HW2, due to 10/19/2020

Exercise 1. A map $f : (X, \mathscr{T}_X) \to (Y, \mathscr{T}_Y)$ between two topological spaces is **open** if $f(U) \in \mathscr{T}_Y$ for all $U \in \mathscr{T}_X$; f is **closed** if f(C) is closed in Y for all closed subsets C of X.

When *f* is a bijective continuous map, show that the following are equivalent:

- (1) f is a homeomorphism (that is, f is bijective and f, f^{-1} both are continuous).
- (2) f is open.
- (3) f is closed.

Exercise 2. Let $f : (X, \mathscr{T}_X) \to (Y, \mathscr{T}_Y)$ be a map between topological spaces. Show that

(1) *f* is continuous if and only if $f^{-1}(Int(B)) \subseteq Int(f^{-1}(B))$ for all $N \subseteq Y$.

(2) *f* is open if and only if $f^{-1}(Int(B)) \supseteq Int(f^{-1}(B))$ for all $B \subseteq Y$.

Exercise 3. On **R** define three subsets of 2^X :

- (Finite complement topology) \mathscr{T}_{fc} is defined by
 - $\mathscr{T}_{\mathbf{fc}} := \{ A \subseteq \mathbf{R} | \mathbf{R} \setminus A \text{ is finite} \} \cup \{ \emptyset \}.$
- (Particular point topology) \mathcal{T}_{pp} is defined by

$$\mathscr{T}_{\mathbf{pp}} := \{ U \subseteq \mathbf{R} | U = \emptyset \text{ or } 0 \in U \}.$$

• (Excluded point topology) \mathscr{T}_{ep} is defined by

$$\mathscr{T}_{ep} := \{ U \subseteq \mathbf{R} | U = \mathbf{R} \text{ or } 0 \notin U \}.$$

Prove that \mathscr{T}_{fc} , \mathscr{T}_{pp} , \mathscr{T}_{ep} are all topologies on **R**. Moreover, show that $(\mathbf{R}, \mathscr{T}_{pp})$ and $(\mathbf{R}, \mathscr{T}_{ep}$ both are first countable but not second countable, and $(\mathbf{R}, \mathscr{T}_{fc})$ is neither first countable nor second countable.

Exercise 4. Let \mathfrak{C} be a category. An object $P \in \mathbf{Ob}(\mathfrak{C})$ is **initial** if for any $Y \in \mathbf{Ob}(\mathfrak{C})$, $\mathbf{Hom}_{\mathfrak{C}}(P, Y)$ has exactly one element. An object $Q \in \mathbf{Ob}(\mathfrak{C})$ is **final** if for any $X \in \mathbf{Ob}(\mathfrak{C})$, $\mathbf{Hom}_{\mathfrak{C}}(X, Q)$ has exactly one element. Show that two initial (resp. final) objects are isomorphic (A morphism $f : X \to Y$ is said to be **isomorphic** if there exists $g : Y \to X$ such that $f \circ g = 1_Y$ and $g \circ f = 1_X$).

Exercise 5. The **opposite category** \mathfrak{C}° of a category \mathfrak{C} is defined by

$$\mathbf{Ob}(\mathfrak{C}^\circ) := \mathbf{Ob}(\mathfrak{C}), \quad \mathbf{Hom}_{\mathfrak{C}^\circ}(X,Y) := \mathbf{Hom}_{\mathfrak{C}}(Y,X).$$

A contravariant functor $G : \mathfrak{C} \to \mathfrak{C}'$ between two categories is a functor from \mathfrak{C}° to \mathfrak{C}' .

Let \mathfrak{C} be a category and $X \in \mathbf{Ob}(\mathfrak{C})$ is a given object. Define

 $\operatorname{Hom}_{\mathfrak{C}}(\cdot, X) : \mathfrak{C} \longrightarrow \operatorname{Set}, \quad Z \longmapsto \operatorname{Hom}_{\mathfrak{C}}(Z, X).$

Show that **Hom** $_{\mathfrak{C}}(\cdot, X)$ is a contravariant functor.

Exercise 6 (Bonus). Let (X, \mathscr{T}) be a topological space. A **presheaf** \mathscr{F} of sets (resp. Abelian groups) on *X* consists of

(a) for any nonempty open subset U of X, we have a **set (resp. Abelian group)** $\mathscr{F}(U)$,

(b) for any inclusion $V \subseteq U$ of nonemptyset open subsets of *X*, there exists a map $\rho_{U,V}^{\mathscr{F}} : \mathscr{F}(U) \to \mathscr{F}(V)$.

These data satisfy

$$\boldsymbol{\rho}_{U,W}^{\mathscr{F}} = \boldsymbol{\rho}_{V,W}^{\mathscr{F}} \circ \boldsymbol{\rho}_{U,V}^{\mathscr{F}}.$$

For $s \in \mathscr{F}(U)$, we usually write $s|_V := \rho_{U,V}^{\mathscr{F}}(s)$. We define $\mathscr{F}(\emptyset) := \{0\}$. Define \mathfrak{C}_X to be the category of open subsets of *X*, that is,

$$\mathbf{Ob}(\mathfrak{C}_X) = \mathscr{T}, \quad \mathbf{Hom}_{\mathfrak{C}_X}(U, V) := \begin{cases} \emptyset, & \text{if } V \nsubseteq U, \\ \text{inclusion } V \hookrightarrow U, & \text{if } V \subseteq U. \end{cases}$$

Show that a presheaf \mathscr{F} of sets (resp. Abelian groups) on *X* is a contravariant functor from \mathfrak{C}_X to **Set** (reps. **AGroup**, the category of Abelian groups).

Exercise 7 (Bonus). Let (X, \mathscr{T}_X) and (Y, \mathscr{T}_Y) be two topological spaces.

(1) Given an Abelian group A. For any nonempty open subset U of X, define

$$\mathscr{F}(U) := A,$$

and for any inclusion $V \subset U$ of nonempty open subsets, define

$$\rho_{U,V}^{\mathscr{F}} := \mathbf{1}_A.$$

Show that \mathscr{F} is a presheaf of Abelian groups on *X*, called the **constant presheaf associated to** *A* and denoted by \underline{A}_X .

(2) Given a continuous map $\pi : (Y, \mathscr{T}_Y) \to (X, \mathscr{T}_X)$. For any nonempty open subset *U* of *X*, define

$$\mathscr{F}(U) := \left\{ s : U \to \pi^{-1}(U) \middle| s \text{ is continuous and } \pi \circ s = \mathbf{1}_U \right\},$$

and for any inclusion $V \subset U$ of nonempty open subsets, define

$$\rho_{U,V}^{\mathscr{F}} := \text{restriction } V \hookrightarrow U.$$

Show that \mathscr{F} is a presheaf of sets on *X*.