## HW5, due to 5/17/2021

Exercise 1 Let $X=\left(X_{i j}\right) \in \operatorname{Max}(n, \mathbf{R})$. Define formally

$$
e^{X}:=\sum_{m \geq 0} \frac{X^{m}}{m!}, \quad\|X\|:=\left(\sum_{1 \leq i, j \leq n}\left|X_{i j}\right|^{2}\right)^{1 / 2}
$$

Regarding $\operatorname{Max}(n, \mathbf{R})$ as $\mathbf{R}^{n^{2}}$, we say that a sequence $\left\{X_{m}\right\}_{m \geq 1}$ in $\operatorname{Max}(n, \mathbf{R})$ converges to $X$, if $\left\|X_{m}-X\right\| \rightarrow 0$ as $m \rightarrow \infty$.
(a) Show that for any $X \in \operatorname{Max}(n, \mathbf{R})$, the series $\sum_{m>0} X^{m} / m$ ! converges so that the function $e^{X}$ is well-defined. Moreover, show that $e^{X}$ is continuous in $X$.
(b) Compute $e^{X}$ and $e^{Y}$ for

$$
X=\left[\begin{array}{cc}
0 & -a \\
a & 0
\end{array}\right], \quad Y=\left[\begin{array}{ll}
b & c \\
0 & b
\end{array}\right]
$$

Verify that $X Y \neq Y X$ and $e^{X} e^{Y} \neq e^{Y} e^{X}$.
(c) The Heisenberg group $H$ is defined to be

$$
H:=\left\{\left.X=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \in \mathbf{M a x}(3, \mathbf{R}) \right\rvert\, a, b, c \in \mathbf{R}\right\} \subseteq \mathbf{S L}(3, \mathbf{R})
$$

For any $X, Y \in H$ show that $[X,[X, Y]]=[Y,[X, Y]]=0$, where $[X, Y]:=$ $X Y-Y X$.
(d) Verify

$$
e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]}
$$

for

$$
X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right], \quad Y=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

