发表的学术论文:
[30] Su Lei, Yanyan Wang, Rui Du*, A finite difference scheme for the two-dimensional Gray-Scott equation with fractional Laplacian, Numerical Algorithms, 2023, 94:1185-1215
[29] 周彤彤、杜睿*,二维带分数阶Laplacian算子的对流扩散方程的格子Boltzmann模型研究,数值计算与计算机应用,2023, 44(2):126-137
[28] Yanyan Wang, Zhaopeng Hao, Rui Du*, A Linear Finite Difference Scheme for the Two-Dimensional Nonlinear Schrödinger Equation with Fractional Laplacian, Journal of Scientific Computing,volume 2022, 90:24
[27] Yibo Wang, Rui Du*, and Zhenhua Chai, Lattice BGK model for time-fractional wave equations, Advances in Applied Mathematics and Mechanics, 2022, 14: 914-935 (2022)
[26] Rui Du*, Yanyan Wang, Zhaopeng Hao, High-dimensional nonlinear Ginzburg-Landau equation with fractional Laplacian: Discretization and simulations. Communications in Nonlinear Science and Numerical Simulation, 2021, 102:105920
[25] Xianzhong Yan, Yonglong Ye, Jun Chen, Xiaofeng Wang and Rui Du*, Improved multiple-relaxation-time lattice Boltzmann model for Allen–Cahn equation, International Journal of Modern Physics C, 2021, DOI:10.1142/S0129183121500868
[24] Rui. Du*, Yibo Wang, Lattice BGK model for time-fractional incompressible Navier-Stokes equations
Applied Mathematics Letter, 2021, 114:106911.
[23] Zhaopeng Hao, Zhongqiang Zhang, Rui Du*, Fractional centered difference scheme for high-dimensional integral fractional Laplacian, Journal of Computational Physics, 2021, 424:109851.
[22] Hong Liang∗, Chunhua Zhang, Rui Du, Yikun Wei, Lattice Boltzmann method for fractional Cahn-Hilliard equation
Commun Nonlinear Sci Numer Simulat, 2020, 91:105443.
[21] R. Du, P. Gokulavani, M.Muthtamilselvan* et. al, Influence of the Lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu − Al2O3 − H2Ohybrid nanofluid, International Communications in Heat and Mass Transfer, 2020, 116:104676.
[20] R. Du, J.C. Wang, D.K. Sun*, Lattice-Boltzmann Simulations of the Convection-Diffusion Equation with Different Reactive Boundary Conditions, Mathematics, 2020, 8(1):13.
[19] R. Du*, Z.X. Liu, A lattice Boltzmann model for the fractional advection-diffusion equation coupled with incompressible Navier-Stokes equation, Applied Mathematics Letter, 2020, 101:106074.
[18] Z.H. Chai, H. Liang, R. Du, B.C. Shi*, A lattice Boltzmann model for two-phase flow in porous media, SIAM J. Sci. Comput. 2019, 41(4): B746-B772. (ESI 高被引论文)
[17] Hong Sun, Zhi-zhong Sun, Rui Du*,A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation,Numer. Math. Theor. Meth. Appl., 2019, 12:1168-1190.
[16] R. Du, D.K. Sun, B.C. Shi, Z.H. Chai*, Lattice Boltzmann model for time sub-diffusion equation in Caputo sense, Applied Mathematics and Computation, 2019, 358:80-90.
[15] Jin-ye Shen, Zhi-zhong Sun*, Rui Du, Fast finite difference schemes for the time-fractional diffusion equation with a weak singularityat the initial time, Asian Journal of Applied Mathematics, East Asian Journal on Applied Mathematics,2018, 8(4): 834-858.
[14] Cui-cui Ji, Rui Du, Zhizhong Sun*,Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives, International Journal of Computer Mathematics, 2018, 95(1), 255-277.
[13] Rui Du*, Zhao-peng Hao, Zhi-zhong Sun, Lubich's second-order methods for the distributed-order time-fractional differential equations with smooth solutions, East Asian Journal on Applied Mathematics, 2016,6(2):131-151.
[12] Rui Du*, Zhizhong Sun, Guanghua Gao, A second-order linearized three-level backward Euler scheme for a class of nonlinear expitaxial growth model, Int. J. Comput. Math., 2015, 92(11):2290-2309.
[11] Hong Sun, Rui Du, Weizhong Dai, Zhizhong Sun*, A high order accurate numerical method for solving two-dimensional dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction,Numerical Methods for Partial Differential Equations, 2015, 31:1742-1768.
[10] Rui Du*, Wenwen Liu, A New Multiple-relaxation-time Lattice Boltzmann Method for Natural Convection,Journal of Scientific Computing, 2013, 56(1):122-130.
[9] Sheng Chen*, Rui Du, Entropy generation of turbulent double-diffusive natural convection in a rectangle cavity, Energy, 2011, 36:1721-1734.
[8]R. Du*, W. R. Cao, Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Applied Mathematical Modeling, 2010,34:2998-3007.
[7] Rui Du, Baochang Shi*, Incompressible Multi-relaxation-time Lattice Boltzmann Model in 3d Space, Journal of Hydrodynamics, 2010, 22(6):782-787.
[6] Rui Du,Baochang Shi*, Incompressible MRT lattice Boltzmann model with eight velocities in 2D space,International Journal of Modern Physics C, 2009, 20:1023-1037.
[5]Rui Du, Baochang Shi*, The lattice Boltzmann method for the thermocapillary flow in a cavity under microgravity condition, Computers and Mathematics with Applications, 2008, 55:1433-1440.
[4] Rui Du, Baochang Shi*, A novel scheme for forcing term in the lattice BGK model, International Journal of Modern Physics C, 2006, 17:945-958.
[3] Rui Du, Baochang Shi* and Xingwang Chen, Multi-relaxation-time lattice Boltzmann model for incompressible flow,
Physics Letters A, 2006, 359:564-572.
[2] 杜睿, 施保昌,格子Boltzmann 方法中的曲边界处理,计算物理,23 (2006), 405-411.
[1] Rui Du,Baochang Shi* et al, An implicit scheme for incompressible LBGK model, J. Hydrodynamic, Part B. 17 (2005), 330-337. (EI)