HW8 (Last!), due to 1/2/2020

Let *M* be a given smooth manifold.

1. Let $x \in M$. C^{∞} Functions f and g defined on open sets containing x are said to have the same **germ** at x if they agree on some neighborhood of x. Define

 $f \sim g \iff f$ and g have the same germ.

Show that \sim is an equivalence relation. The equivalence classes are also called **germs** and we denote the set of germs at *x* by $\widetilde{\mathscr{F}}_x$.

2. If *f* is a C^{∞} function on a neighborhood of *x*, then **f** will denote its germ. Show that $\widetilde{\mathscr{F}}_x$ forms an algebra over \mathbb{R} , and $\mathbf{f}(x)$ is well-defined.

Let 𝔅_x ⊂ 𝔅_x be the set of germs which vanish at *x*. Show that 𝔅_x is an ideal in 𝔅_x. Let 𝔅_x^k be the ideal of 𝔅_x consisting of all finite linear combinations of *k*-fold products of elements of 𝔅_x. Show that these form a descending sequence of ideals 𝔅_x ⊃ 𝔅_x ⊃ 𝔅_x ⊃ 𝔅_x² ⊃ 𝔅_x³ ⊃ ··· .
A tangent vector *v* at the point *x* ∈ *M* is a linear derivation of the algebra

4. A tangent vector v at the point $x \in M$ is a linear derivation of the algebra $\widetilde{\mathscr{F}}_x$. That is, for all $\mathbf{f}, \mathbf{g} \in \widetilde{\mathscr{F}}_x$ and $\lambda \in \mathbb{R}$,

$$v(\mathbf{f} + \lambda \mathbf{g}) = v(\mathbf{f}) + \lambda v(\mathbf{g}), \quad v(\mathbf{f} \cdot \mathbf{g}) = \mathbf{f}(x)v(\mathbf{g}) + \mathbf{g}(x)v(\mathbf{f}).$$

 $T_x M$ denotes the set of tangent vectors to M at x and is called the **tangent space to** M **at** x. Clearly that $T_x M$ is a real vector space.

If **c** is the germ of a function with the constant value *c* on a neighborhood of *x*, and if *v* is a tangent vector at *x*, show that $v(\mathbf{c}) = 0$.

5. Show that $T_x M$ is naturally isomorphic with $(\mathscr{F}_x / \mathscr{F}_x^2)^*$, where * denotes dual vector space. (**Hint:** if $v \in T_x M$, then v is a linear function on \mathscr{F}_x vanishing on \mathscr{F}_x^2 . Conversely, if $\ell \in (\mathscr{F}_x / \mathscr{F}_x^2)^*$, we can define a tangent vector v_ℓ at x by setting $v_\ell(\mathbf{f}) := \ell(\{\mathbf{f} - \mathbf{f}(\mathbf{x})\})$ for $\mathbf{f} \in \widetilde{\mathscr{F}}_x$. Here $\mathbf{f}(\mathbf{x})$ denotes the germ of the function with the constant value $\mathbf{f}(x)$, and $\{\}$ is used to denote cosets in $\mathscr{F}_x / \mathscr{F}_x^2$)

*6. Show that $\dim(\mathscr{F}_x/\mathscr{F}_x^2) = \dim M$. (Hint: Recall a fact from calculus: if $g \in C^k(U), k \ge 2$ and U convex open about $p \in \mathbb{U}^d$, then for each $q \in U$,

$$g(\boldsymbol{q}) = g(\boldsymbol{p}) + \sum_{1 \le i \le d} \frac{\partial g}{\partial x^i} \bigg|_{\boldsymbol{p}} [r_i(\boldsymbol{q}) - r_i(\boldsymbol{p})] \\ + \sum_{1 \le i, j \le d} [r_i(\boldsymbol{q}) - r_i(\boldsymbol{p})] [r_j(\boldsymbol{q}) - r_j(\boldsymbol{p})] \int_0^1 (1-t) \frac{\partial^2 g}{\partial x^i \partial x^j} \bigg|_{(\boldsymbol{p}+t(\boldsymbol{q}-\boldsymbol{p}))} dt.$$

Now, let (U, φ) be a coordinate chart of x with coordinate functions x^1, \dots, x^d , where $d = \dim M$. Let $\mathbf{f} \in \mathscr{F}_x$. Apply the above formula to $f \circ \varphi^{-1}$ and compose with φ to obtain

$$f = \sum_{1 \le i \le d} \frac{(\partial (f \circ \varphi^{-1}))}{\partial x^i} \Big|_{\varphi(x)} [x^i - x^i(x)] + \sum_{1 \le i,j \le d} [x^i - x^i(x)] [x^j - x^j(x)]h$$

on a neighborhood of *x*, where $h \in C^{\infty}$. Hence $\{\{\mathbf{x}^i - \mathbf{x}^i(\mathbf{x})\}\}_{1 \le i \le d}$ spans $\mathscr{F}_x / \mathscr{F}_x^2$. On the other hand, suppose

$$\sum_{1 \leq i \leq d} a_i \left(\mathbf{x}^i - \mathbf{x}^i(\mathbf{x}) \right) \in \mathscr{F}_x^2.$$

Then $\frac{\partial}{\partial x^i} |_{\varphi(x)} [\sum_{1 \leq i \leq d} a^i (x^i - x^i(\varphi(x)))] = 0.$)