Let M be a given smooth manifold.

1. Let $x \in M$. C^{∞} Functions f and g defined on open sets containing x are said to have the same germ at x if they agree on some neighborhood of x. Define

$$
f \sim g \Leftrightarrow f \text { and } g \text { have the same germ. }
$$

Show that \sim is an equivalence relation. The equivalence classes are also called germs and we denote the set of germs at x by $\widetilde{\mathscr{F}}_{x}$.
2. If f is a C^{∞} function on a neighborhood of x, then \mathbf{f} will denote its germ. Show that $\widetilde{\mathscr{F}}_{x}$ forms an algebra over \mathbb{R}, and $\mathbf{f}(x)$ is well-defined.
3. Let $\mathscr{F}_{x} \subset \widetilde{\mathscr{F}}_{x}$ be the set of germs which vanish at x. Show that \mathscr{F}_{x} is an ideal in $\widetilde{\mathscr{F}}_{x}$. Let $\mathscr{\mathscr { F }}_{x}^{k}$ be the ideal of $\widetilde{\mathscr{F}}_{x}$ consisting of all finite linear combinations of k-fold products of elements of \mathscr{F}_{x}. Show that these form a descending sequence of ideals $\widetilde{\mathscr{F}}_{x} \supset \mathscr{F}_{x} \supset \mathscr{F}_{x}^{2} \supset \mathscr{F}_{x}^{3} \supset \cdots$.
4. A tangent vector v at the point $x \in M$ is a linear derivation of the algebra $\widetilde{\mathscr{F}}_{x}$. That is, for all $\mathbf{f}, \mathbf{g} \in \widetilde{\mathscr{F}}_{x}$ and $\lambda \in \mathbb{R}$,

$$
v(\mathbf{f}+\lambda \mathbf{g})=v(\mathbf{f})+\lambda v(\mathbf{g}), \quad v(\mathbf{f} \cdot \mathbf{g})=\mathbf{f}(x) v(\mathbf{g})+\mathbf{g}(x) v(\mathbf{f}) .
$$

$T_{x} M$ denotes the set of tangent vectors to M at x and is called the tangent space to M at x. Clearly that $T_{x} M$ is a real vector space.

If \mathbf{c} is the germ of a function with the constant value c on a neighborhood of x, and if v is a tangent vector at x, show that $v(\mathbf{c})=0$.
5. Show that $T_{x} M$ is naturally isomorphic with $\left(\mathscr{F}_{x} / \mathscr{F}_{x}^{2}\right)^{*}$, where $*$ denotes dual vector space. (Hint: if $v \in T_{x} M$, then v is a linear function on \mathscr{F}_{x} vanishing on \mathscr{F}_{x}^{2}. Conversely, if $\ell \in\left(\mathscr{F}_{x} / \mathscr{F}_{x}^{2}\right)^{*}$, we can define a tangent vector v_{ℓ} at x by setting $v_{\ell}(\mathbf{f}):=\ell(\{\mathbf{f}-\mathbf{f}(\mathbf{x})\})$ for $\mathbf{f} \in \widetilde{\mathscr{F}}_{x}$. Here $\mathbf{f}(\mathbf{x})$ denotes the germ of the function with the constant value $\mathbf{f}(x)$, and $\left\}\right.$ is used to denote cosets in $\left.\mathscr{F}_{x} / \mathscr{F}_{x}^{2}\right)$
*6. Show that $\operatorname{dim}\left(\mathscr{F}_{x} / \mathscr{F}_{x}^{2}\right)=\operatorname{dim} M$. (Hint: Recall a fact from calculus: if $g \in C^{k}(U), k \geq 2$ and U convex open about $p \in \mathbb{U}^{d}$, then for each $\boldsymbol{q} \in U$,

$$
\begin{aligned}
g(\boldsymbol{q})= & g(\boldsymbol{p})+\left.\sum_{1 \leq i \leq d} \frac{\partial g}{\partial x^{i}}\right|_{\boldsymbol{p}}\left[r_{i}(\boldsymbol{q})-r_{i}(\boldsymbol{p})\right] \\
& +\left.\sum_{1 \leq i, j \leq d}\left[r_{i}(\boldsymbol{q})-r_{i}(\boldsymbol{p})\right]\left[r_{j}(\boldsymbol{q})-r_{j}(\boldsymbol{p})\right] \int_{0}^{1}(1-t) \frac{\partial^{2} g}{\partial x^{i} \partial x^{j}}\right|_{(\boldsymbol{p}+t(\boldsymbol{q}-\boldsymbol{p}))} d t .
\end{aligned}
$$

Now, let (U, φ) be a coordinate chart of x with coordinate functions x^{1}, \cdots, x^{d}, where $d=\operatorname{dim} M$. Let $\mathbf{f} \in \mathscr{F}_{x}$. Apply the above formula to $f \circ \varphi^{-1}$ and compose with φ to obtain

$$
f=\left.\sum_{1 \leq i \leq d} \frac{\left(\partial\left(f \circ \varphi^{-1}\right)\right.}{\partial x^{i}}\right|_{\varphi(x)}\left[x^{i}-x^{i}(x)\right]+\sum_{1 \leq i, j \leq d}\left[x^{i}-x^{i}(x)\right]\left[x^{j}-x^{j}(x)\right] h
$$

on a neighborhood of x, where $h \in C^{\infty}$. Hence $\left\{\left\{\mathbf{x}^{i}-\mathbf{x}^{i}(\mathbf{x})\right\}\right\}_{1 \leq i \leq d}$ spans $\mathscr{F}_{x} / \mathscr{F}_{x}^{2}$. On the other hand, suppose

$$
\sum_{1 \leq i \leq d} a_{i}\left(\mathbf{x}^{i}-\mathbf{x}^{i}(\mathbf{x})\right) \in \mathscr{F}_{x}^{2} .
$$

Then $\left.\left.\frac{\partial}{\partial x^{i}}\right|_{\varphi(x)}\left[\sum_{1 \leq i \leq d} a^{i}\left(x^{i}-x^{i}(\varphi(x))\right)\right]=0.\right)$

