as $x \rightarrow a$ and $\lim _{x \rightarrow a} u(x) / v(x)$ exists \Longrightarrow

$$
u(x)=O(v(x)) \text { as } x \rightarrow a
$$

(2) $u(x)=v(x)=o(1)$ as $x \rightarrow a$ and $\lim _{x \rightarrow a} u(x) / v(x)=c \neq 0 \Longrightarrow$

$$
u(x) \approx v(x) \text { as } x \rightarrow a
$$

Definition 3.2.6. (1) We say that $u(x)$ is an k-th infinitesimal as $x \rightarrow a$ if

$$
\begin{equation*}
u(x) \approx(x-a)^{k} \quad(k>0) \tag{3.2.5}
\end{equation*}
$$

(2) We say that $c(x-a)^{k}$ is the principal part of $u(x)$ as $x \rightarrow a$ if

$$
\begin{equation*}
u(x) \sim c(x-a)^{k} \text { as } x \rightarrow a \tag{3.2.6}
\end{equation*}
$$

Example 3.2.7. (1) $\sin x \approx(x-0)^{1}, 1-\cos x \approx(x-0)^{2}, 1-\cos x \approx \frac{1}{2}(x-0)^{2}$ as $x \rightarrow 0$.
(2) $\ln x=o(1)$ as $x \rightarrow 0+$, but

$$
x^{\alpha} \ln x=o(1) \text { as } x \rightarrow 0+\quad\left(\alpha>0, k \in \mathbb{Z}_{+}\right)
$$

and

$$
x^{\alpha}(\ln x)^{k}=o(1) \text { as } x \rightarrow 0+
$$

(3) As $x \rightarrow 0$

$$
\begin{equation*}
\sin x \sim x \sim \tan x \sim \ln (1+x) \sim e^{x}-1 \sim \frac{(1+x)^{\alpha}-1}{\alpha} \tag{3.2.7}
\end{equation*}
$$

Because

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e \Longrightarrow \lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1
$$

Letting $t=e^{x}-1$ yields

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{t \rightarrow 0} \frac{t}{\ln (1+t)}=1
$$

Writing

$$
\frac{(1+x)^{\alpha}-1}{x}=\frac{e^{\alpha \ln (1+x)}-1}{x}=\frac{e^{\alpha \ln (1+x)}-1}{\alpha \ln (1+x)} \frac{\alpha \ln (1+x)}{x}
$$

we obtain $(1+x)^{\alpha}-1 \sim \alpha x$.

Proposition 3.2.8. We have
(1) $u(x)=O(v(x))$ and $v(x)=O(w(x)) \Longrightarrow u(x)=O(w(x))$.
(2) $u(x)=O(v(x))$ and $v(x)=o(w(x)) \Longrightarrow u(x)=o(w(x))$.
(3) $O(u(x))+O(v(x))=O(u(x)+v(x))$.
(4) $O(u(x)) O(v(x))=O(u(x) v(x))$. In particular, $O\left(u(x)^{k}\right)=[O(u(x))]^{k}$.
(5) $o(1) O(u(x))=o(u(x))$.
(6) $O(1) o(u(x))=o(u(x))$.
(7) $O(u(x))+o(u(x))=O(u(x))$.
(8) $o(u(x))+o(v(x))=o(|u(x)|+|v(x)|)$.
(9) $o(u(x)) o(v(x))=o(u(x) v(x))$. In particular, $o\left(u(x)^{k}\right)=[o(u(x))]^{k}$.
(10) $u(x) \sim v(x)$ and $v(x) \sim w(x) \Longrightarrow u(x) \sim w(x)$.
(11) $u(x) \sim v(x)$ and $w(x)=o(u(x)) \Longrightarrow u(x) \sim v(x) \pm w(x)$.
3.2.2. Infinities. We say $f(x)$ is an infinity if $1 / f(x)$ is an infinitesimal.

Definition 3.2.9. Assume that f is defined in $\grave{U}(a, \rho)$. Define

$$
\begin{align*}
& \lim _{x \rightarrow a} f(x)=+\infty \quad \Longleftrightarrow \tag{3.2.8}\\
& \forall C>0 \exists \delta>0, \forall x \in \grave{U}(a, \delta) \\
& \text { with } \delta<\rho \text {, we have } f(x) \geq C \text {. } \\
& \lim _{x \rightarrow a} f(x)=-\infty \quad \Longleftrightarrow \quad \begin{array}{r}
\forall C>0 \exists \delta>0, \forall x \in \grave{U}(a, \delta) \\
\text { with } \delta<\rho, \text { we have } f(x) \leq-C .
\end{array} \tag{3.2.9}
\end{align*}
$$

$$
\begin{align*}
& \lim _{x \rightarrow a} f(x)=\infty \quad \Longleftrightarrow \quad \forall C>0 \exists \delta>0, \forall x \in \bigcup ْ(a, \delta) \tag{3.2.10}\\
& \text { with } \delta<\rho, \text { we have }|f(x)| \geq C .
\end{align*}
$$

Similarly we can consider

$$
\lim _{x \rightarrow a+}, \lim _{x \rightarrow a-}, \lim _{x \rightarrow+\infty^{\prime}} \lim _{x \rightarrow-\infty^{\prime}} \lim _{x \rightarrow \infty} .
$$

We give several remarks:
(1) $u(x) \rightarrow \infty, v(x) \rightarrow \infty \Longrightarrow$

$$
u(x)=o(v(x)) \Longleftrightarrow \lim _{x \rightarrow a} \frac{u(x)}{v(x)}=0 \text { or } \lim _{x \rightarrow a} \frac{v(x)}{u(x)}=\infty
$$

(2) $u(x) \rightarrow \infty, v(x) \rightarrow \infty \Longrightarrow$

$$
u(x)=O(v(x)) \Longleftrightarrow\left|\frac{u(x)}{v(x)}\right| \leq M(\text { in some } \grave{U}(a, \delta))
$$

(3) $u(x) \rightarrow \infty, v(x) \rightarrow \infty \Longrightarrow$

$$
u(x) \approx v(x) \Longleftrightarrow u(x)=O(v(x)) \text { and } v(x)=O(u(x))
$$

(4) $u(x) \rightarrow \infty, v(x) \rightarrow \infty \Longrightarrow$

$$
u(x) \sim v(x) \Longleftrightarrow \lim _{x \rightarrow a} \frac{u(x)}{v(x)}=1
$$

Proposition 3.2.10. Proposition 3.2 .8 also holds.
3.2.3. Equivalent substitutions. When $x \rightarrow 0$, we proved that $\sin x \sim \tan x \sin x$, hence $\tan x-\sin x \rightarrow 0$ as $x \rightarrow 0$.

Example 3.2.11. Compute

$$
\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}
$$

Proof. Observe
$\frac{\tan x-\sin x}{x^{3}}=\frac{\frac{\sin x}{\cos x}-\sin x}{x^{3}}=\frac{\sin x}{\cos x} \cdot \frac{1-\cos x}{x^{3}}=\frac{\sin x}{x} \cdot \frac{1}{\cos x} \cdot \frac{1-\cos x}{x^{2}}$
which tends to $1 \times 1 \times \frac{1}{2}=\frac{1}{2}$.

If we use $\tan x-\sin x=o(1)$, then the limit can not be calculated. The reason is that $o(1)$ is much more coarser than x^{3}. It leads to to find more precise expression for $\tan x-\sin x$. Actually, by Taylor's expression, we have

$$
\sin x-x \sim-\frac{1}{3} x^{3}, \quad \tan x-x \sim \frac{1}{6} x^{3} \quad(\text { as } x \rightarrow 0)
$$

By the remark in Example 3.2.13(3), we have $\tan x-\sin x \sim \frac{1}{3} x^{3}+\frac{1}{6} x^{3}=\frac{1}{2} x^{3}$.

Theorem 3.2.12. $v(x) \sim w(x)$ as $x \rightarrow$ a are equivalent infinitesimal or infinity \Longrightarrow

$$
\begin{align*}
\lim _{x \rightarrow a} u(x) v(x)=A & \Longleftrightarrow \lim _{x \rightarrow a} u(x) w(x)=A \tag{3.2.11}\\
\lim _{x \rightarrow a} \frac{u(x)}{v(x)}=A & \Longleftrightarrow \lim _{x \rightarrow a} \frac{u(x)}{w(x)}=A . \tag{3.2.12}
\end{align*}
$$

Proof. Because $u(x) w(x)=u(x) v(x) \cdot \frac{w(x)}{v(x)}$ and $\frac{u(x)}{w(x)}=\frac{u(x)}{v(x)} \cdot \frac{v(x)}{w(x)}$.

Example 3.2.13. (1) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{\ln (1+2 x)}$.
Proof. Because $\ln (1+2 x) \sim 2 x$ as $x \rightarrow 0$, we have

$$
\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{\ln (1+2 x)} \sim \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{2 x}=\frac{(\sqrt{1+x}-1)-(\sqrt[3]{1+x}-1)}{2 x}
$$

Using (3.2.7) yields

$$
(1+x)^{1 / 2}-1 \sim \frac{1}{2} x, \quad(1+x)^{1 / 3}-1 \sim \frac{1}{3} x \quad(x \rightarrow 0)
$$

Hence

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{\ln (1+2 x)}=\lim _{x \rightarrow 0} \frac{\frac{1}{2} x}{2 x}-\lim _{x \rightarrow 0} \frac{\frac{1}{3} x}{2 x}=\frac{1}{12}
$$

(2) $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt[3]{1+3 x}}{x^{2}}$.

Proof. From (1),

$$
\sqrt{1+2 x}-1 \sim \frac{1}{2} \times 2 x=x \quad \text { as } x \rightarrow 0
$$

We shall consider

$$
\sqrt{1+2 x}-\sqrt[3]{1+3 x}=[\sqrt{1+2 x}-(1+x)]-[\sqrt[3]{1+3 x}-(1+x)]
$$

Now

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-(1+x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{-x^{2}}{x^{2}[\sqrt{1+2 x}+(1+x)]}=\lim _{x \rightarrow 0} \frac{-1}{1+x+\sqrt{1+2 x}}=\frac{-1}{2}
$$

Similarly

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+3 x}-(1+x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{(1+3 x)-(1+x)^{3}}{x^{2}\left[(1+3 x)^{2 / 3}+(1+3 x)^{1 / 3}(1+x)+(1+x)^{2}\right]} \\
& =\frac{-3}{3}=-1
\end{aligned}
$$

Finally,

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt[3]{1+3 x}}{x^{2}}=-\frac{1}{2}+1=\frac{1}{2}
$$

(3) Actually, $\forall \alpha>0$,

$$
\begin{equation*}
(1+x)^{\alpha}-\left[1+\sum_{1 \leq i \leq k-1} \frac{\alpha(\alpha-1) \cdots(\alpha-i+1)}{i!} x^{i}\right] \sim \frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!} x^{k} \tag{3.2.13}
\end{equation*}
$$

as $x \rightarrow 0$. For example,

$$
\begin{aligned}
& (1+x)^{1 / 2}-\left[1+\frac{1}{2} x\right] \sim-\frac{1}{4} x^{2} \\
& (1+x)^{1 / 3}-\left[1+\frac{1}{3} x\right] \sim-\frac{1}{9} x^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& (1+2 x)^{1 / 2}-[1+x] \sim-\frac{1}{2} x^{2} \\
& (1+3 x)^{1 / 3}-[1+x] \sim-x^{2}
\end{aligned}
$$

as $x \rightarrow 0$.
In general, if

$$
\begin{aligned}
& u(x)-\left[a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}\right] \sim a_{k} x^{k} \\
& v(x)-\left[a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}\right] \sim b_{k} x^{k}
\end{aligned}
$$

with $a_{k} \neq b_{k}$, then

$$
u(x)-v(x) \sim\left(a_{k}-b_{k}\right) x^{k}
$$

as $x \rightarrow 0$.
Proof. The proof is simple. By the assumptions,

$$
\begin{aligned}
\frac{u(x)-v(x)}{\left(a_{k}-b_{k}\right) x^{k}} & =\frac{[u(x)-P(x)]-[v(x)-P(x)]}{\left(a_{k}-b_{k}\right) x^{k}} \\
& \rightarrow \frac{a_{k}}{a_{k}-b_{k}}-\frac{b_{k}}{a_{k}-b_{k}}=1
\end{aligned}
$$

where $P(x):=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}$.
(4) $\lim _{x \rightarrow+\infty} \arccos \left(\sqrt{x^{2}+x}-x\right)$.

PROOF. Let $u=\sqrt{x^{2}+x}-x$ so that

$$
\lim _{x \rightarrow+\infty} u=\lim _{x \rightarrow+\infty} \frac{x}{x+\sqrt{x^{2}+x}}=\frac{1}{2}
$$

Therefore

$$
\lim _{x \rightarrow+\infty} \arccos \left(\sqrt{x^{2}+x}-x\right)=\lim _{u \rightarrow \frac{1}{2}} \arccos u=\frac{\pi}{3}
$$

(5) Prove $\sqrt{x+\sqrt{x+\sqrt{x}}} \sim x^{1 / 2}$ as $x \rightarrow+\infty$.

Proof. We have

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \frac{\sqrt{x+\sqrt{x+\sqrt{x}}}}{x^{1 / 2}}=\lim _{x \rightarrow+\infty}\left[1+\left(\frac{x+x^{1 / 2}}{x}\right)^{1 / 2}\right]^{1 / 2} \\
=\lim _{u \rightarrow 0}\left(1+u^{1 / 2}\right)^{1 / 2}=1, \text { when } u:=\frac{x+x^{1 / 2}}{x^{2}}
\end{gathered}
$$

(6) Find principal parts of

$$
\sin \left(x+\frac{\pi}{3}\right)-\frac{\sqrt{3}}{2}, \quad \pi-3 \arccos \left(x+\frac{1}{2}\right) \quad(x \rightarrow 0)
$$

Proof. Indeed,

$$
\sin \left(x+\frac{\pi}{3}\right)-\frac{\sqrt{3}}{2}=\sin \left(x+\frac{\pi}{3}\right)-\sin \frac{\pi}{3}=2 \cos \left(\frac{x}{2}+\frac{\pi}{3}\right) \sin \frac{x}{2} \sim \sin \frac{x}{2} \sim \frac{x}{2}
$$

and

$$
\begin{gathered}
\pi-3 \arccos \left(x+\frac{1}{2}\right) \sim\left[\pi-3 \arccos \left(x+\frac{1}{2}\right)\right] \\
=\sin \left[3 \arccos \left(x+\frac{1}{2}\right)\right] \quad\left(\sin (3 \theta)=3 \sin \theta-4 \sin ^{3} \theta\right) \\
=3 \sqrt{1-\left(x+\frac{1}{2}\right)^{2}}-4\left(\sqrt{1-\left(x+\frac{1}{2}\right)^{2}}\right)^{3} \\
=\sqrt{1-\left(x+\frac{1}{2}\right)^{2}}\left\{3-4\left[1-\left(x+\frac{1}{2}\right)^{2}\right]\right\} \sim \frac{\sqrt{3}}{2}\left(4 x+4 x^{2}\right) \sim 2 \sqrt{3} x
\end{gathered}
$$

$$
\text { as } x \rightarrow 0
$$

3.3. Continuities and discontinuities

Bibliography

[1] Alarcon A., Ferrer L., Martin F., Density theorems for complete minimal surfaces in \mathbb{R}^{3}, Geom. Funct. Anal., 18(2008), no. 1, 1-49.

