头像
Xuan Zhao
Associate professor
Department of Mathematics
System Science Department
Tel:
025-52090590
Email:
xuanzhao11@seu.edu.cn
Address:
--- 501-5
Post:
  • Joing PhD of Southeast University and Brown University

  • 图书章节:


      

    [1] Xuan Zhao, and Zhi-zhong Sun, Part 1. Time-fractional derivatives, in Handbook of Fractional Calculus with Applications Volume 3: Numerical Methods edited by Jose Antonio Tenreiro Machado, pp. 34-59, De Gruyter, 2019.



    期刊论文:


      

    [42] Yixian Zhang,Zhuoxuan Li,Yiding Cao, Xuan Zhao*,Jinde Cao,Deep Reinforcement Learning Using Optimized Monte Carlo Tree Search in EWN, IEEE Transactions on Games , 2023, online


    [41] Bingqing Hu, Wei Zhang, Xuan Zhao*, Convergence analysis of the maximum principle preserving BDF2 scheme with variable time-steps for the space fractional Allen-Cahn equation, Journal of Computational and Applied Mathematics, 448 (2024), 115951. 

     

    [40] Zhongqin Xue, Shuying Zhai, Xuan Zhao*, Energy dissipation and evolutions of the nonlocal Cahn-Hilliard model and space fractional variants using efficient variable-step BDF2 method, Journal of Computational Physics, 510 (2024), 113071.

     

    [39] Honglin Liao, Nan Liu, Xuan Zhao*, Asymptotically compatible energy of variable-step fractional BDF2 scheme for the time-fractional Cahn-Hilliard model, IMA Journal of Numerical Analysis, 2024, https://doi.org/10.1093/imanum/drae034

     

    [38] Bingquan Ji, Xuan Zhao*, Mesh-robust L2 norm convergence of variable-step linear BDF2 scheme for the incompressible Navier-Stokes equations, Numerical Algorithms, 2024, https://doi.org/10.1007/s11075-024-01858-0

     

    [37] Xuan Zhao*, Haifeng Zhang, Ren-jun Qi, Stability and convergence of BDF2-ADI schemes with variable step sizes for parabolic equation, Applied Numerical Mathematics, 2024, Online.

     

    [36] Zhongqin Xue, Guanghui Wen, Zhimin Zhang, Xuan Zhao*, Efficient high-order backward difference formulae for Cahn-Hilliard equation with the gradient flow in $H^{-\alpha}$, Communications in Computational Physics, 35, 2024, 1263-1286.

     

    [35] Xuan Zhao*, Zhuhan Jiang, Hong Sun, Energy dissipation law of the variable time-step fractional BDF2 scheme for the time fractional molecular beam epitaxial model, International Journal of Computer Mathematics, 2024, https://doi.org/10.1080/00207160.2024.2315131


    [34] Zhongqin Xue, Xuan Zhao*, Efficient variable steps BDF2 scheme for the two-dimensional space fractional Cahn-Hilliard model, Communications on Applied Mathematics and Computation, 2024, Online.

     

    [33] Ren-jun Qi,Xuan Zhao*,A unified design of energy stable schemes with variable steps for fractional gradient flows and nonlinear integro-differential equations, SIAM Journal on Scientific Computing , 46 (2024), A130-A155.


    [32Zonghan Li, Yangbo Wei, Yixian Zhang, Xuan Zhao*, Jinde Cao, Jianhua Guo, Adaptive data processing framework for efficient short-term traffic flow prediction, Nonlinear Dynamics, (2024) 15231-15249.


    [31Xuan Zhao*, Ran Yang, Ren-jun Qi, Hong Sun, Energy stability and convergence of variable-step L1 scheme for the time fractional Swift-Hohenberg model, Fractional Calculus and Applied Analysis, 27 (2024), 82-101.

     

    [30] Ren-jun Qi, Wei Zhang, Xuan Zhao*, Variable-step numerical schemes and energy dissipation laws for time fractional Cahn-Hilliard model, Applied Mathematics Letters, 149 (2024), 108929.


    [29] Xuan Zhao, Haifeng Zhang, Hong Sun, Errors of an implicit variable-step BDF2 method for a molecular beam epitaxial model with slope selection, East Asian Journal on Applied Mathematics, 13 (2023), 886-913.


    [28] Juan Li, Hong Sun, Xuan Zhao*, Energy stable and convergent BDF3-5 schemes for the molecular beam epitaxial model with slope selection, International Journal of Computer Mathematics, 100 (2023), 1646-1665.

     

    [27] Hong Sun, Yanping Chen, Xuan Zhao, Error estimate of the nonuniform L1 type formula for the time fractional diffusion-wave equation, Communications in Mathematical Sciences, 21 (2023), 1707-1725.



    [26]  Zhongqin Xue, Xuan Zhao*, Compatible energy dissipation of the variable-step L1 scheme for the space-time fractional Cahn-Hilliard equation, SIAM Journal on Scientific Computing , 44 (2023), A2539-A2560.

     

    [25]  Yiheng Wei, Yuquan Chen, Xuan Zhao, Jinde Cao, Analysis and synthesis of gradient algorithms based on fractional-order system theory, IEEE Transactions on Systems Man Cybernetics-Systems, 53 (2023), 1895-1906.


      

    [24Xuan Zhao*, Zhenhai Wu, Jingyi Qiu, Yiheng Wei, A novel hybrid algorithm with static and dynamic models for air quality index forecasting, Nonlinear Dynamics, 111 (2023), 13187-13199.

     

    [23] Hong Sun, Xuan Zhao*, Haiyan Cao, Ran Yang, Ming Zhang, Stability and convergence analysis of adaptive BDF2 scheme for the Swift-Hohenberg equation, Communications in Nonlinear Science and Numerical Simulation, 111 (2022), 106412.


      

    [22胡健雄, 汤奕, 李峰, 王琦, 赵璇, 电力系统中数据-物理融合模型的并联模式性能分析, 电力系统自动化, 46 (2021), 15-24.


    [21] 邱敬怡,赵璇*,基于 SVR-BP 算法的江苏省空气质量指数预测,南通大学学报(自然科学版)2020 19(1): 42-47. 


    [20] Xuan Zhao, Meichen Song, Anqi Liu, Yiming Wang, Tong Wang, Jinde CaoData-driven temporal-spatial model for the prediction of AQI in Nanjing, Journal of Artificial Intelligence and Soft Computing Research, 10 (2020) 255-270.


    [19]Shuying Zhai, Dongling Wang, Zhifeng Weng,  Xuan Zhao*, Error analysis and numerical simulations of strang splitting method for space fractional nonlinear Schrodinger equation,Journal on Scientific Computing81 (2019) 965-989. 

      

    [18] Chengdai Huang, Xuan Zhao, Xuehai Wang, Zhengxin Wang, Min Xiao, Jinde Cao, Disparate delays-induced bifurcations in a fractional-order neural network, Journal of the Franklin Institute 356 (2019) 2825–2846. 

      

    [17] Chengdai Huang, Xiaobing Nie, Xuan Zhao, Qiankun Song, Zhengwen Tu, Min Xiao, Jinde Cao, Novel bifurcation results for a delayed fractional-order quaternion-valued neural network, Neural Networks 117 (2019) 67–93. 

      

    [16] Hong Sun, Xuan Zhao, Zhi-zhong Sun, The temproal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation,Journal on Scientific Computing, (2019) 78:467–498. 

      

    [15] Beichuan Deng, Zhimin Zhang, Xuan ZhaoSuperconvergence points for the spectral interpolation of Riesz fractional derivatives,Journal on Scientific Computing,81 (2019) 1577-1601.

      

    [14]  Yue Zhao, Weiping Bu, Xuan ZhaoYifa Tang, Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation,Journal of Computational Physics350 (2017), 117-135.

      

    [13] Xiaoshuai Ding, Jinde Cao, Xuan Zhao, and Fuad E. Alsaadi, Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes, Proc. R. Soc. A 473: 20170322. 

      

    [12] Xiaoshuai Ding, Jinde Cao,  Xuan Zhao,  Fuad E. Alsaadi, Finite-time stability of fractional-order complex-valued Neural Networks with time delays, Neural Process Lett (2017) 46:561–580. 

      

    [11] Xuan Zhao*, Xiaozhe Hu, Wei Cai, George E. Karniadakis, Adaptive Finite element method for fractional differential equations using Hierarchical matrices,Comput. Methods Appl. Mech. Engrg325 (2017) 56–76 .

      

    [10] Xuan Zhao, Zhimin Zhang, Superconvergence points of fractional spectral interpolation, SIAM Journal on Scientific Computing, 38 (2016) A598-A614.

      

    [9] Xuan Zhao*, Zhi-zhong Sun, George Em Karniadakis, Second order approximations for variable order fractional derivatives: Algorithms and applications, Journal of Computational Physics, 293 (2015) 184–200.

      

    [8] Xuan Zhao, Zhi-zhong Sun, Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, Journal of Scientific Computing, 62 (2015) 747-771.

      

    [7] Xuan Zhao*, Zhi-zhong Sun, Zhao-peng Hao, A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrödinger equation, SIAM Journal on Scientific Computing, 36-6 (2014), pp. A2865-A2886.(ESI高被引论文)

      

    [6] Haiyan Cao, Zhi-zhong Sun, Xuan Zhao, A second-order three-level difference scheme for a Magneto-Thermo-Elasticity Model, Adv. Appl. Math. Mech., 6 (2014), 281-298. 

      

    [5] Jin-cheng Ren, Zhi-zhong Sun, Xuan Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 232 (2013), 456-467. 

      

    [4] Xuan Zhao*, Qinwu Xu, Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Applied Mathematical Modelling, 38 (2014) 3848-3859. 

      

    [3] Juan Li, Zhi-zhong Sun, Xuan Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci China Math, 55 (2012), 805-826. 

      

    [2]Ya-nan Zhang, Zhi-zhong Sun, Xuan Zhao, Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation, SIAM Journal on Numerical Analysis, 50 ( 2012) , 1535-1555.   (ESI高被引论文)

      

    [1]Xuan Zhao, Zhi-zhong Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 230 (2011), 6061-6074.

      

      



  • 2016 Riemann-Liouville Award (International Conference on Fractional Differentiation and its Applications,Novi Sad, Serbia, July 18 - 20, 2016, )


    2015 Excellent doctoral dissertation of Southeast University


    2015 Outstanding contribution in Reviewing Applied Mathematical Modelling 


    2014 Outstanding contribution in Reviewing Journal of Computational Physics  



  • Reviewer for:


    SIAM Journal on Scientific Computing


    Journal of Computational Physics


    Journal on Scientific Computing


    Mathematics and Computers in Simulation


    Applied Mathematical Modelling 


    Numerical Algorithms


    Journal of Computational Mathematics...