学术报告:2019年5月23日10:00-11:00,王志成,MIT

发布者:吕小俊发布时间:2019-05-16浏览次数:583

东南大学数学学院邀请专家申请表

报告人

王志成

单位

Massachusetts Institute of Technology

报告

题目

A stabilized phase-field method for two-phase flow at high Reynolds   number and large density/viscosity ratio

报告时间

523

10:00-11:00

地点

数学学院第一报告厅

邀请人

曹婉容

报告

摘要

Simulating two-phase flows in realistic   industrial-complexity conditions remains an open problem. We present a   phase-field method based on the Cahn-Hilliard equation that is able to   simulate two-phase flow at high Reynolds number and at large density and viscosity   ratios. We employ the entropy-viscosity method (EVM), applied both on the   Navier-Stokes equations and phase-field equation, to stabilize the simulation   in conjunction with an EVM-based artificial interface compression method   (AICM) that maintains the sharpness of the interface. We implement this   method based on a hybrid spectral-element/Fourier (SEF) discretization and   demonstrate second-order accuracy in time and spectral convergence rate in   space for smoothed fabricated solutions. We first test the accuracy and   robustness of the stabilized SEF-EVM solver by solving the so-called   three-dimensional LeVeque problem and compare against other available   methods. Subsequently, we simulate a rising air bubble in a water container   and find that the method is robust with respect to various parameters of the   phase-field formulation. Lastly, we apply the method to simulate the onset   and subsequent evolution of an air/oil slug in a long horizontal pipe using   realistic parameters and incorporating gravity and surface tension effects.   This is a particularly difficult flow to simulate with existing methods in   realistic conditions and here we show that the new stabilized phase-field   methods yield results in good agreement with the experimental data.

  

报告人简介

王志成博士2007年获得北京交通大学热能与动力工程学士学位,2013年在唐大伟研究员的指导下获得中国科学院工程热物理研究所博士学位并留所工作。2016年至今在麻省理工学院从事博士后研究,与G.E. Karniadakis等教授合作,发表学术论文多篇,研究成果发表在JFM, Computers & Fluids等国际主流学术期刊上。目前主要研究兴趣包括湍流模拟、两相流等。