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CHAPTER 1

Introduction

1.1. Sets and mappings
The power set of a given set A is defined to be
24— {all subsets of A} D A.

Notions:

A := B: Ais defined by B,

V: any/for any,

: there exists/exist - - -,

I: unique,

3!: there exists a unique - - -,

N :={0,1,2,3,- - - }: the set of all national numbers,
Z: the set of all integers,

Z<0 =7 \ N,

Q: the set of all rational numbers,

RR: the set of all real numbers,

C: the set of all complex numbers,

i.e.: (Latin) id est = that is/in other words,
e.g.: (Latin) exempli gratia = for example,
WLOG: without loss of generality,

TFAE: the following are equivalent,

resp.: respectively,

1.1.1. Arbitrary unions and intersections. Let &7 be a collection of sets.
(1) Union:
U A:={x:x € Aforatleastone A € &/ }.

Acd

(2) Intersection:
(1 A:={x:xc Aforevery A € &}.
Acd
When o7 = @, welet Uyc A = Q.

1.1.2. Cartesian products I. Let A, B be two sets.
(1) Cartesian product:
AxB:={(a,b):ac Aandb € B}.

(2) Order pair:
(a,b) := {{a},{a,b}}

where a is called the first coordinate while b the second coordinate.

5



6 1. INTRODUCTION

1.1.3. Maps. Let C, D be two sets.
(1) A rule of assignment is a subset R of C x D such that

(c,d)€Rand (c,d') eR = d=4d.
(2) Suppose that R is a rule of assignment. Define
Dom(R) = domain(R) := {ce C:3d e Dsuchthat(c,d) € R},
Im(R) = image(R) := {de D:3ce Csuchthat(cd) € R}
A map f is a pair (R, B), where R is a rule of assignment and B is a set (called

the range of f), such that Im(R) C B.
(1) domain of f = Dom(f) := Dom(R),
(2) image of f = Im(f) := Im(R),
(3) We write:
f:A— B, ar—— f(a),
where A is the domain of f, B is the range of f (so that Im(f) C B), and
f(a) is the unique element of B satisfying (a, f(a)) € R.

Example 1.1.1. Assume C = D := R, f(x) := x?, R := R x R>g, and B := R. In
this case, A = R and Im(f) = R>,.

Consider twomaps f : A - Band g: B — C.

(1) For a given subset Ag of A, define the restriction of f to A as the map

fla, = f: Ao — B.
(2) Composite:

gof:A—C, ar—c
where f(a) = band g(b) = c for some b € B.
Suppose that f : A — B is a map.

(1) f isinjective if

(2) f is surjective if
Vb€ B3ae Asuchthat f(a) =b.

(3) fisbijective if f is injective and surjective.
(4) If f is bijective, we define its inverse f ! by

fHb) = a <= f(a) =b.

Lemma 1.1.2. Let f : A — B bea map. If there exist a leftinverse g : B — A of f (i.e.,
¢(f(a)) =aforalla € A)and arightinverse h: B — A of f (ie., f(h(b)) = b for all
b € B), then f is bijectiveand g = h = f~1.
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Exercise 1.1.3. (1) Show that if f has a left (resp., right) inverse, then f is injective
(resp., surjective).

(2) Given examples of maps that have a left (resp., right) inverse but no right
(resp., left) inverse.

(8) Can a map have more than one left (or right) inverse?

(4) Prove Lemmal1.1.2

Let f: A — Bbeamap, Ag C Aand By C B.
(1) Image of Ap under f = f(Ao) :={f(a) :a € Ao},
(2) Preimage of By under f = f~1(By) := {a: f(a) € By}.
(3) Itis clear that
Ao C f7H(f(A0)), Bo 2 f(f7(Bo))-
There are examples such that both equalities in (3) may not be true (Find such ex-
amples!).

When B is a number field, we will say functions instead of maps.

1.1.4. Categories. A category € consists of

1) a family Ob(€) of objects of €,

2) V pair (X,Y) of Ob(¢), 3 set Hom¢ (X, Y) of morphisms from X to Y,
and

3) Vtriple (X,Y,Z) of Ob(€), 3 map
Homg (X,Y) x Home (Y, Z) — Home (X, Z), (f,g) —> gof
called the composition map.

These data satisfy
a) composition is associative, i.e., (fog)oh = fo(goh),
b) V X € Ob(¢) Jidx € Home (X, X) such that

foidx =f, idxog=g¢
for any f € Home (X, Y) and ¢ € Home (Y, X).

Example 1.1.4. There are some classical categories:

(1) Set: sets and functions,

(2) Group: groups and group homomorphisms (in abstract algebra),

(8) VectR: real vector spaces and R-linear maps (in linear algebra),

(4) Top: topological spaces and continuous maps (in topology),

(5) Calabi-Yau category: in differential geometry/algebraic geometry ~+ ho-
mological mirror symmetry/SYZ conjecture.

Let € be a category.
(1) Write f € Home(X,Y)as f: X — Y.
(2) f € Homg(X,Y) is an isomorphism if there exists a morphism g €
Homg (Y, X) such that

fog=idy and go f =idy.
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(3) A subcategory ¢’ of € is a category such that
- Ob(¢’) C Ob(Q),
- Homg (X,Y) € Homg (X, Y) forall X, Y € Ob(¢),
- idx € Homg (X, X) for each X € Ob(¢’).
We say that ¢’ is a full subcategory of € if it is a subcategory and more-
over Homy/ (X, Y) = Home (X, Y) for each pair (X, Y) of objects.
(4) Top is a subcategory, but not a full subcategory, of Set.
(5) The opposite category ¢° of € is defined as follows:

Ob(€°) := Ob(¢), Home-(X,Y) := Home (Y, X).

(6) Let f € Homg (X, Y).
- fisamonomorphism or is said to be injective if for any W € Ob(¢)
and any g, ¢’ € Home (W, X) with fog = fog/, wehave g = ¢’
w8, x S
g/
- fis an epimorphism or is said to be surjective if for any Z € Ob(<)
and any i, h' € Homg (Y, Z) withho f =1 o f, wehave h = /.

Y

Ly 7
h/
- f is said to be bijective if it is both injective and surjective.
(7) P € Ob(€) is initial if for any Y € Ob(€), Homg (P, Y) has exactly one
element. Q € Ob(C) is final if for any X € Ob(¢), Homg (X, Q) has
exactly one element.

X

Exercise 1.1.5. (1) Prove that two initial (resp., final) objects are isomorphic.
(2) Isomorphism is bijective, but the converse may not true.

A (covariant) functor F : € — €' between two categories consists
1) amap F: Ob(€) — Ob(¢’),
2) Vpair (X,Y) in Ob(€), Imap F : Home (X, Y) — Homg (F(X), F(X')).
These data satisfy
a) F(idx) = idF(X)/ and
b) F(fog) = F(f) o F(g)-

A contravariant functor G : ¢ — ¢’ is a functor G : €° — ¢”.

Example 1.1.6. (1) Forgetful factor F : Top — Set.
(2) Fundamental group functor 771 : Top, — Group, (X, x) — m1(X, x) (the
fundamental group of X at x).
(3) For a given X € Ob(¢), define
Homg (X, ) : € — Set, Z+— Hom¢ (X, Z),
Homg(-, X) : € — Set, Z —— Homg(Z, X).
Then
Homg (X, -) is covariant and Homg (-, X) is contravariant.
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Consider two functors Fj, F : € — ¢/, A morphism or natural transformation
6 : F — F, consists of

X e Ob(@:) — Q(X) S Hom@(Fl(X),Fz(X)).
These data satisfy the following diagram

R(x) 22 B(x)

R0 | RO R(f)o8(X) =8(Y) o R(f),
Fi(Y) E(Y)

|

o(Y)

is commutative, i.e., F,(f) 0 0(X) = 6(Y) o Fi(f), forany X,Y € Ob(€) and f €
Homg (X, Y).

Definition 1.1.7. Given two categories € and ¢’, define a new category Func(¢, ¢’)
with
Ob (Func(¢,¢’)) := {functors F : € — ¢}
and
Homgync(e,e) (F1, F2) := {morphisms 0 : F; — F}.

Definition 1.1.8. Let € be a category. We say that F : € — Set is a representable
functor if 3 X € Ob(¢€) such that F is isomorphic to Homg (X, -) in the category
Func(¢, Set).

Remark 1.1.9. If F : € — Set is representable, then X is unique up to isomorphism
and is called a representative of F.

Definition 1.1.10. We say a functor F : € — ¢ is fully faithful if V X, Y € Ob(¢),
the map Homg (X, Y) — Homgy/ (F(X), F(Y)) is bijective.

Theorem 1.1.11. (Yoneda’s lemma) (1) For any X € Ob(¢) and F € Ob(¢"), where
¢V := Func(¢°, Set), we have

Homgv (Homg (X), F) ~ F(X)

in Set, where Homg : € — ¢V is a functor given by Homg (X) := Homg (-, X).
(2) Homy is a fully faithful functor.
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PROOF. (1) To f € Homgv(Home (X), F), we associate ¢(f) € F(X) as fol-
lows:
f(X):Home (X, X) — F(X), idx — ¢(f) := f(X)(idx).
Conversely, tos € F(X), we can associate (s) € Homgv (Home (X), F) as follows:

Home (Y, X) —— Homget(F(X),F(Y)) —— E(Y)

with ¢(s)(Y) := s o F. Then ¢ and ¢ are inverses to each other.
(2) For any X,Y € Ob(¢), one has

Homgv (Homg (X), Homg(Y)) ~ Homg(+, Y)(X) = Homg (X, Y)
which implies that Homg is fully faithful. g

1.1.5. Relations. A relation on a set A is a subset C of A x A. If C is a relation
on A, then we write xCy to be (x,y) € C.

An equivalence relation on a set A is a relation C on A having the following
properties:
a) (Reflexivity) V x € A = xCx,
b) (Symmetry) xCy = yCx,
¢) (Transitivity) xCy and yCz = xCz.
Notion: ~:= equivalence relation.
(1) The equivalence class of x € A:

[x] :={ye€eA:y~x}>x

(2) Two equivalence classes are either disjoint or equal. Hence

A= J{[x]:xe A}
(3) A partition of a set A is a collection of disjoint nonempty subsets of A
whose union is A.
(4) Given a partition Z of A, there exists an equivalence relation ~ on A from
which it is derived.

Indeed, define ~ on A by requiring x ~ y if and only if x,y belong to
the same element of Z. Then ~ is an equivalence relation on A. Assume
that ~ and ~' are two equivalence relations on A that give rise to the
same collection of equivalence classes . Given x € A, let

x]={yeA:y~x}, [x]:={yecA:y~x}.
Because [x] N [x]' > {x}, we must have [x] = [x]'.
A relation C on a set A is called an order relation or simple order or linear
order, if it has the following properties:
a) (Comparability) V x,y € A with x # y = either xCy or yCx,
b) (Nonreflexivity) there does not exist x € A such that xCx,
¢) (Transitivity) xCy and yCz = xCz.
Notion: <:= order relation.
(1) Equivalently:
a) x #y = eitherx <yory < x,
b) x<y=x#y,
¢ x<yandy<z=x <z
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(2) x <ymeansx <yorx =y.
(3) Let (X, <) be an order relation. For a < b, define

(a,b) :={xeX:a<x<b}

called an open interval in X. If (a,b) =, then a is the immediate prede-
cessor of b, and b is theimmediate successor of a.

(4) Consider two sets with order relations (A, <4) and (B, <p). We say A
and B have the same order type if there exists a bijective correspondence
between them that preserves orders. That is, there exists a bijective func-
tion f : A — B such that

a1 <p ) — f(al) <B f(&lz).
For example, ((—1,1),<) and (R, <) have the sane order type (x
=2) ({0} U (1,2), <) and ([0,2), <) have the same order type (0 — 0
and x — x—1forl <x <2).

(5) Let (A, <4) and (B, <p) be two sets with order relations. Define an order
relation < on A x B by

(a1,b1) < (a2, b2)
if a1 <4 ap orif ag = a; and by <g by.
Assume that (A, <) is a set with order relation, and A is a subset of A.

(1) bis the largest number of Apif b € Ap and if x < b for any x € Ap. ais
the smallest number of Ay if a € Ag and if a4 < x for any x € Ay.

(2) Ap is bounded above if there isa b € A such that x < b for all x € Aj.
We call b is an upper bound for Ay. Let

the smallest element among

sup(Ag) := all upper bounds for Ay,

be the least upper bound or supremum.
A is bounded below if thereisaa € A suchthata < x forall x € Ayp.
We call a is a lower bound for Ag. Let

the largest element among

inf(Ag) := all lower bounds for Ay,

be the greatest lower bound or infimum.

(3) (A, <) is said to have the least upper bound property (or shortly LUBP)
if any nonempty subset Ag of A that is bounded above has a least upper
bound. Similarly, it is said to have the greatest lower bound property
(or shortly GLBP) if any nonempty subset Ag of A that is bounded below
has a greatest lower bound. Observe that LUBP < GLBP.

The set B := (—1,0) U (0,1) does not have the least upper bound
property (check it!).
Given a set A, a relation < on A is called a strict partial order on A if it has
the following properties:

1) (Non-reflexivity) a < a never hold,
2) (Transitivity)a < bandb <c=a <c.

On R?, there is a natural strict partial order < defined by

(x0,40) < (x1,11) <= yo=y1and xy < x7.
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Let A be a set with a strict partial order <.
(1) If B C A, an upper bound on B is an element ¢ of A such that for any
b € B,eitherb =cof b < c.
(2) A maximal element of A is an element m of A such that for no element a
of A does the relation m < a hold.
(3) Zorn’s lemma (1935):
Let A be a set that is strictly partially ordered. If any simply
ordered subset of A has an upper bound in A, then A has a
maximal element.
One of applications of Zorn’s lemma is as follows: Let A = {a,},>1 with
a; € R and |a;] < M for some positive number M. Then (A4, <) is a set with the
strict partial order <. By Zorn’s lemma, A has a maximal element.

In general, consider a sequence of functions f(x,t) such that |f(x,t)| < M for
allx € [0,1] and ¢ € R. For each x € [0, 1], define

Ay = {f(x, ) her.
Then A, has a maximal element f(x). Then we get a map
f: [0, 1} — A= Uxe[o,l]AJf/ X — f(x)
What's behavior of this function f(x)?

1.1.6. Cartesian products II. Let .2/ be a nonempty collection of sets. An in-
dexing function for <7 is a surjective function f from some set J, called the index
set, to 7.

(1) We say (7, f) an indexed family of sets.
(2) Given a € ], denote the set f(a) € o/ by A4, and the indexed family of
sets by {Aa }aey-

(3) Define
JAs = {x:3ac]suchthatx € A},
ae]
ﬂAa = {x:Vae], x€ A}
ae]

(4) When | ={1,--- ,n}, we denote (3) to be
Udc= U A NA= ) A
ae] 1<i<n ae] 1<i<n
(5) When | = Z>1, we denote (3) to be
UAIX:mAI’ mAa:ﬂAl.
ac] i>1 ag) i>1
Let m € IN. Given a set X, we define an m-tuple of elements of X to be a
function
x:{1,---,m} — X
For each i{1,- - - ,m}, write
X(Z) =X,

i-th coordinate of x, and x = (x1,- -+, Xp).
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(1) Let{A;, -, Ay} beafamily of sets indexed with the set {1,-- - ,m}. Let
X:=A1U---UAy.
We define the Cartesian product of this indexed family, denoted by
IT 4
1<i<m

to be the set of all m-tuples (x1,-- -, x;;) of elements of X such that x; €
Al', 1 S i S n.

Remark 1.1.12. (1) Recall two definitions of A X B:

Ax1B := {(ab):a€ Aandb € B},

Axy;B := {x:{1,2} - AUBsuchthatx(1) € Aand x(2) € B}.
Define

f:Ax1B— AxyB, (a,b)— f((a,b))
with f((a,0))(1) =aand f((a,b))(2) = b. Science f is bijective, A X1 B = A X, B.
(2) For A, B, C, we have three Cartesian products
Ax (BxC), (AxB)xC, AxBxC

that are bijective. In particular, we can define A™ for m > 1.

Given a set X, define w-tuple of elements of X to be the function
x:Z>1 — X, n+— x,:=x(n),

and write x = (x),>1. Let {A;}icz., be a family of sets indexed with the positive
integers. Let B

X = U Al‘.
iGZzl
The Cartesian product of {A;};cz_,, denoted by
IT 4
iGZZl

is defined to be the set of w-tuples (x;);cz., of X such that x; € A;.

In general, let | be an index set and X a set.
(1) An J-tuple of X is a function
x:]— X, a— x,:=x(a),
where x, is said to be the x-coordinate of x. Write x = (X4 )qcj-
(2) Let
X/ := {J-tuples of elements of X}.

(3) Let {Ay}qes be an index family of sets, and X := UycjA,. The Cartesian
product of {Ay },cj, denoted by

HAIXI
ae]

is defined to be the set of all J-tuples (x4 )qc j of X such that x, € A,.
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When X, are all R, we obtain

RY := | [ Xa.

n>1

1.1.7. Finite, countable and uncountable sets. In this subsection we study

the set
{0,1}¥ := H X,
n>1
where X, := {0,1}.

Definition 1.1.13. A set A is finite, if it is empty or there is a bijective correspon-
dence of A with some {1,---,n}. When A = @ we say that A has cardinality 0,
otherwise we say that A has cardinality 7.

Lemma 1.1.14. Suppose that n € Z>1, A is a nonempty set, and ag € A. There is
a bijective correspondence f of A with {1,--- ,n+ 1} if and only if there is a bijective
correspondence g of A\ {ap} with {1,--- ,n}.

PROOF. <=:Define f : A — {1,--- ,n+1} tobe

flag) :==n+1, f(x):=g(x) (x # ap).
=t If f(ag) = n+1, then we define g := f[4\(4)}- Suppose now that f(ag) =
m € {1,---,n}, and let a; € A be such that f(a;) = n+ 1. Then a; # ay. Define
h:A\A{ap} = {1,--- ,n} tobe h(a;) = mand h(x) := f(x) for x # ay. O

Theorem 1.1.15. Let A be a set and assume there is a bijection f : A — {1,--- ,n} for
some n € Z>1. If B is a proper subset of A, then there is no bijection g : B — {1,--- ,n},
but (provided B # @) there is a bijection h : B — {1,--- ,m} for some m < n.

PROOF. WLOG, we may assume that B # @. We prove it by induction. When
n =1, A= {a}, and B = @. Suppose that the theorem is true for n. Let f : A —
{1,---,n+ 1} be a bijection and B a nonempty proper subset of A. Take ay € B
and a; € A\ B. By Lemma[1.1.14] there is a bijection g : A\ {ao} — {1,---,n}.
Since B\ {ap} is a proper subset of A\ {ag}, the inductive hypothesis implies that
there is no bijection i : B\ {ap} — {1,---,n}, and either B\ {ap} = @ or there is
a bijection k : B\ {ap} — {1,---,m} (for some m < n). Applying again Lemma
the theorem holds for n + 1. 0

Corollary 1.1.16. (1) If A is finite, then there is no bijection of A with a proper subset of
itself.

(2) Z > is not finite.

(3) The cardinality of a finite set A is uniquely determined by A.
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(4) Any subset of a finite set is finite. If B is a proper subset of a given finite set A,
then the cardinality of B is strictly less than the cardinality of A.
(6) B # © = TFAF:
(i) B is finite,
(ii) there is a surjective function from some {1,--- ,n} onto B,
(iii) there is an injective function from B into some {1,--- ,n}.
(6) Finite union and finite Cartesian products of finite sets are finite.

PROOF. (1) Assume that B is a proper subset of A and there is a bijection f :
A — B. Because A is finite, there is a bijection ¢ : A — {1,--- ,n}. Then go f~!:
B — {1,---,n} is a bijection, which is impossible!

(2) Define the map f : Z>1 — Z>1 \ {1} by f(n) := n+1. Since Z>1 \ {1} is
proper and f is bijective, it follows from (1) that Z >4 can not be finite.

(3) Suppose that f : A — {1,--- ,n}and g : A — {1,---,m} are bijective,
for some m,n € Z>q. Thengo f~1:{1,--- ,n} — {1,---,m} is bijective, so that
m=n.

(4) Clearly.

(5) (i) = (ii) : clearly. (ii) = (iii) : Suppose that f : {1,---,n} — B is
surjective. Define g : B — {1,--- ,n} tobe

g(b) := the smallest element of f~1({b}).

Forb # V', f~1({b}) N f1({b'}) = @, so that g is injective. (iii) = (i) : Suppose
that ¢ : B — {1,---,n} is injective. Then there is some m < n such that g : B —
{1,---,m} is bijective. Then B is finite.

(6) If A and B are finite and both are not empty. There are bijections f :
{1,---,m} - Aand g: {1,--- ,n} — B for some choice of m and n. Define

) . f(i), 1<i<m,

h:{1,--- ,m+n} — AUB, l'—>{g(z’—m), ma1<i<m-n
Since h is surjective, according to (5) we see that A U B is finite. By induction, we
can prove that finite unions of finite sets is finite.

From the relation

AxB:=|J{a} xB
acA
which is the finite union of finite sets, we conclude that A x B and therefore finite
Cartesian products of finite sets are finite. g

Unfortunately, the situation of infinite Cartesian products of finite sets is more
complicated. We need the following definitions.

Definition 1.1.17. (1) A set A is said to be infinite if it is not finite. It is said to be
countably infinite if there is a bijective correspondence f : A — Z>;.

(2) A set is said to be countable if it is either finite or countably infinite. A set
that is not countable is said to be uncountable.
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Theorem 1.1.18. B # @ — TFAE:
(a) B is countable,
(b) there is surjective function f : Z>1 — B,
(c) there is injective function g : B — Z>1.

PROOF. (a) = (b) : obvious.

(b) = (c) : Let f : Z>1 — B be surjective. Define ¢ : B — Z>1 by g(b) :=
the smallest element of f~1({b}).

(c) = (a) : Let g : B — Z>1 be an injective function. Then there is a bijection
of B with subset of Z>;. Hence we suffice to prove that every subset of Z>; is

countable (see Lemma|l.1.19). [l

Lemma 1.1.19. If C is an infinite subset of Z>1, then C is countable infinite.

PROOF. Defineh : Z~1 — C abijection as follows. Denote by /(1) the smallest
element of C. Then assuming that ii(1),- - - ,h(n — 1) are defined. Let

h(n) := the smallest elementof C\ | J h(i).

1<i<n-1

Claim 1: & is injective. If m < n, then h(m) € h({1,---,n —1}) so that
h(m) # h(n).

Claim 2: 1 is surjective. Let ¢ € C. The injectivity of & implies h(Zx>1) is
infinite and therefore /(1) > c for some ¢ € Z>. Let

m := the smallest element of Z~ such that h(m) > c.

Foreachi =1,---,m —1, we have h(i) < cso thatc € C\ Uj<j<p_1h(i). From
the definition of h(m), we must have h(m) < c. Hence h(m) = c. O

Corollary 1.1.20. (1) A subset of a countable set is countable.
(2) Z>1 x Z>q is countably infinite.

PROOF. (1) Let A € B and B be countable. By Theorem [1.1.18) there is an
injection f : B — Z>1. Then f|4 : A — Z> is also injective, so that A is countable.
(2) Since Z>1 x Z>1 is infinite, we now construct an injection f : Z>1 X
Z>1 — Z>1. Define
f(n,m) :=2"3".
If f(n,m) = f(p,q), then2"3" = 2P39. If n < p, then 3" = 2P~""34, contradicting!
Therefore n = p and then m = g. U
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Theorem 1.1.21. (1) A countable union of countable sets is countable.

(2) A finite Cartesian product of countable sets is countable.

(3) {0,1}% is uncountable.

(4) Given a set A. Then there are no injection f : 24 — A and surjection g : A —
24,

(5) 221 is uncountable.

PROOF. Observe that (5) follows from (4) and Theorem|[1.1.18

(1) Let { Ay }nej be an indexed family of countable sets, where the index set |
is either {1,--- ,N} or Z>1. Assume each A, # @. By Theorem [1.1.18} there are
surjections f;; : Z>1 — Ay and g : Z>1 — |. Define

h: Zzl X Zzl — U Ay, (k,m) — fg(k)(m)
nejf

Then h is a surjective function.

(2 )WLOG, we may assume that the Cartesian product of two countable sets A
and B is countable. As in (1), there are surjections f : Z>; —+ Aand g: Z>; — B.
Define h: Z>1 X Z>1 — A X Btobe h(m,n) := (f(m), g(n)).

(3) Let X = {0,1}. For any given function g : Z>; — X“, we claim that g is
not surjective. Denote

g(n) = (xnllanr Xn3,° " s Xnn, "t ), Xij S {0,1}.

Define y := (yi)iezzl by
0, =1,
Yn = { 1 T

Xnn = 0.
Theny € X“ buty ¢ g(Z>1).
(4) Tt suffices to prove that given amap g : A — 24, the map g is not surjective
(because the existence of an injection implies the existence of a surjection). Define

B:i={acA:ac A\g(a)} 2’
Assume that g(ag) = B. Then
apg € B — CloGA\g(llo) <~ Cl()EA\B.

Hence g is not surjective. U

Exercise 1.1.22. (1) A real number x is said to be algebraic if it satisfies some poly-
nomial equation of positive degree

0=x"+a,_1x" '+ - +ax+ay a;€Q.

Assuming that each polynomial equation has only finitely many roots, show that
the set of algebraic numbers is countable.

(2) A real number is said to be transcendental if it is not algebraic. Assum-
ing that R is uncountable, show that the transcendental numbers are uncountable
(e.g., e, 7 are transcendental).
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Exercise 1.1.23. We say that two sets A and B have the same cardinality if there
exists bijection of A and B.
(1) Show thatif B C A and if there is bijection f : A — B, then A and B have

the same cardinality. [Hint: define A := A, B; := B, and for any n > 2,
Ap = f(An-1), Bn == f(By—1). Then Ay D By 2 Ay D By 2 A3 2 ---.
Define

f(x), ifx e Ay, \ By for some n,

x

h:A— B, x+— { .
, otherwise.

]

(2) (Schroeder-Berstein theorem) If there exist injections A — Band B — A,
then A and B have the same cardinality.

1.2. One variable functions

We have learned elementary functions in high schools:
(1) Constant functions: y = ¢,
(2) Power functions: y = x%,a # 0,
(3) Exponential functions: y =a*,2 >0,a #1,x € R,
(4) Logarithmic functions: y = log, x,a > 0,a #1,x >0,
(5) Trigonometric functions: sin x, cos x, tan x, cot x, sec x, cscx,
(6) Inverse trigonometric functions: sin"!x,cos 1, tan?
csc L.

X, cot™! X, sec 1 X,

1.2.1. Some special type functions. We also know, for example, periodic func-
tions, bounded functions, even/odd functions, monotone functions, inverse func-
tions, - - -.

Example 1.2.1. (a) Dirichlet function

|1, x€Q,
D(x)'_{o, xeR\Q.

(b) sign function

-1, x<0,
sgn(x) := 0, x=0,
1, x>0.
(c) Define
x| :=n ifn<x<n+1,
and
(x) :=x— |x].
(d) Define

7(x) := # (prime numbers < x).
(e) Mobius function

(n) == (—1)r1 n=pi---prwith py,-- -, pr distinct,
H ’ 0, otherwise.
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Figure: Johann Peter Gustav Lejeune Dirichlet (1805/2/13 - 1859/5/5)

(f) Margoldt function
R lnp/ n:P’X/ x>1,
Aln) = { 0, otherwise.
(g) Hyperbolic functions:
ef—e* e +e " e —e ¥
inhx (= ———— hy = ——— nhx:= —.
S X > , coshx > , tanhx e

Observe that y = sin x (resp. y = sinh x) is a solution of ODE i + y = 0 (resp.

y' —y=0).

1.2.2. Prime numbers and prime number theorem. Let p; < py < --- be the

sequence of all prime numbers.

Theorem 1.2.2. (Euclid’s theorem) There are infinitely many prime numbers.

PROOF. Otherwise, there are finite many prime numbers p; < --- < py. Con-

sider

a=py---pN+1

Then there is some p; that divides 4; consequently, p;|1, which is a contradiction.

O

Basic Questions:

(A) Are there formulas giving the nth prime number? The answer is yes,
and there are many! But they are useless! For example,

pn =1 +1§m2§2n Hl - ’;(m)Jl/nJ .
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When n = 2, this formula yields
Z 2 1/2
p2=1+ {J =1+14+1+0+0=3.
1y | L1+ t(m)

(B) Behavior or distribution of primes. The answer is the Prime number
theorem.

From Theorem we see that
Pkyr<prt-oopetl, k=1

Because p; = 2, we have
1.2.1) <27 k>
Indeed, by the induction hypothesis, one has

i K
pea< [Ipit1< [T 22 +1=2%—1+1=2"
1<i<k 1<i<k

Corollary 1.2.3. Forany x > 2, we get
(12.2) m(x) > Inlnx.

PROOF. Thereis aninteger ¢ € Z>1 such that 22! <x< 22 Hence (x) > ¢
because p, < 22[_1 < x. From 2¢ > Inx/ In2 we can conclude that
In(Inx/ In2) - Inlnx

In2 In2
since0 < In2 < 1. O

m(x) > £ > > Inlnx

By the Taylor series (we shall learn later), (1 —z)~! = ¥,502" (]z] < 1), we
see

-1
22p2<1_1> :1+1+72+...
p—1 p p

-1
(1_1) _ 1—[<1+1+12+...>
p<x p p<x p P

1 lx]+1 gt
Yoo /1 T o= I(lx)+1) > Inx

n<x n

and

27r(x)

v
—

v

Here the definite integral will be given later.

Theorem 1.2.4. For any x > 2, we have

1

and then
(1.2.4) pn <4", n>1.
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Figure: Leonhard Euler (1707/4/15-1783/9/18)

PROOF. Let2 = p; < pz <--- < p; < xbeall primes < x. Write any n < x as
n=1~07m
where / is a positive integer and m is square-free (i.e., m = pi' - - p? €1, € €

{0,1}). Then £ < /x. There are at most /x possibilities for £ at most 2/ possibili-
ties for m. Hence

; Iny/x Inx
< ] | > = .
SV = iz =
Thus 7(x) = 7t(|x]) > In[x|/2In2. O
Chebyshev estimates:
(1) Leonhard Euler (1762) and Carl Friedrich Gauss (1792) conjectured:
X
(2) Adrien-Marie Legendre (1798) conjectured:
X

with (1808) A =1 and B = —1.08366.
(3) Charles-Jean de la Vallée Poussin and Jacques Hadamard (1896) proved
the prime number theorem:

1.2.7) (x) ~

(4) Logarithmic integral (Gauss)'

1-e
(1.2.8) li(x) :==p.v. ; lnt 6%0 (/ /1+c-:) It x>2,

is a good approximation for 77(x). Define

X
(1.2.9) Li(x) ::/2 % (definite integral).
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Figure: Adrien-Marie Legendre (1752/9/18 - 1833/1/10)

Then
1—€ 2 dt
(1.2.10) Li(x) = lim ( / + / ) A Li().
0 1+e/) Int

e—0 n

well-defined improper integral
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=

Figure: Jacques Solomon Hadamard (1865/12/8 - 1963/10/17)

Figure: Pafnuty Chebyshev (1821/5/26 - 1894/12/8)

fing this first sieving either have all ol their prime
form pm with . and m < y/dz. One then

|7 P ]
- 2loga

Y
#9Q log

Jitios, 2 1y

logx i
S

Figure: Paul Erdos (1913/3/26 - 1996/9/20)
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Because
y 1—€ 2 dt i 1-€e g¢ 1—€ ds
eli% (/O +/l+e> m o elir(l) (/0 m +/O 11’1(2—5))

= {/ellnél”u)*/: 1<f+J - [mulu)*ln(llm}d”

and

1 n 1
1—u) In(1+u)

(5) Prime number theorem implies

L 1/2
llg%u {ln(

) u*l/z
} = lim (1) + (14w)] =0,

li(x) ~ Li(x) ~ ﬁ ~ 7(x).

Since
X X 2 2 X dt X 1 1

i) nx  n?r 2 In’2 2 In’t lnx{ +lnx+o<1nzx)]'
we get

T s T T a1

(6) Chebyshev’s estimate (1850):
- forany x > 2,
X x
2. — < < _—
(1.2.11) Cllnx < 7x) < Cllnx'

where ¢; := In(21/231/351/5/301/30) ~ 0.921292 and C; = 6¢1/5 ~
1.1055.
— if 1(x)/(x/ Inx) has the limit as x — oo, then this limit must be 1.

Theorem 1.2.5. (Exrdds) For any x > 2, we have
3In2 «x

X
2. — < < —_—
(1.2.12) 5 Inx > mt(x) < 6ln21nx

PROOF. Step 1: Let e, (n!) be the exponent of which p appears in the factor-

ization of n!. Then
n
ep(n!) = Z {kJ
k>1LP

For example,
er(4) = (22 x3) =3=241=[4/2] + |4/22].
Assume it holds for n and write n + 1 = p"m where p { m. Then

ep((n+1)1) =ep(nl) +u= Y Q;{J +1> +y U"J .
NS

1<k<u k>u
L(n+1)/pk]
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Step 2: For any n > 2, one has
2n 2n
n<p<2n n n
where 7, is the unique integer satisfying p'» < 2n < p»*1. Indeed, the first
divisibility relation is obvious. For p < 2n,

o () -tz - 5 (2] 23]

If k > rp, then p* > p'»™1 > 2n so that [2n/p*| = 0 = |n/p*]. Therefore

(G- (115D - 2,1

1<k<ry
since [2y| —2|y] = 1if 2 <y < "H for some m > 0.

IT»7

p<2n

Step 3: Forany x > 2,

mt(x) > 731§2i.

Inx
By Step 2, (2") < (21)™(2"). Because

1+1)2= Y (2;> and (2:> > (i?) (0 < k < 2n),

0<k<2n
we get
2n 221
— >2" > 3.
<n>>2n+l> =3
Consequently,
221 2n In2 2n
n < 7t(2n) e >
2 <2n+1<<n>_(2n) = n(2n) > 2 ) (n > 3).

Assume that x > 8 and let n be the unique integer satisfying 2n < x < 2n +2 (so
n > 3). Moreover, 2n > x —2 > 3x. Since the function y — y/ Iny is increasing
forany y > e (i.e., (y/Iny) = (Iny — 1)/ (Iny)? > 0 for y > ¢), we conclude that
In2 2n In2 3x/4 3In2 x 3In2 x
- > — > -

2 In(2n) — 2 In(3x/4) 8 Inx-+ ln% 8 Inx

t(x) > n(2n) >
for x > 8.

Step 4: For x > 2, one has
x
<6ln2—.
(x) < 6In Ty
By Step 2, 71, <p<onp < (1+1)%" = 22" and

2nin2> Y Inp>Inn[n(2n) — n(n)] = 7(2n)Inn — 7(n) (lng +ln2> .
n<p<2n

Using 7t(n) < n yields
t(2n)Inn — 7t(n) lng <2nIn2+ m(n)In2 < (3In2)n.
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Write
f(x):=m(2n)In2;
then
f(n)—f(n/2) < (3In2)n.
Take n = 2! (2 <i < k) and obtain

(21 = f(271) < (3In2)2'.

Hence
(2 In(2F) <32 Y 2+ n(4)In2<3In2 ) 2 < (3In2)2¢!
2<i<k 1<i<k
so that

k
In(2k)"
Given x > 2, choose k > 1 in such a way that 2F < x < 2k¥1 1f x > 4, then k > 2
and 2% > 4 > ¢. Thus 2¢/ ln(Zk) < x/Inx when x > 4. Therefore
(x) < m(21) < 622 < (6In2)
- In(2K) Inx’
Step 3 and Step 4 give the desired result. U

(21 < (61n2)

Bertrand’s postulate:

(1) In 1845, Joseph Bertrand proved that for any n < 6 - 10%, there is a prime
number in [n,2n].

(2) Bertrand conjectured that (1) was true for any n € Z>1.

(3) In 1850, Chebyshev proved (2)

Theorem 1.2.6. For each n € IN, there exists a prime number p such that n < p < 2n.

PROOF. The following proof is due to Erdos.

Step 1: Foreach n € IN,

[Ir<4"

p<n
WLOG, we may assume that 7 > 3 and the result holds for eachk —1,--- ,n — 1.

If n is even, then
[Ir=1I »

p<n p<n—1
Hence one can assume that 7 is odd. Write n = 2m + 1 and observe

2m+1
T » 2m+ 1\ - (2m+1) 2 _ g
m—+1 m—+1 2

m+1<p<2m+1
H p= < H P) ( H p> S 4m+1 47?1 — 42m+1.

p<2m+1 p<m+1 m+1<p<2m+1

So
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Step 2: If n > 3, p is prime, and %n < p < n, then

2n
pi ( B ) :
Indeed, p > %n > 2. Because 3p > 2n, we see that p and 2p are the only multiplies
of p which are < 2n. Therefore p? || (2n)!. Since

2n\  (2n)!
n) (n!)?’
we conclude that (zn”) is not a multiple of p.

Step 3: Assume that n > 4, and the result is false for some n (so that there are
no primes in the interval [n, 2n]). In this step, we shall show that n < 512. By Step
2, each prime number p which divides (*") is < 2n. Let p* || (*"). Then

x<r, and p'r <2n < pr L,

Ifa > 2, then p? < p* < 2nand p < /2, so that

2” 114 (14
(n> HP=( [] P)( [] p)
2n 2n 2n
PG PG, a=1 PG, a>2

< I1 p IL p7 < €7 o)V
p<2/3  p<yon

Using (¥') > 2%"/(2n + 1) yields

In2

n
42n/3(2n)¢27 s 4 = 4"/3 < (2;1)\/27”r2 = T(Zn) < (V2n+2)In(2n).

T~ 2n+1
Setting y := +/2n, we get

In2
%y2—2(y+2)lny<0.
Consider the function f(y) := 32? — 2(y +2) Iny with y > 0. From
, 21n2 y+2 ., 2 2 4 2 2
=2 oly-2L"° —fm2-4+ 2 >fm2-=
fy)=—~y—2Iny P ) =3n2=0 405 > 32—,

we see that when y > 32, f”/(y) > 0. Since f/(32) = % In2 —2In(32) —2.2 > 0,
we obtain that f'(y) > 0 for y > 32. In particular, f(y) > f(32) for y > 32. But

1024 — 1020
n2=——_—=

f(32):210m72—340x1 ln2:§1n2>0,

we conclude that f(y) > 0 for any y > 32. This contradiction shows y < 32 or
n < 512.

For eachn = 1,---,511, the interval [n,2n] always contains a prime number.
Therefore in Step 4 the assumption is wrong. Thus the result holds. g

Twin prime conjecture:

(1) Theorem[1.2.6]implies
(1.2.13) Pn+1— Pn < Pn-
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SCIENCE ct—iu'{

Figure: Yitang Zhang (1955 - )

Conjecture 1.2.7. (Gramer, 1936) One has

. Pn+1 — Pn
1.2.14 limsup ——-~ < 1.
( ) n—>oop (11‘1 Pn)2 -

The sup/inf limit will be defined later.

(2) Baker-Haman-Pintz (2001) proved

(1.2.15) Prst— pn <7, n> 1
(4) If p and p + 2 are both prime numbers, we say (p, p + 2) is twin prime.

Conjecture 1.2.8. (Twin prime conjecture) There exist infinitely many integers n such
that pp,11 — pn = 2. Equivalently

(1.2.16) lirfxl)iggf(pnﬂ —Pn) =2.

(4) Goldston-Pintz-Yildrim (2009-2010) proved

(1.2.17) liminf P L= P 0 Jiminf —Pntl = Pn
n—ro0 In Pn n—00 In Pn (11‘1 In Pn )2

Theorem 1.2.9. (Y.-T. Zhang, 2013) One has
(1.2.18) Hminf(p1 — pn) <7 % 107.

Let by < - -+ < by be positive integers. For each prime number p, set
(1.2.19) Vp oo (p) == #{b; (mod p) : 1 <i <k}.
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"

Figure: Godfrey Harold Hardy (1877/2/7 - 1947 /12/1)

When k =2, (by,by) = (0,2), we have

1, 2,
t0a(p) = #(0 (mod ), 2 (mod p)) ={ 3 P23 = walp) <.

7

vV Il

Conjecture 1.2.10. (Dickson, 1904) If vy, ... 4, (p) < p for all prime numbers p, then
there exist infinitely many positive integers n such that n + by, - - - ,n + by are all prime
numbers.

It is clear that Conjecture[T.2.10|implies Conjecture[T.2.8]

Conjecture 1.2.11. (Hardy-Littlewood, 1923) For any x,y > 1, we have
(1.2.20) mt(x +y) < (x) + 7(y).

Hensley-Richards (1972) proved that Conjecture [1.2.10|and Conjecture [1.2.11
1.2.10

are incompatible. People believe that Conjecture [1.2.10|is true, while Conjecture

[C21Tlwould be false.

1.2.3. 7w and e. As we will prove later that

1\" 1
1221 — dim (141) = YL
a2y e = g (14, L
2
T 1
(1.2.22) T =,
(1.2.23) n! ~ n"e "2mn, n— oco. (Stirling'sformula)
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1.2.4. Metric spaces. Consider the n dimensional Euclidean space R" with
the usual distance function dr» given by

1/2
drs (x, ) :=<Z <x1‘—y1’>2> cox= (1), y =y,

1<i<n
In high school it is well known that
o drn(x,y) > 0and drn(x,y) = 0ifand only if x = v,

[ ) len (X,y) = d]R"(y/ x)/
o dri(x,z) < dre(x,y) + dge (y, 2).

Definition 1.2.12. A metric space is a pair (X, d), where X is nonempty and d is a
metric on X. Thatis, d : X x X — R := RU {co} satisfying

1) (Positiveness) d(x,y) > 0and d(x,y) = d(y, x),

2) (Symmetry) d(x,y) = d(y, x),

3) (Triangle inequality) d(x,z) < d(x,y) +d(y,z).

We say that d is finite if the image of d is contained in R.

Any metric space induces a finite metric on some set. Indeed, let (X, d) be a
metric space, and pick a point x € X. Define

[*la == {y € X d(x,y) # oo}
Theny ~; x < y € [x]; is an equivalence relation. Then d is a finite metric on [x].

Definition 1.2.13. A map f : (X,dx) — (Y,dy) between two metric spaces is
called distance-preserving if

(1.2.24) dy(f(x1), f(x2)) = dx(x1,%2), x1,%2 € X.

A bijective distance-preserving map is called an isometry, Two metric spaces are
isometric if there is an isometry between them.

Example 1.2.14. (1) For any given nonempty set X, we can define the trivial metric

0, x=uv,
(1.2.25) cm&ﬂy:{l x#;
(2) Let X = R. There are two useful metrics:
(1.2.26) d(x,y) :=|x—y|, dn(x,y):=In(1+ |x—yl).

The second one appears in the complex algebraic geometry and differential geom-
etry.

(3) Given two metric spaces (X, dx) and (Y, dy), define the product metric on
X XY by

(1.2.27) ey ((x1,91), (x2,92)) = (dx(x1,%2) +dy (y1,2)) /2.
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=
Figure: Felix Hausdorff (1868/11/8 - 1942/1/26)

4) X = R":
1/2
i (0]
1<i<n
(5) For a metric space (X,d) and A > 0, define
(1.2.28) dy(x,y) == Ad(x,y).

(6) If (X, d) is a metric space and Y C X, we see that (Y, dy := d|x) is itself a
metric space.

Assume that (X, d) is a metric space.

(1) We say that (xy,),cN is a Cauchy sequence if d(x,,, xp,) — 0as n,m — oco.
That is, for any € > 0, there exists a positive integer 19 € IN such that
d(xy, xm) < € whenever n,m > n.

(2) (X,d) is said to be complete if any Cauchy sequence has a limit in X. It
is clear that this limit is unique.

(3) (R\0,dRr|R\o) is non-complete.

(4) For > 0, define the J-neighborhood of A C X to be

As={xeX:d(x,A) < d}

where d(x, A) := inf{d(x,a) :a € A}.
(5) The Hausdorff distance between two given subsets A, B C X is

(1.2.29) d%(A,B) :=inf{d >0: A C Byand B C A;}.

Given metric spaces (X,dx) and (Y,dy), define the Gromov-Hausdoff dis-
tance
(1.2.30)
(Z,dz) metric space and
deu((X,dx), (Y,dy)) := inf {d%l(f(X),g(Y)) D i X—=Z,g: Y Z } ,
isometric embeddings
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|

Figure: Mikhail Gromov (1943/12/23 -)

where isometric embeddings mean that (X,dx) — (f(X),dz|¢x)) and (Y, dy) —
(8(Y),dz|g(y)) are isometries.

We say a sequence of metric spaces {(X;,dy)},>1 converges in the Gromov-
Hausdorff sense to a metric space (X, d), written as (X, d,) —cu (X, d), if

(1231) Tim dgp((xa,dn), (X,d)) =0.

For example, a sequence of cylinders with decreasing to zero radius converges
in the Gromov-Hausdorff sense to a line.

This concept is an important tool to study the behavior of “singular space”,
particularly the study of the Ricci flow (introduced by Hamilton) which leads to a
proof (Perelman) of Poincaré’s conjecture (that is, any closed, simply-connected,
three dimensional manifold is diffeomorphic to s%).

1.2.5. Functionals. Consider the function
f(x):=x% x€eR.

It is easy to check that f is continuous, min,cg f(x) = f(0) = 0, and f'(0) = 0.
Let X denote the set of all functions defined on R and consider

F:X —R, f+—— f(0)%

Clearly that minscx #(f) = #(0) = 0.
Question: How can we define the “derivative” of .%?

Definition 1.2.15. A vector space (over R) is a set X, of elements x,1,z, - - - (vec-
tors), together with two operations of addition (+) and multiplication (-), satisfy-
ing

1) x+yeX, VxyeX

R aeRxeX=—a-xcX,

@G xryeX=x+y=y-+x

@ xyzeX= (x+y)+z=x+(y+2),

(5) 40 € X (zero vector) such thatx +0 = x,V x € X,
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1. INTRODUCTION

Example 1.2.20. (1) .Z(x) := (x?)? — (x1)? for x = (x1,x?),
DF (x;h) = llﬂ% [(x2 + eh?)? — (! + Ehl)z] ~(a?)?2 - (212

(2) For # defined in Example [T.2.18|(2),

= 2(x*h* — x'hb).

DF (¢ ¢) = /0 " [66(x)%(x) + 18sinx(x)(x) + 12sin? xp(x) | dx.

(3) For # defined in Example [T.2.18|(3),
(B?)?/(h')?, ' #0,

LA = { 0 Kl = 0.
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CHAPTER 2

Sequences

2.1. Convergent sequences

2.1.1. Definition. Let X = R, d(x,y) := |x — y|. Then (X, d) is a metric space.
Actually (X, d) is a complete metric space, i.e., any Cauchy sequence has a limit in
X. Recall that

(Xn)nen is Cauchy <= Ve >0, 3N € N such thatd(x,, x,) <€, Vn,m > N,
nli_r)rgoxn =x€X <= Ve>0,IN € Nsuchthatd(x,, x,) <€, Yn> N.

2.1.2. Examples. We give some examples to practice “e-N".
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Let (a,),>1 be a divergent sequence. Then Va € R, a, - a. Thus

ay -+ a <= Jeg >0, YN € N, Ing > N such that |a,, —a| > €.
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2.2. Properties of convergent sequences

2.2.1. Basic properties. We left a question in Definition that a limit, if
exists, is unique. In this subsection we shall prove this fact.
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PROOF. (1) Given € > 0, AN7, N € IN such that
lan —al <e (VYn>Njp) and |b, —b| <e (Vun> Np).
Then
la—b| <lay —b+|a, —a| <2 (¥n > max(Ny, Np)).
By the arbitrary of € we must have a = b.
(2) Takee =1,dN; € Nsuchthata—1<a, <a+1,Vn > N;. HenceVn > 1,

min{ay, - ,ay,a—1} <a, <max{ay,---,an,a+1}.
(3) Take € = %52 > 0, N1, N, € N such that
b—a

b—
|61n—ﬂ| < TLI (1’1>N1) and |bn—b| < 5 (Tl>N2).
Hence . )
ay < ;a +a= # < by, (n>max(Ny,Ny)).

(4) Letting b, >= b in (3), we can find N € IN such that b = b,, < a, (n > N).

(6) If limy 0 by = b < a = lim,_0 ay, then by (3), we have b, < a, for al
n > N.

(6) a, — a implies that Ve > 0, 3N € NN such that |2, —a| < e. Hence
[lan| — |a]] < |an —a] <e. O

Remark 2.2.2. (1) {a,},>1 is bounded - {4, },>1 is convergent.

(2)ay, — a, by = b,a, < b, # a < b. For example, a, = 1/n, b, = 2/n, but
a=b=0.

(3) {|an|}n>1 is convergent - {a, },>1 is convergent.

Theorem 2.2.3. If x, <y, < z, holds for any n > Ny and limy, 0 X, = limy—y00 25 =
a, then limy, 00 Yy = 4.

PROOF. Ve > 0,3dN;, N, € IN such that
|xy —a| <€, |zp—al <e.

Then
a—e<xy, <yp<zp<a-+e
for all n > max(Ny, N1, N»). Hence x, — a. O

Example 2.2.4. (1)ay,--- 0y > 0=

(2.2.1) nlglgo {at + - +a} = max{ay, -, a}.

WLOG, we may assume that max{ay,- - - ,a;} = a;. Then

o < fa Tt ap s ifea = (VP o o
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2.2.2. Algebraic operations. Suppose we have two sequences {a,},>1 and
{by }n>1, we can ask the behaviors of a,, £ by, a,b,, and a,, /by, (b, # 0 for larger n).

PROOF. (1) by — b implies —b,, — —b. We may prove aa, + pb, — aa + pb.
0 < [(aan + Bbu) — (aa + pb)| < |af|an —a| +[B[|bn — | = 0.

(2) {an},{bn} are convergent = |a,| < M and |b,| < M,.

0 < |ayby, — ab| = |ay(by, — b) + (a, — a)b| < My|b, — b| + Ma|a, —a| — 0.

(3) by — b => |by| — |b|. Since |b| > 0, it follows that |b,| > |b|/2 for n > 1.

an _a| _ |b(an—a) —a(by —b)
< | = — | =
*=1b "0 ‘ bub
Pl = al tlallbn b1 2311, — af + Jallby —bl) — 0.

N [ [0] - [p?
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Example[2.1.2]implies (2.2.4) holds fora > 1. When 0 < a < 1,
1 1

R Vb=l ==t
a
(2) Forg > 1,
log n
(2.2.5) lim —21° _
n—o0 n
In fact,
J%W<qe = {n<gq® (Vn>N).
So i i
og 1 og 1
& <e(Vn>N) = iq — 0.

2.2.3. Infinitely small and infinitely large sequences. A sequence {a,},>1 is
said to be an infinitely small sequence, if lim, o 2, = 0ora, — 0.
1) ay »>a<~—=a,—a—>0<=a, =a+a, witha,, — 0.
(2) ay — 0 <= la,| — 0.
3) a, —»0,b, - 0= a, +by,,a, — by, a,b, — 0.
4) ay —0,b, — 0= a,/b, — 0. For example,

{an=§, @ _ {an=i, “_ {“n:nlzf a1
by n by, ’ b, = 737/ by, ’ by = 1 by n
) an — 0, |by] < M = a,b, — 0.

A sequence {a,},>1 is said to be an infinitely large sequence, if YC > 0,
JN € N such that

|an| > C whenever n > N.

Notation: lim;, s 4, = o or a,, — oo.

(1) Write
limy, 00, = +00 {ay }n>1 is an infinitely large sequence
or a, — +oo and a, > 0 (Vn > Np).
(2) Write
limy 0 = —00 {ay }n>1 is an infinitely large sequence
ora, — —oo and a, < 0 (Vn > Np).

(3) ay — +o0ora, — —co => a, — oo. But the convergence is not true, for
example a, = (—1)"n.

4) an, by, —» o = a, + b, — 0.

(5) a, — *o0, b, — Foo —> a, — b, — L.

(6) ay — o0, |by| < M = ayb, — .

(7) an, by, — o0 = a,b, — +oo.

8) ay — *o0, by — Foo —> ayb, — —oo.

©9) a, —»0,a, #0=1/a, — oo.
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2.2.4. Stolz’s theorems. These theorems are used to deal with “co /o0 or “0/0”
limits.

PROOF. Case 1: a = 0. Ve > 0, N7 € IN such that

|Xn = xn-1] < €(Yn —Yn-1), Y1 > Ni.

In particular,

o —xn | <Y li—xal <)Y e(vi—vic) = e(yn —yny);

Ni+1<i<n Ni+1<i<n
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thus
n AN <e(1—le> < €.
Yn Yn Yn
But y;, — +00, IN, € N such that [xy, /yx| < € whenever n > N,. Finally,
In <e+e=2
Yn

whenever n > N = max{Nj, N, }.

Case 2: a # 0. The basic idea is to construct new sequences and then apply
Case 1. Let
Xn 1= Xp — AYn.
Then

Tp = Xp1 _ (=) = (1 = AYp1) _ Xn—Xp1
Yn —Yn-—1 Yn —Yn-1 Yn —Yn—

From Case 1, we have X, /v, — 0 or x,/yg — a.

Case 3: 4 = 4o0. IN; € N such that x, —x,-1 > yn —y—1 > 0 (Vn > Np).
Moreover

Xo—xng =Y, (i—xi)> Y (Vi—Vic1) =Y — YN,

Ny +i<i<n Ny+1<i<n

Letting n — o0 yields x,, — 4o00. According to Case 1,

hmyl:hmwzizo
n—o0 Xy n—00 Xy — Xp_1 —+o00
Case 4: 1 = —o0. Observe that
T T O ) Bl o ) R
Yn —Yn—1 Yn —Yn—1
Now the last case follows from Case 3. O

Theorem 2.2.10. (Stolz’s theorem II: “0/0” type) Given two sequences {x, },>1 and
{yntnz1. If

Xn =0, Yn>Yny1, Yn—0, and lim In = Xn4l _ a (a real number or + o0)
=0 Yn — Yn+1

then

2.2.7) lim 2% = lim XYt g

n—00 1y, n—00 Yy — Ypi1

PROOF. Case1:a € R. Ve > 0, AN € N such thst

Xy — X
a—€<"7n+1<a+e, Vn > N,
Yn — Yn+

or
(@—€)(yn —Yn+1) < xn—xpp1 < (@+€)(Yn —Ynt1), Vn>N.



2.2. PROPERTIES OF CONVERGENT SEQUENCES 43

In particular,
(@a—€)(Yn—Yntp) < Xn—Xnpp < (@+€)(Yn —Yntp), Vn>Nandp >1.
Letting p — 400 yields

Xn
L —a
Yn

(@a—e€)yn < xn < (a+€)yn = <e

Case 2: a4 = +o0. Given C > 0, IN € N such that x, — 41 > C(¥n — Yn+1)
= Xy — Xntp > C(Yn — Ynip), Vn > Nand p > 1. Letting p — oo yields
Xn/ yn > C.

Case 3: ¢ = —co. The proof is similar to that given in Theorem 2.2.9) Case
4. O
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PROOF. =: Take x; = dy. Then x, = 0 and vy, = pum (n > m). Hence
lim pu, = lim y, = lim x, = 0.
n—o0 n—o0 n—oo

<=: Suppose x, — a. Then IM > 0 such that |x, —a| < Mforalln € Z,.
Ve > 0, IN* € N such that |x, — a| < €/2 forall n > N*. But from lim,_,c0 pyj =
0, we get that IN; > N* such that

€
OSPniSWI n > N;.

Let N := maxp<;<n+ N;. Then

|]/n - a| = Z PniXi — E Pnid
0<i<n 0<i<n
< Y pulxi—al+ ), pulvi—a
0<i<N* N*+T<i<n
€ € € €
< MN* = P < -+ = = e
2N*M T2 N*+lz<i<n P 272 ‘
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2.3. Convergence tests

The most important test is the so-called Cauchy criterion which gives a neces-
sary and sufficient condition on the convergence of a given sequence.

2.3.1. Monotone sequences. A sequence {ay},>1 is said to be (monotoni-
cally) increasing (resp. decreasing) if a, < a1 (resp. a5 > a,4q) foralln =
1,2,---.

Theorem 2.3.1. Suppose that {a,},>1 is monotonic (i.e., monotonically increasing or
decreasing). Then

(2.3.1) {an}n>1 is convergent <= {a,},>1 is bounded.

PROOF. =: clearly.

<=: WLOG, we may assume thata, < a, 1. Let E := {a, :n =1,2,--- }. If
{an }n>1 is bounded, then by Zorn’s lemma a := sup E exists and hence a, < a.

Ve > 0,IN € N such that a — e < ay < a, for otherwise, 2 — € would be
an upper bound of E. Since a; is increasing, we get that a — e < a4, < a for all
n > N. O

Example 2.3.2. (1) a; := V2, ayi1 =2+ a, (n > 1) = Find limy,_, ay.
2) a1 >0,a,41 = %(an 4 %) (n > 1) = Find lim;, o a,,.
PROOF. (1) Observe that
o Iflimy yooan =a,then“a =+/2+4+0a" = (a—2)(a+1)=0=a=2.
o 4y = /244 = \/2—|—\/§ > ay,0) < V242 = 2,a3 = /2+ay >
\2ay > ap.
In general, we claim that
V2 <a, <2 and 4,11 > ay.

In fact, V2 < a, < 2 — api1 = V2+a, < V2+2 =2,and a,,1 > a, =
Ant2 = 2+ ap41 > /20,41 > a,+1. Hence {a, },,>1 is monotonically increasing
and bounded — lim;, ,c0 4 = 2.

(2) Vn > 1, we have a, > 0 and

1 1 1 1 \?
—1= 2 (m+ 1) -1 (vm- L) 50

n v An
On the other hand,
1
Ay < E(an +an) = day.
Hence a, > ay41 > -+ > 1 = lim, 004, = a exists and a > 1. Solving the

equationa = 1(a+ 1) yieldsa = 1. O
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Example 2.3.3. a1 =1,4,11 = ﬁ (n > 1) = Find lim;,_, a5,
PROOF. Observe

1 2 3
ap = = = = , .
We claim that {ay, },,>1 is increasing but {s;,,_1 },>1 is decreasing, and % <a, <1
Indeed, % <a, <l=a,1 > ﬁ = % and 4,11 < ﬁ = 1. Moreover
! 1 a a 1 < a
> = ay = < = 1.
1+az,11 1+a2, 1 e el 1+ azy, 1+az,-2 ant

Letlimy, 00 42, = Aand lim, 0 dp, 1 = B=B=1/(1+A)and A =1/(1+B)
— A=B=(v/5-1)/2. Thusa, = (+/5—1)/2.

| Q1

An42 =

[l
2.3.2. Three important constants 7, ¢, and 7. Recall that 7 = 3.1415926 - - -
and e = 2.7182818284590 - - - .
A. Constant 7. The following theorem is will-known.

Theorem 2.3.4. (Euler, 1734) We have
2.3.2)

PROOF. (1) The first proof is due to

Claim 1: For any m € N,

Consider

cotz( T >+~--+cot2< ki ):Zm(Zm—l)
2m+1 '

2m+1 6

cos(nx) +isin(nx) = e"* = (¢i¥)"

The imaginary part yields

. ny . _ ny . —
sin(nx) = <1> sinxcos" ! x — <3> sinxcos" Px 4.

Letn:zZm—i—l&mdxz2,;7}r1 1<r<m=

n n
0 = sin(nx) = (1> sinxcos" ! x — <3> sinxcos" 3x L.

Divided by sin” x (0 < x < 7) we get

(’11) cot" 1y — (g) cot" Bx 4.
(2m1+ 1) cot?™ x — <2m3+ 1> cot?™ 2y 4 ...

= (cosx +isinx)".

0
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P(t) = <2m1+ 1) o <2m3+ 1) ey GZ i D

Let

This polynomial has m different roots

ay .= cot? (271:?-1)' 1<r<m.

P(t) = <2m1+ l) 1312;71 {t — cot? <2n:7j_ 1)] .

Therefore

In particular

Claim 2: One has

Indeed,

Z » r7T > Z 1
csc = _—
1<r<m (Zm +1 1<r<m sz(zg—il)

= I et ()| =

1<r<m

In the interval (0, 7t/2), the following relations hold:
. 1 2 1 2
0 <siny <y < tany, 0<coty<g<cscy, 0<coty<y—2<cscy.

Consequently,

2m(2m 1) _ y (2m+1>2 _ 2m(2m+2)
6 1<r<m \ 17T 6

Equivalently
™ 2m 2m—1 1 7% 2m 2m+2
=< ) <=
6 2m+12m+1 1 r 6 2m+12m—+1

<r<m

Finally letting m — oo yields ), % = 12 /6.

(2) The second proof is due to Beukers-Calabi-Kolk. Observe

1 1 1
ngl n? rg) (2n—1)2 ngl (2n)?
Hence ) )
1 T 1 T
=— = =—_.
Define

L dxdy 1
J= /[0,1]x[0,1] 1—x2—y2 L (2k +1)2°
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If
2 a2
u=cos ! 173(, v:=cos ! 17y,
1 — x2y? 1—x%y
then x = sinu/ cosv, y = sinv/ cos u, and
7T

/2 pr/2—u 2
J= / / dudo = —.
0 0 8
O

B. Constant e. Define
1 n+1 1 1
( ) cei=lt Y oS Lo
0<k<n

1 n
p = <1+> ;b= 14—
n 1<k<n
Claim 1: For each n,
an < an+l, bn > bi’l+1'
PROOF. For each n,
1\" n\ 1 nn—1 n—k) 1
a, = <1+> - ¥ <k>k — 1+ ¥ ( )k' ( )7
n 0<k<n n 1<k<n n
1 -1
S DI I UL 1-"
2! n! n n
1 1 1 1 n—1
< 1+1+2‘(1 n+1>+ +n'<1—n+1>'“<1_n+1)
+ ! L 1-—- " a
(n+1)! n+1 n+1) — b
For b,
mq_ﬂ+ﬁw_<wfﬁ"l
- 1 - 1 1
by (14 5+t 1+5 ) 145
1 | n 1 1 1
= (1+ 5 ) T > <1+ 5 ) T > <1+) 1
ns—1 1+ﬁ ns—1 1+ﬁ n 1+ﬁ
Claim 2: We have
(2.3.3) lim g, = lim b, :=e¢
n—oo n—oo
exists.
PROOF. Because
ap <141+ ) 1<2+2 L__3-1.;
n > T AN — 9 y
255 K 2y Kk —1) n

the claim follows from Theorem [2.3.7]and Claim 1.
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Claim 3: Foranyn € Z,

(2.3.4) (1 + 1)” < (1 + 1)"“ <e< (1 + L
n n+1 n+1
Claim 4: We have
(2.3.5) lim e, =e.

n—oo

PROOE. Observe thate, < e;11 and

a, = 1_|_1_._l 1_1 _|_..._|_l 1_1
2! n n! n

n+2 1 n+1
) < (1+) .
n

1 1 1 1 k—1

Letting n — oo yields
1 1
621+1+E+"'+H:ek-

On the other hand, a,, < e;;. So lim,, €, = e.

Example 2.3.5. (1) Vn > 1 —=

n n+1
(2.3.6) (”H) <n!<e<n+1) :
e e
(2) We have
ol
2.3.7) lim Y _ 1
n—oo mn @

PROOF. (1) Vk > 1,

k+1 k<e< k+1\F1
k k ’

So
(n+1)" k+1\F k+1\F1
T = () << 1 (7
: 1<k<n 1<k<n
(2) By (1), one has
v < P
and

n

Letting n — oo yields (2.3.7).
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C. Euler constant . Given p > 0 and let

1
Sn = 2 k?, ne Z+.
1<k<n

Then S, < S;41, and

Sp < 52”71

55

= 1+ i+l + l-i— —|—i +--F #—F +¥
n 2 3P 4p 7P 2(n=1)p (2n —1)p
<2—(p-1) <4—(p=1) =p-2(p-1) <2~ (n=1)(p-1)
1 2r—1
< = .
1 -1 _
1—- 5= 2p 1
Hence
lim S, exists forall p > 1.
n—o0
When p = 1, by Theorem[2.2.9}
141441 1 1
lim@ - lm -—" — lim -7
n—oo Inn n—oo Inn —In(n — 1) n—eo In(1 + nlj)
1 In(1+1
= lim n 1 . n( + ;iz) — ,
n=eIn(l+ ) "= In(l+ =)

because

Consequently

In particular

Define

(2.3.8)

Then

Indeed,

1 1 2 3
ap,=1+-+---+—-——Inn>In-+In-+---+1In
2 n 1 2

and

An4+1 — an

1 1
Sn21+§+"'+;_>+°°' if0<p <L

1 1
1+-+---4+—~1Inn asn — co.
2 n

ay = 2 %—lnn.

1<k<n

an, > ayr1 >0, lim a, exists.
n—o0

n

:n—f—l

1

n+1

) <o
n

1 1
—ln(n—l—l)—l—lnn—m—ln(l—O—

1—lnnzlni>0
n
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Figure: Joseph Liouville (1809/3/24 - 1882/9/8)

Definition 2.3.6. The Euler constant - is defined to be

1
(2.3.9) v := lim < ——In n) .
n—rco 1§kE§n k

Conjecture 2.3.7. 7 is irrational, i.e., v € R\ Q.

Theorem 2.3.8. (1) (Liouville, 1840) e is irrational.
(2) 7t is irrational.

PROOF. (1) Recall that
1 1
okt e S, K
Assume that e = a/b is rational, with a,b > 0. Then
nlbe = nla, Vn € N.

On the other hand,

bnle = bn! 1+l+l+...+l + 1 + 1 + ..
o 1 2 n! n+1)! " (n+2)!

1 1 1
+b( L + L + L + >
n+1 (n+1)(n+2)

When # is large enough, the second term is not an integer. This contradiction
shows that e is not rational.
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(2) We give a proof due to (1946). Let 7t = a/b. Define
(g — bx)"
£y o= O I R ) e ) — FO )+ D ()~ (1) O ),
But -
Z > F(m)+F(0) = /o f(x)sinxdx
with 0 < f(x)sinx < =& < 1 (asn > 1). O

2.3.3. Subsequences. Let {a,},>1 be a sequence and ¢ : N — IN s strictly
increasing function. Then {a, ;) }r>1 is called a subsequence and write {a,, }>1.

Theorem 2.3.9. (1) Iflim, oo 2, = a, then for any subsequence {ay, }i>1 one has

lim a,, = a.
k—yo00

(2) {an}n>1 is convergent == each subsequence is convergent.
(3) 3 divergent subsequence of {an }n>1 == {an }n>1 is divergent.
(4) 3 two convergent subsequences with distinct limits = {a, },>1 is divergent.

(5) {an }n>1 is convergent <= {az,_1}n>1 and {azy }n>1 are convergent and have
the same limits.

PROOF. (1) - (4) can be proved by directly definition. For (5), assume that
limy, e py—1 = limy, 0 ao;, = a. Then Ve > 0, AN € IN such that

|by —al <€, |ch—a|<e, by:=amy, ¢y :=ay_1.

For ay,, if n = 2k, then |a, —a|] < e (n > 2N); if n = 2k — 1, then |a, —a| < €
(n > 2N — 1). 0

Example 2.3.10. (Fibonacci sequence) Let

m=a=1 a,.1=a,+a,1(n>2) = find lgn aZ—H.
n—00 n
Let p
by = 2L
n a,
Then ;
bn:ﬂn+an—l:1+an—l:1+ '
an an by—1

We have proved as in Example[2.3.3] that

bon—1 < boyt1, bay > bouga, 1< by <2.
Then
V5+1 1 _ V51

, lim (b, — 1) = lim = ~ 0.618.
n—oo

lim b, = Am 5

n—oo0 2

The explicit expression for a; is

(=) -(=%)]

1
ﬂn:%
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Figure: Fibonacci sequence
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Karl Weierstrall 1815-1897

Figure: Karl Theodor Wihelm Weierstrass (1815/10/31 - 1897/2/19)

PROOF. Assume {a,},>1 is bounded, i.e., a4, € [a,b] for some interval [a, b]
and all n > 1. Then one of [g, #] and [#,b] contains infinitely many a,’s,
say [a1,b1]. Take x,, € [a1,b1]. In this process, we can find a sequence of closed
intervals

[a1,01] D [a2, bo] D -+ D ag, by] O -+

with
b—a
by —ap = 5 0 and 3x,, € [ax, byl

But a, is increasing and by, is decreasing, we conclude that lim, . 4, = a and
lim;, 00 b, = b both exist. Moreover

0<b—a<b,—a, —0.

Hence

lim a, = lim b, = ¢
n—oo n—oo

and ¢ € [a, by] for each k. From |x, — 1| < by — ai, we see that limy e Xy, =
c.

Theorem 2.3.12. {a,},>1 is unbounded —> 3 subsequence {au, }x>1 such that
{an, }r>1 is unbounded.

PROOF. 31y such that |a,,| > 1. Then In, > n; such that |a,,| > 2. Hence 3
subsequence {7y };>1 such thst |a,, | > k. O
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Figure: Augustin Louis Cauchy (1789/8/21 - 1857/5/23)

2.3.4. Cauchy sequences. We say that a sequence {a,},>1 is a Cauchy se-
quence if Ve > 0, 3 N € N such that |a, — a,,| < € whenever n,m > N.

PROOF. 3 N € N such that |a,, — a,| < 1 whenever m,n > N. O
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PROOF. =: Let lim;_o 4, = a. Then Ve > 0, AN € N such that
|an —al <€, Vn>N.
Hence
lam — an| < |am —a| + |ay, —a| < 2e

foralln,m > N.

<=:3Np € Nsuchthat|a, —an,+1| < 1,Vn > Ny. In particular, [a,| < M. By
Theorem J subsequence {ay, }¢>1 such that limy_,, a,, = a. Furthermore

lan —a| < |ay — an, | + |ay, —a| < e+ |ay, —a]

whenever 1,1, > N. O







CHAPTER 3

Continuous functions

3.1. Limits of functions

We begin with an example. Find a function f : R — R satisfying

flx+y) = f(x)f(y)
for any x,y € IR? Letting x = y yields

f2)=f+1) = [f)*

In general, one has

f(n) = [f (1))
for any n € Z.. Moreover
=5 | ey | = (3)] a0 =rr
————

so that

For any p/q € Q one has

() -s[33) - DG oo
o

p

For any x € R, we have proved that there is a sequence {a, },>1 in Q such that

lim a, = x.
n—oo
In summary,

we expect

f(x) flan) = [F)]" == [F)]*

If one can prove

f(lim ax) = f(x) = lim f(an),
we have

f) =@, xeR.
We can conclude that when f and lim can be changed, f(x) = [f(1)]* forall x € R.
As we shall see later by Heine’s theorem, f(x) = [f(1)]* for all x € R when f is
continuous.

63
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3.1.1. Definitions. We start with the definition of limits of functions.

If f is defined at a, then limy_,, f(x) = f(a) is the definition of the continuity
of fata.
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3.1.2. Properties of the limits of a function. The following properties can be
proved as for the limits of sequences.
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3.1.3. Two important limits. When 0 < x < 71, we know that 0 < sinx < x.
The following property shows that when x is very small, we can use x to substitute
sin x.

PROOF. When 0 < x < 71/2, we have
sinx < x < tanx
so that

sin x
cosx < —~ < 1.

Hence limy_,o+ sin x/x = 1. Similarly, we can prove that lim,_,o_sinx/x =1. O

PROOF. For any x > 1 we have

(1+ﬁ)tﬂ<<l+%>x<(1+|-17J)ij+l
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Using e = limy (14 1/n)", we get limy_,100(1+ 1/x)* = e. Similarly, when
x — —oo, wesety := —x — +oco. Then

x -y y y-1
(1+1) =(1—1) =(1+L) =<1+L) J_ e
X y y—1 y—1 y—1

as x — —oo. O

3.1.4. Heine’s theorem. This theorem builds a bridge between limits of func-
tions and limits of sequences.

PROOF. (1) <: If limy_,, f(x) # A, then Jeg > 0, V6 > 0, Ix € U(a,d) such
that

|f(x)— Al > e >0.

Take 61 = 0,00 = p/2, -+, 8, = p/n, ---,and find ay, - - - ,a, € U(a,p/n) such
that |f(a,) — A| > €. Since a, — a, we have f(a,) » A.

=: Clearly.

(2) =: Clearly.

<: We should prove that any sequence (f(a,)),>1 has the same limit. Sup-
pose that a, — a and b, — a, but f(a,) - A # B < f(b,). Consider the new



68 3. CONTINUOUS FUNCTIONS

sequence (Xp),>1:
ai, b]/ as, bZ/ as, b31 cc,Any, bn/ Tt

Then x,, — a but f(x,),>1 diverges. Hence A must be equal to B. O

PROOF. = Clearly.
<=: Cauchy test for sequence = V{a,},>1 — oo, {f(ax)},>1 converges =
limy_,00 f(x) exists by Heine’s theorem, Theorem

3.2. Various comparison symbols

We have proved that lim,_,¢sinx/x = 1, so that in principal, we can replace
sinx by x. A natural question is in context when/how we can do it. This section
answers this question.
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3.2.1. Infinitesimals. Actually we have six limit types:

X—a, x—a+, x —>d—, x — —00, X — +00, X — c0.

We will focus on the first type.
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3.2.2. Infinities. We say f(x) is an infinity if 1/ f(x) is an infinitesimal.
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Similarly we can consider

Iim, lim, Ilim, Iim, lim.
x—a+ X—a— X—+00 X——00 X—>00

We give several remarks:
(1) u(x) — o0, v(x) = c0o =

u(x) =o(v(x imwz or imwzoo
(%) (0(x)) = alc—mvx) 0 91c—>uu(x)
(2) u(x) — o0, v(x) = c0o =
u(x)

u(x) =0(v(x)) — < M (in some U(a, 8)).

v(x)
(8) u(x) — o0, v(x) = c0o =
u(x) ~ov(x) <= u(x) =0(v(x))and v(x) = O(u(x)).

(4) u(x) — o0, v(x) = c0o =

u(x) ~ov(x) <= lim——==1.

3.2.3. Equivalent substitutions. When x — 0, we proved thatsin x ~ tan xsinx,
hence tanx —sinx — 0asx — 0.
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PROOF. Because u(x)w(x) = u(x)o(x) - 71‘)’((;) and Z,(’;

~—
S|
=
=
g
N
=
I
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3.3. Continuities and discontinuities
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